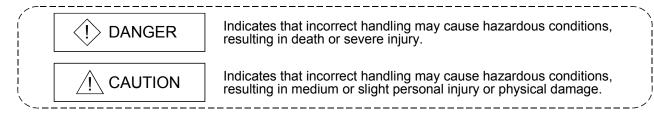

MITSUBISHI

Programming Manual



SAFETY PRECAUTIONS •

(Always read these instructions before using this equipment.)

Before using this product, please read this manual and the relevant manuals introduced in this manual carefully and pay full attention to safety to handle the product correctly.

The instructions given in this manual are concerned with this product. For the safety instructions of the programmable controller system, please read the CPU module user's manual. In this manual, the safety instructions are ranked as "DANGER" and "CAUTION".

Note that the ACAUTION level may lead to a serious consequence according to the circumstances. Always follow the instructions of both levels because they are important to personal safety.

Please save this manual to make it accessible when required and always forward it to the end user.

[Startup and Maintenance Precautions]

⚠ CAUTION

Always read this manual carefully and ensure safety before online operation.
 Failure to do so may cause incorrect operation, resulting in damage to a machine or an accident.

A - 1 A - 1

REVISIONS

* The manual number is given on the bottom left of the back cover.

Print Date	* Manual Number	* The manual number is given on the bottom left of the back cover Revision	
Dec., 2002	SH (NA)-080371E-A	First edition	
Apr., 2003	SH (NA)-080371E-B	Modifications	
	, ,	Section 2.11.1, Section 7.6.20, Appendix 1.2	
Oct., 2003	SH (NA)-080371E-C	Additions	
,	,	Appendix 5.1	
		Partial correction addition	
		Section 2.2.4, Section 2.3.1, Section 2.10, Section 2.11.1, Section 5.1.1,	
		Section 5.1.2, Section 7.9.1 to 7.9.4, Chapter 8, Section 8.1.3, Section 8.1.4, Section 8.2.1, Section 8.2.2, Section 8.2.3, Appendix 1.1, Appendix 5	
Jun., 2004	SH (NA)-080371E-D	Model Additions	
Juliu, 2001	(, 5555	Q12PRHCPU, Q25PRHCPU	
		Additions	
		Section 2.14	
		Partial correction addition	
		Terms, Section 1.1, Section 1.3.1, Section 2.2.4, Section 2.3.1,	
		Section 2.10 (Whole), Section 4.10, Section 5.5 (Whole), Section 7.4.7,	
		Section 7.6, Chapter 8, Appendix 1, Appendix 2, Appendix 5	
Jun., 2004	SH (NA)-080371E-E	Partial correction addition	
		Section 7.6.7, Section 7.6.12	
Feb., 2005	SH (NA)-080371E-F	Additions	
		Section 4.9.5	
		Partial correction addition	
		Chapter 7, Section 7.1.1, Section 7.1.2, Section 7.6.20, Appendix 1.1,	
		Appendix 4, Appendix 5, Index	

A-2 A-2

* The manual number is given on the bottom left of the back cover.

* The manual number is given on the bottom left of the back c		
Print Date	* Manual Number	Revision
Feb., 2006	SH (NA)-080371E-G	Additions Section 7.5.4, Section 7.6.7, Section 7.6.8, Section 7.6.11, Section 7.6.12, Section 7.8.9, Section 7.8.10, Section 7.8.13, Section 7.8.14, Appendix 3.14 Partial corrections and additions
		Section 1.2, Section 2.9.3, Section 2.9.4, Section 2.11.13, Section 2.14.2, Chapter 3, Section 4.1.16, Section 4.1.17, Section 4.1.19, Section 7.1.1, Section 7.1.2, Section 7.4.6, Section 7.5.1, Section 7.5.2, Section 7.5.6, Section 7.6.17, Section 7.6.18, Section 7.6.19, Section 7.7.1, Section 7.8.19, Section 7.8.20, Section 7.8.35, Appendix 1, Appendix 2, Appendix 3, Appendix 5 Section 7.5.4 to 7.5.7 changed to Section 7.5.5 to 7.5.8 Section 7.6.13 to 7.6.14 changed to Section 7.6.5 to 7.6.6 Section 7.6.5 to 7.6.6 changed to Section 7.6.9 to 7.6.10 Section 7.6.7 to 7.6.12 changed to Section 7.6.13 to 7.6.18 Section 7.6.15 to 7.6.23 changed to Section 7.6.19 to 7.6.27 Section 7.8.13 to 7.8.16 changed to Section 7.8.5 to 7.8.8
		Section 7.8.5 to 7.8.6 changed to Section 7.8.11 to 7.8.12 Section 7.8.7 to 7.8.12 changed to Section 7.8.15 to 7.8.20 Section 7.8.17 to 7.8.31 changed to Section 7.8.21 to 7.8.35
Mar., 2007	SH (NA)-080371E-H	Additions Section 7.6.25, Section 7.8.36, Section 8.1.4, Section 8.1.6, Section 8.1.11, Appendix 3.15 Partial corrections and additions Section 2.9.3, Section 2.9.4, Section 2.10, Section 5.5.1, Section 5.5.2, Section 7.5.4, Section 7.6.7, Section 7.6.8, Section 7.6.25, Section 7.7.1, Section 7.8.9, Section 7.8.10, Section 7.8.31, Section 7.8.32, Section 7.8.33, Section 7.8.36, Chapter 8, Section 8.2.1, Section 8.2.2, Section 8.2.3, Section 8.4.3, Section 8.4.4, Appendix 1, Appendix 1.1, Appendix 1.2, Appendix 1.3, Appendix 3.3, Appendix 3.14, Appendix 5, INDEX Section 7.6.25 to 7.6.27 changed to Section 7.6.26 to 7.6.28 Section 8.1.4 changed to Section 8.1.5 Section 8.1.5 to 8.1.8 changed to Section 8.1.7 to 8.1.10

A-3 A-3

* The manual number is given on the bottom left of the back cover.

Print Date	* Manual Number	Revision	
Jun., 2008	SH (NA)-080371E-I	Model Additions Q02PHCPU, Q06PHCPU Additions Section 7.1.8, Section 8.2.2, Section 8.2.5, Appendix 3.11 Partial corrections and additions MANUALS, GENERIC TERMS, ABBREVIATIONS, AND TERMS, Section 1.2 Section 2.4, Section 2.9.1, Section 2.10, Section 7.1.7, Section 7.5.1, Section 7.7.1, Chapter 8, Section 8.2.1 Section 8.4.2, Appendix 1.2 to 1.3, Appendix 3.10, Appendix 5 Section 8.2.2 to 8.2.3 changed to Section 8.2.3 to 8.2.4	
		Appendix 3.11 to 3.15 changed to Appendix 3.12 to 3.16	

Japanese Manual Version: SH-080261-O

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights that may occur as a result of using the contents noted in this manual.

© 2002 MITSUBISHI ELECTRIC CORPORATION

A - 4 A - 4

INTRODUCTION

Thank you for choosing the Mitsubishi MELSOFT series Integrated FA software. Read this manual and make sure you understand the functions and performance of MELSOFT series thoroughly in advance to ensure correct use.

CONTENTS

SAFETY	PRECAUTIONS		A-	1
REVISIO	DNS		A-	2
	DUCTION			
	NTS			
	LS			
	O USE THIS MANUAL			
	IC TERMS, ABBREVIATIONS, AND TERMS			
OLIVLIN	TERMO, ADDREVIATIONO, AND TERMO		/\	10
1 OVERV		1- 1	to 1-	4
1 1 Feat	ures		1_	1
	luct Configuration			
	neering Flow			
	Programming Procedure of FBD Program			
	Monitor Procedure of DDC Processing			
2 PROGF	RAMMING SPECIFICATION	2- 1	to 2-	54
2.1 FBD	Program		2-	1
	figuration of FBD Program			
2.2.1				
2.2.2				
2.2.3				
2.2.4	3			
2.2.5	Compiling FBD Program			
	When Power Supply Is OFF \rightarrow ON or Doing the Reset Operation			
	able			
	Local Variable and Global Variable			
	nentary Data Type			
	cture Type			
	stant			
	Constant Format			
	Constant Data Type			
	ction			
	Function			
2.7.2	Overload Function			
2.7.3	Input Pins Changeable Function			
	Function Execution Control (Function with EN/ENO Pins)			
	FB			
	Recursively Call			
•	Overview of Tag			
	ullet			

	Tag FB	
	- 3 71 -	
	User-defined Tag FB and Tag Access FB	
	Initial Setting of Tag Data and Operation Constant	
	dule FB	
	Requirements to Use Module FB	
	Access to MELSECNET/H Remote I/O Station	
	ecution of FBD Program	
	Execution Type and Priority/Phase of Program	
	Setting of FBD Sheet Execution Conditions	
	Executing Order of FBD Parts	
	ntifier and Reserved Words	
	nufacturer Library	
	cautions when using GX Developer	
	GX Developer/PX Developer version	
	PLC parameters	
	Ladder programming	
2.14.4	Redundant parameters	2- 52
3 ABOUT	COMPREHENDING FUNCTION PARTS AND FB PARTS	3- 1 to 3- 2
4 GENER	AL FUNCTION	4- 1 to 4-149
<u> </u>		
	Conversion Function	
	$\hbox{INT/DINT Type} \rightarrow \hbox{REAL Type Conversion (INT_TO_REAL(_E), DINT_TO_REAL}$	·- · ·
4.1.2	INT Type \rightarrow DINT Type Conversion (INT_TO_DINT(_E))	
4.1.3	DINT Type \rightarrow INT Type Conversion (DINT_TO_INT(_E))	
	INT/DINT Type \rightarrow BCD Type Conversion (INT_TO_BCD(_E), DINT_TO_BCD(_E)	
4.1.5	INT/DINT Type \rightarrow WORD Type Conversion (INT_TO_WORD(_E), DINT_TO_WORD(_E)	-
4.1.6	INT/DINT Type \rightarrow DWORD Type Conversion (INT_TO_DWORD(_E), DINT_TO_	DWORD(_E))
4.1.7	INT/DINT Type \rightarrow BOOL Type Conversion (INT_TO_BOOL(_E), DINT_TO_BOO	L(_E)) 4- 15
4.1.8	REAL Type \rightarrow INT/DINT Type Conversion (REAL_TO_INT(_E), REAL_TO_DINT	(_E)) 4- 17
4.1.9	BCD Type \rightarrow INT/DINT Type Conversion (BCD_TO_INT(_E), BCD_TO_DINT(_E)	E)) 4- 20
4.1.10	WORD Type \rightarrow INT/DINT Type Conversion (WORD_TO_INT(_E), WORD_TO_D	· — //
		4- 23
4.1.11	WORD/DWORD Type → BOOL Type Conversion (WORD_TO_BOOL(_E),	
	DWORD_TO_BOOL(_E))	
4.1.12	DWORD Type → INT/DINT Type Conversion (DWORD_TO_IN(_E), DWORD_TO_IN(_E),	
1112	WORD Type → DWORD Type Conversion (WORD_TO_DWORD(_E))	
	DWORD Type → BWORD Type Conversion (DWORD_TO_BWORD(_E))	
	INT/DINT Type → STRING Type Conversion (INT_TO_STRING(_E), DINT_TO_S	
4.1.15	INT/DINT Type → STRING Type Conversion (INT_TO_STRING(_E), DINT_TO_3	
1116	REAL Type → STRING Type (Exponent Form) Conversion (REAL_TO_STRING)	
	REAL Type → STRING Type (Exponent Form) Conversion (REAL_TO_STRING) REAL Type → STRING Type (Decimal Point Form) Conversion (REAL_TO_STRING)	— ''
4.1.1/	· · · · · · · · · · · · · · · · · · ·	
1110	STRING Type → INT/DINT Type Conversion (STRING_TO_INT(_E), STRING_TO	
4.1.18		
1 1 10	STRING Type → REAL Type Conversion (STRING_TO_REAL(_E))	
4.1.19	STRING Type TREAL Type Conversion (STRING_TO_REAL(_E))	4- 46

A-6 A-6

	4.1.20	BOOL Type \rightarrow INT/DINT Type Conversion (BOOL_TO_INT(_E), BOOL_TO_DINT(_E))	. 4- 49
	4.1.21	BOOL Type → WORD/DWORD Type Conversion (BOOL_TO_WORD(_E),	
		BOOL_TO_DWORD(_E))	. 4- 51
4.	2 Nume	erical Operation Function	. 4- 53
	4.2.1	Absolute Value (ABS(_E))	. 4- 53
	4.2.2	Square Root (SQRT(_E))	. 4- 55
	4.2.3	Natural Logarithm/Logarithm Base 10 (LN(_E), LOG(_E))	. 4- 57
		Natural Exponential (EXP(_E))	
		SIN/COS/TAN Operation (SIN(_E), COS(_E), TAN(_E))	
		ASIN/ACOS/ATAN Operation (ASIN(_E),ACOS(_E),ATAN(_E))	
4.		metic Operation Function	
	4.3.1	Addition (ADD(_E))	. 4- 67
		Multiplication (MUL(_E))	
		Subtraction (SUB(_E))	
		Division (DIV(_E))	
		Modulus Operation (MOD(_E))	
4.		ring Function	
		Shift Left, Shift Right (SHL(_E), SHR(_E))	
		Rotate Left, Rotate Right (ROL(_E), ROR(_E))	
4.		al Operation Function	
		AND, OR, XOR and NOT (AND(_E), OR(_E), XOR(_E),NOT(_E))	
4.		ction Function	
		Input Value Selection (SEL(_E))	
		Maximum/Minimum Value Selection (MAX(_E), MIN(_E))	
		High/Low Limit Control (LIMIT(_E))	
		Multiplexer (MUX(_E))	
4.		parison Function	
		Comparison (> (_E), > = (_E), =(_E), < = (_E), < (_E), <> (_E))	
4		acter String Function	
•		String Length (LEN(_E))	
		Leftmost/Rightmost Characters (LEFT(_E), RIGHT(_E))	
		Middle Characters (MID(E))	
	4.8.4	Concatenation (CONCAT(E))	
	4.8.5	Inserting Characters (INSERT(E))	
		Deleting Substring (DELETE(_E))	
		Replacing Characters (REPLACE(_E))	
		Finding Characters (FIND(_E))	
4		er Function	
٠.		WORD → 16BOOL Unbinding (UNBIND(_E))	
	4.9.2	16 BOOL → WORD/DWORD (BIND(_E))	
		2WORD → DWORD (MAKE_DWORD(_E))	
		High-order/Low-order Output of DWORD Type Data (HI_WORD(_E), LO_WORD(_E)_)	
		Input pins connection status acquisition (IS_CONNECTED(_E)_)	
1		der Program Control Function	
ᅻ.		Sub-routine Program Call (INT/REAL Type Argument) (CALL_DINT(_E), CALL_REAL(_E	
	7.10.1	Sub-loutine Program Cair (INT/NEAL Type Argument) (CALL_DINT(_E), CALL_NEAL(_E	
	A 10 2	Program Scan Execution Registration (PSCAN(_E))	
		Program Standby Instruction (PSTOP(_E))	
		Program Output Standby Instruction (POFF(_E))	
		Program Low-speed Execution Registration (PLOW(_E))	
	T. 1U.J	Trogram Low Specu Excountringion and the LOVV L//	-T-ITO

A-7 A-7

	ALFB	5- 1 to 5- 41	,
E 4 Diete	-kla ED		_
	able FB		
5.1.1	Set-Dominant Flip-Flop (SR)		
	Reset-Dominant Flip-Flop (RS)		
	Latch FB (BOOL Type) (LATCH_BOOL)		
	Latch FB (REAL Type) (LATCH_REAL)		
	Latch FB (WORD Type) (LATCH_WORD)		
	Latch FB (DWORD Type) (LATCH_WORD)		
•	e Detection FB		
	Rising Edge Detector (R_TRIG)		
	Falling Edge Detector (F_TRIG)		
	Edge Detection Input (EDGE_CHECK)		
	nter FB		
5.3.1	Up-counter (CTU)		
	Down-counter (CTD)		
5.3.3	Up-down-counter (CTUD)		
	er FB		
5.4.1	Pulse Timer (High-speed Timer) (TP_HIGH)		
5.4.2	Pulse Timer (Low-speed Timer) (TP_LOW)		
5.4.3	ON Delay Timer (High-speed Timer) (TON_HIGH)		
5.4.4	ON Delay Timer (Low-speed Timer) (TON_LOW)		
5.4.5	OFF Delay Timer (High-speed Timer) (TOF_HIGH)	5- 27	7
5.4.6	OFF Delay Timer (Low-speed Timer) (TOF_LOW)	5- 29)
5.5 Com	munication Control FB	5- 31	l
5.5.1	Sending Data to PLC CPUs of Other Stations(SEND)	5- 31	l
5.5.2	Receiving Data from PLC CPUs of Other Stations (RECV)	5- 37	7
0.0000			
6 PROCE	ESS FUNCTION	6- 1 to 6-16	
		6- 1 to 6-16	3
6.1 Anal	og Value Selection and Average Value Function	6- 1 to 6- 16	3
6.1 Anal 6.1.1	og Value Selection and Average Value Function	6- 1 to 6- 16	2
6.1 Anal 6.1.1 6.1.2	og Value Selection and Average Value Function	6- 1 to 6- 16	2 2 5
6.1 Anal 6.1.1 6.1.2 6.1.3	og Value Selection and Average Value Function High Selector (P_HS(_E)) Low Selector (P_LS(_E)) Middle Value Selection (P_MID(_E))	6- 1 to 6- 16	2 5 3
6.1 Anal 6.1.1 6.1.2 6.1.3 6.1.4	og Value Selection and Average Value Function High Selector (P_HS(_E)) Low Selector (P_LS(_E)) Middle Value Selection (P_MID(_E)) Average Value (P_AVE(_E))	6- 1 to 6- 166- 26- 56- 86- 11	5 2 5 1
6.1 Anal 6.1.1 6.1.2 6.1.3 6.1.4	og Value Selection and Average Value Function High Selector (P_HS(_E)) Low Selector (P_LS(_E)) Middle Value Selection (P_MID(_E))	6- 1 to 6- 166- 26- 56- 86- 11	5 2 5 1
6.1 Anal 6.1.1 6.1.2 6.1.3 6.1.4	og Value Selection and Average Value Function High Selector (P_HS(_E)) Low Selector (P_LS(_E)) Middle Value Selection (P_MID(_E)) Average Value (P_AVE(_E)) Absolute Value (P_ABS(_E))	6- 1 to 6- 166- 26- 56- 86- 11	5 2 5 3 1
6.1 Anal 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5	og Value Selection and Average Value Function High Selector (P_HS(_E)) Low Selector (P_LS(_E)) Middle Value Selection (P_MID(_E)) Average Value (P_AVE(_E)) Absolute Value (P_ABS(_E)) ESS FB	6- 1 to 6- 166- 26- 56- 86- 14 7- 1 to 7- 409	5 2 5 1 1
6.1 Anal 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 7 PROCE	og Value Selection and Average Value Function High Selector (P_HS(_E)) Low Selector (P_LS(_E)) Middle Value Selection (P_MID(_E)) Average Value (P_AVE(_E)) Absolute Value (P_ABS(_E)) ESS FB eral Process FB_Correction Operation FB	6- 1 to 6- 16	5 2 5 3 1 4
6.1 Anal 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 7 PROCE 7.1 Gen 7.1.1	og Value Selection and Average Value Function High Selector (P_HS(_E)) Low Selector (P_LS(_E)) Middle Value Selection (P_MID(_E)) Average Value (P_AVE(_E)) Absolute Value (P_ABS(_E)) ESS FB eral Process FB_Correction Operation FB Function Generator (P_FG)	6- 1 to 6- 16	5 2 5 3 1 4
6.1 Anal 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 7 PROCE 7.1 Gen 7.1.1 7.1.2	og Value Selection and Average Value Function High Selector (P_HS(_E))	6- 1 to 6- 16	5 2 5 3 1 4 2 5
6.1 Anal 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 7 PROCE 7.1 Gen 7.1.1 7.1.2 7.1.3	og Value Selection and Average Value Function High Selector (P_HS(_E))	6- 1 to 6- 16	6 2 5 3 1 4 2 5 3
6.1 Anal 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 7 PROCE 7.1 Gen 7.1.1 7.1.2 7.1.3 7.1.4	og Value Selection and Average Value Function High Selector (P_HS(_E))	6- 1 to 6- 16	6 2 5 3 1 4 2 5 3 0
6.1 Anal 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 7 PROCE 7.1 Gen 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5	og Value Selection and Average Value Function High Selector (P_HS(_E))	6- 1 to 6- 16	5 2 5 3 1 4 9 2 5 3 0 2
6.1 Anal 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 7 PROCE 7.1 Gen 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6	og Value Selection and Average Value Function High Selector (P_HS(_E))	6- 1 to 6- 16	2 2 5 3 1 1 4 2 2 3 3 0 2 1
6.1 Anal 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 7 PROCE 7.1 Gen 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7	og Value Selection and Average Value Function High Selector (P_HS(_E)) Low Selector (P_LS(_E)) Middle Value Selection (P_MID(_E)) Average Value (P_AVE(_E)) Absolute Value (P_ABS(_E)) ESS FB eral Process FB_Correction Operation FB Function Generator (P_FG) Inverse Function Generator (P_IFG) Standard Filter (Moving Average)(P_FLT) Engineering Value Conversion (P_ENG) Inverse Engineering Value Conversion (P_IENG) Temperature/Pressure Correction (P_TPC) Summation (P_SUM)	6- 1 to 6- 16	6 2 2 5 3 1 1 4 2 2 3 3 3 0 1 4 6 6 7 1 7 1 8 7 1 8 7 1 8 7 1 7 1 8 7 1 7 1
6.1 Anal 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 7 PROCE 7.1 Gen 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8	og Value Selection and Average Value Function High Selector (P_HS(_E))	6- 1 to 6- 16	3 2 2 3 3 1 1 4 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
6.1 Anal 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 7 PROCE 7.1 Gen 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.2 Gen	og Value Selection and Average Value Function High Selector (P_HS(_E))	6- 1 to 6- 16	6 2 2 5 3 1 1 4 2 2 3 3 3 3 3 4 4 3 3 3 3 3 3 3 3 3 3
6.1 Anal 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 7 PROCE 7.1 Gen 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.2 Gen 7.2.1	og Value Selection and Average Value Function High Selector (P_HS(_E)) Low Selector (P_LS(_E)) Middle Value Selection (P_MID(_E)) Average Value (P_AVE(_E)) Absolute Value (P_ABS(_E)) ESS FB eral Process FB_Correction Operation FB Function Generator (P_FG) Inverse Function Generator (P_IFG) Standard Filter (Moving Average)(P_FLT) Engineering Value Conversion (P_ENG) Inverse Engineering Value Conversion (P_IENG) Temperature/Pressure Correction (P_TPC) Summation (P_SUM) Summation (Internal Integer Integration) (P_SUM2_) eral Process FB_Arithmetic Operation FB Addition (With Coefficient) (P_ADD)	6- 1 to 6- 16	6 2 2 5 3 1 1 4 2 5 3 3 3 2 2 4 3 3 3 2 2 2 2 2 2 2 2 2 3 3 3 3
6.1 Anal 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 7 PROCE 7.1 Gen 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.2 Gen	og Value Selection and Average Value Function High Selector (P_HS(_E))	6- 1 to 6- 16	6 2 2 5 3 1 1 4 2 2 3 3 3 1 4 3 2 4 4 3 1 4 3 1 4 3 4 3 4 4 3 3 4 3 4 4 3 4 3

7.2.4	Division (With Coefficient) (P_DIV)	. 7- 29
7.2.5	Square Root (With Coefficient) (P_SQR)	. 7- 31
7.3 Gene	eral Process FB_ Comparison Operation FB	. 7- 34
7.3.1	Compare Greater Than (With Set Value) (P_>)	. 7- 34
7.3.2	Compare Less Than (With Set Value) (P_<)	. 7- 36
7.3.3	Compare Equal Than (With Set Value) (P_=)	. 7- 38
7.3.4	Compare Greater Or Equal (With Set Value) (P_>=)	. 7- 40
7.3.5	Compare Less Or Equal (With Set Value) (P_<=)	
7.4 Gene	eral Process FB_Control Operation FB	
7.4.1	Lead-Lag (P_LLAG)	. 7- 44
7.4.2	Integral (P I)	. 7- 47
7.4.3	Derivative (P_D)	. 7- 50
7.4.4	Dead Time (P_DED)	
7.4.5	High/Low Limiter (P_LIMT)	
7.4.6	Variation Rate Limiter1 (P_VLMT1)	
7.4.7	Variation Rate Limiter2 (P_VLMT2)	
7.4.8	Dead Band (P DBND)	
7.4.9	` =	
	Analog Memory (P AMR)	
	Access FB_I/O Control Operation FB	
7.5.1	Analog Input Processing (P_IN)	
7.5.2	Output Processing-1 with Mode Switching (With Input Addition) (P_OUT1)	
7.5.3	Output Processing-2 with Mode Switching (Without Input Addition) (P_OUT2)	
7.5.4	Output Processing-3 with Mode Switching (With Input Addition and Compensation) (P_OL	
7.5.5	Manual Output (P_MOUT)	
7.5.6	Time Proportioning Output (P_DUTY)	
7.5.7	Pulse Integration (P_PSUM)	
7.5.8	Batch Counter (P BC)	
	Access FB_Loop Control Operation FB	
7.6.1	Ratio Control (With Tracking to primary loop) (P_R_T)	
7.6.2	Ratio Control (With Tracking to primary loop) (P_R)	
7.6.3	Velocity Type PID Control (With Tracking to primary loop) (P_PID_T)	
7.6.4	Velocity Type PID Control (With Tracking to primary loop) (P_PID)	
7.6.5		
	2-Degree-of-Freedom PID Control (With Fracking to primary loop) (P_2PID_1)	
	2-Degree-of-Freedom Advanced PID Control (With Tracking to primary loop) (P_2PIDH_T	
1.0.1	2-Degree-of-Freedom Advanced Fib Control (With Tracking to primary loop) (F_2FIbH_1	— -
768	2-Degree-of-Freedom Advanced PID Control (Without Tracking to primary loop) (P_2PIDF	. /-133
1.0.0	2-Degree-of-Freedom Advanced Fib Control (Without Tracking to primary 100p) (F_2F Ib)	
760	Position Type PID Control (With Tracking to primary loop, Without Tracking from secondar	
1.0.9	(P_PIDP_T)	•
7610	Position Type PID Control (Without Tracking to primary loop, Without Tracking from secor	
7.0.10		•
7611	loop) (P_PIDP)	
7.0.11	Position Type PID Control (With Tracking to primary loop, With Tracking from secondary loop, FIX T.)	• /
7040	(P_PIDP_EX_T_)	
7.6.12	Position Type PID Control (Without Tracking to primary loop, With Tracking from secondal	•
7040	(P_PIDP_EX_)	7-1/0
7.0.13	S Sample PI Control (With Tracking to primary loop) (P_SPI_T)	7-1//
	Sample PI Control (Without Tracking to primary loop) (P_SPI)	
7.6.15	il-PD Control (With Tracking to primary loop) (P_IPD_T)	7-188

A-9 A-9

	I-PD Control (Without Tracking to primary loop) (P_IPD)	
	Blend PI Control (With Tracking to primary loop) (P_BPI_T)	
	Blend PI Control (Without Tracking to primary loop) (P_BPI)	
	High/Low Limit Alarm Check (P_PHPL)	
	2-Position ON/OFF (With Tracking to primary loop) (P_ONF2_T)	
	2-Position ON/OFF (Without Tracking to primary loop) (P_ONF2)	
	3-Position ON/OFF (With Tracking to primary loop) (P_ONF3_T)	
	3-Position ON/OFF (Without Tracking to primary loop) (P_ONF3)	
	Program Setter (P_PGS)	
	Multi-Point Program Setter (P_PGS2_)	
	Loop Selector (Without Tracking to primary loop) (P_SEL)	
	Loop Selector (With Tracking to primary loop) (P_SEL_T1)	
	Loop Selector (With Tracking to primary loop) (P_SEL_T2)	
_	Access FB_Tag Special FB	
	Control Mode Change (P_MCHG)	
_	FB_Loop Tag FB	
	Velocity Type PID Control (With Tracking to primary loop) (M_PID_T)	
	Velocity Type PID Control (Without Tracking to primary loop) (M_PID)	
7.8.3	Velocity Type PID Control and DUTY Output (With Tracking to primary loop) (M_PID_DUT	
704	Valority Town DID Control and DUTY Control (MVIII) and Town I was a few or MV DID D	/-26/
7.8.4	Velocity Type PID Control and DUTY Output (Without Tracking to primary loop) (M_PID_D	
7 05		
	2-Degree-of-Freedom PID Control (With Tracking to primary loop) (M_2PID_T)	
	2-Degree-of-Freedom PID Control (Without Tracking to primary loop) (M_2PID)	7-276
7.8.7	2-Degree-of-Freedom PID Control and DUTY Output (With Tracking to primary loop)	7 070
700	(M_2PID_DUTY_T)2-Degree-of-Freedom PID Control and DUTY Output (Without Tracking to primary loop)	7-279
7.8.8	(M 2PID DUTY)	7 202
7.8.9	2-Degree-of-Freedom Advanced PID Control (With Tracking to primary loop) (M_2PIDH_T	
7.0.9	2-Degree-oi-reedoin Advanced rib Control (With Tracking to primary 100p) (M_2ribri_1	
7 8 10	2-Degree-of-Freedom Advanced PID Control (Without Tracking to primary loop) (M_2PIDF	
7.0.10	2-begree-of-recoon Advanced rib control (without tracking to primary loop) (wi_zr ib)	
7.8.11	Position Type PID Control (With Tracking to primary loop, Without Tracking from secondar	
	(M PIDP T)	
7.8.12	Position Type PID Control (Without Tracking to primary loop, Without Tracking from second	
	loop) (M PIDP)	
7.8.13	Position Type PID Control (With Tracking to primary loop, With Tracking from secondary lo	
	(M_PIDP_EX_T)	
7.8.14	Position Type PID Control (Without Tracking to primary loop, With Tracking from secondar	
	(M_PIDP_EX_)	
7.8.15	Sample PI Control (With Tracking to primary loop) (M_SPI_T)	
	Sample PI Control (Without Tracking to primary loop) (M_SPI)	
	I-PD Control (With Tracking to primary loop) (M_IPD_T)	
	I-PD Control (Without Tracking to primary loop) (M_IPD)	
	Blend PI Control (With Tracking to primary loop) (M_BPI_T)	
	Blend PI Control (Without Tracking to primary loop) (M_BPI)	
	Ratio Control (With Tracking to primary loop) (M_R_T)	
	Ratio Control (Without Tracking to primary loop) (M_R)	
	2-Position ON/OFF Control (With Tracking to primary loop) (M_ONF2_T)	
	2-Position ON/OFF Control (Without Tracking to primary loop) (M_ONF2)	
7.8.25	3-Position ON/OFF Control (With Tracking to primary loop) (M_ONF3_T)	7-350

A - 10 A - 10

	3-Position ON/OFF Control (Without Tracking to primary loop) (M_ONF3)	
	Monitor (M_MONI)	
7.8.28	Manual Output With Monitor (M_MWM)	7-358
7.8.29	Batch Preparation (M_BC)	7-360
7.8.30	Pulse Integrator (M_PSUM)	7-363
7.8.31	Loop Selector (Without Tracking to primary loop) (M_SEL)	7-366
7.8.32	Loop Selector (With Tracking to primary loop) (M_SEL_T1)	7-368
7.8.33	Loop Selector (With Tracking to primary loop) (M_SEL_T2)	7-370
7.8.34	· Manual Output (M_MOUT)	7-373
	Program Setter (M_PGS)	
7.8.36	Multi-Point Program Setter (M_PGS2_)	7-377
	FB_Status Tag FB	
7.9.1	Motor Irreversible (2 Input, 2 Output) (M_NREV)	7-380
7.9.2	Motor Reversible (2 Input, 3 Output) (M_REV)	7-384
7.9.3	ON/OFF Operation (2 Input, 2 Output) (M_MVAL1)	7-388
7.9.4	ON/OFF Operation (2 Input, 3 Output) (M_MVAL2)	7-392
7.9.5	Timer 1 (Timer Stops When COMPLETE Flag is ON) (M_TIMER1)	7-396
7.9.6	Timer 2 (Timer Continues When COMPLETE Flag is ON) (M_TIMER2)	7-398
7.9.7	Counter 1 (Counter Stops When COMPLETE Flag is ON) (M_COUNTER1)	7-400
	Counter 2 (Counter Continues When COMPLETE Flag is ON) (M COUNTER2)	
7.10 Tag	FB Alarm Tag FB	7-406
7.10.1	Alarm (M ALARM)	7-406
7.11 Tag	FB Message Tag FB	7-408
7.11.1	Message (M_MESSAGE)	7-408
8 MODUL	F FR	8- 1 to 8- 105
		- 1100 100
	og Module FB	
8.1.1	4 Channels Analog Input (AIN_4CH)	8- 2
8.1.1 8.1.2	4 Channels Analog Input (AIN_4CH)	8- 2 8- 5
8.1.1 8.1.2 8.1.3	4 Channels Analog Input (AIN_4CH)	8- 2 8- 5 8- 8
8.1.1 8.1.2 8.1.3 8.1.4	4 Channels Analog Input (AIN_4CH)	8- 2 8- 5 8- 8
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5	4 Channels Analog Input (AIN_4CH)	8- 2 8- 5 8- 8 8- 12 H_DG)8- 17
8.1.1 8.1.2 8.1.3 8.1.4	4 Channels Analog Input (AIN_4CH)	
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6	4 Channels Analog Input (AIN_4CH)	
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6	4 Channels Analog Input (AIN_4CH)	
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8	4 Channels Analog Input (AIN_4CH)	
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9	4 Channels Analog Input (AIN_4CH)	8- 28- 58- 88- 12 H_DG)8- 17 nction8- 218- 268- 29
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9 8.1.10	4 Channels Analog Input (AIN_4CH)	8- 28- 58- 88- 12 H_DG)8- 17 nction8- 218- 298- 33
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9 8.1.10	4 Channels Analog Input (AIN_4CH)	8- 2 8- 5 8- 8 8- 12 H_DG) 8- 17 nction 8- 21 8- 26 8- 29 8- 33 8- 37
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9 8.1.10 8.1.11	4 Channels Analog Input (AIN_4CH)	8- 2 8- 5 8- 8 8- 8 12 H_DG) 8- 17 nction 8- 26 8- 29 8- 33 8- 37 8- 41
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9 8.1.10 8.1.11 8.2 Tem 8.2.1	4 Channels Analog Input (AIN_4CH)	8- 2 8- 5 8- 8 8- 12 H_DG) 8- 17 nction 8- 21 8- 29 8- 33 8- 37 8- 41 8- 45
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9 8.1.10 8.1.11 8.2 Tem 8.2.1	4 Channels Analog Input (AIN_4CH)	8- 2 8- 5 8- 8 8- 12 H_DG) 8- 17 nction 8- 21 8- 29 8- 33 8- 37 8- 41 8- 45 8- 45
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9 8.1.10 8.1.11 8.2 Tem 8.2.1	4 Channels Analog Input (AIN_4CH)	8- 2 8- 5 8- 8 8- 12 H_DG) 8- 17 nction 8- 21 8- 29 8- 33 8- 37 8- 41 8- 45 8- 45
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9 8.1.11 8.2 Tem 8.2.1 8.2.2 8.2.3 8.2.4	4 Channels Analog Input (AIN_4CH)	8- 2 8- 8 8- 8 8- 12 H_DG) 8- 17 nction 8- 26 8- 29 8- 33 8- 37 8- 41 8- 45 8- 45 8- 45 8- 53
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9 8.1.10 8.1.11 8.2 Tem 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5	4 Channels Analog Input (AIN_4CH)	8- 2 8- 5 8- 8 8- 12 H_DG) 8- 17 action 8- 21 8- 29 8- 33 8- 37 8- 41 8- 45 8- 45 8- 45 8- 57 G) 8- 61
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9 8.1.10 8.1.11 8.2 Tem 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5	4 Channels Analog Input (AIN_4CH)	8- 2 8- 8 8- 8 8- 12 H_DG) 8- 17 action 8- 21 8- 26 8- 29 8- 33 8- 37 8- 41 8- 45 8- 45 8- 45 8- 53 8- 57 G) 8- 61
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9 8.1.11 8.2 Tem 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.3 Cour 8.3.1	4 Channels Analog Input (AIN_4CH)	8- 2 8- 8 8- 8 8- 8 12 H_DG) 8- 17 nction 8- 26 8- 29 8- 33 8- 37 8- 41 8- 45 8- 45 8- 45 8- 57 G) 8- 61 8- 65
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9 8.1.11 8.2 Tem 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.3 Cour 8.3.1	4 Channels Analog Input (AIN_4CH)	8- 2 8- 5 8- 8 8- 12 H_DG) 8- 17 nction 8- 26 8- 29 8- 33 8- 37 8- 41 8- 45 8- 45 8- 45 8- 53 8- 57 G] 8- 61
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9 8.1.10 8.1.11 8.2 Tem 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.3.1 8.3.2 8.3.1 8.3.2	4 Channels Analog Input (AIN_4CH) 8 Channels Analog Input (AIN_8CH) Channel-isolated 4 Channels Analog Input (AIN_4CH_G) Channel-isolated 8 Channels Analog Input (AIN_8CH_G) Channel-isolated High-resolution 2 Channels Signal Condition Function (AIN_2C Channel-isolated 6 Channels A/D Converter Module with Signal Conditioning Fur (AIN_6CH_DG) 2 Channels Analog Output (AOUT_2CH) 4 Channels Analog Output (AOUT_4CH) 8 Channels Analog Output (AOUT_8CH) Channel-isolated 2 Channels Analog Output (AOUT_2CH_G) Channel-isolated 6 Channels Analog Output (AOUT_6CH_G) perature Input Module FB 4 Channels Thermocouple Input (TC_4CH) Channel-isolated 8 Channels Thermocouple Input (TC_8CH_G) Channel-isolated 4 Channels Temperature/Micro-voltage Input (TCV_4CH_G) 4 Channels Temperature-Measuring Resistor Input (RTD_4CH) Channel-isolated 8 Channels Temperature-Measuring Resistor Input (RTD_4CH) Channel-isolated 8 Channels Temperature-Measuring Resistor Input (RTD_8CH_nter Module FB High-speed Counter (HIC_2CH) Channel-isolated 8 Channels Pulse Input (PIN_8CH_G) Channel-isolated 8 Channels Pulse Input (PIN_8CH_G) Al I/O Module FB	8- 2 8- 5 8- 8 8- 12 H_DG) 8- 17 Inction 8- 21 8- 29 8- 33 8- 37 8- 41 8- 45 8- 45 8- 45 8- 57 G) 8- 61 8- 65 8- 69 8- 74
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9 8.1.10 8.1.11 8.2 Tem 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.3 Cour 8.3.1 8.3.2 8.4 Digit 8.4.1	4 Channels Analog Input (AIN_4CH)	8- 2 8- 5 8- 8 8- 12 H_DG) 8- 17 nction 8- 21 8- 29 8- 33 8- 37 8- 41 8- 45 8- 45 8- 45 8- 65 8- 65 8- 69 8- 74
8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.1.9 8.1.10 8.1.11 8.2 Tem 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.3 Cour 8.3.1 8.3.2 8.4 Digit 8.4.1	4 Channels Analog Input (AIN_4CH) 8 Channels Analog Input (AIN_8CH) Channel-isolated 4 Channels Analog Input (AIN_4CH_G) Channel-isolated 8 Channels Analog Input (AIN_8CH_G) Channel-isolated High-resolution 2 Channels Signal Condition Function (AIN_2C Channel-isolated 6 Channels A/D Converter Module with Signal Conditioning Fur (AIN_6CH_DG) 2 Channels Analog Output (AOUT_2CH) 4 Channels Analog Output (AOUT_4CH) 8 Channels Analog Output (AOUT_8CH) Channel-isolated 2 Channels Analog Output (AOUT_2CH_G) Channel-isolated 6 Channels Analog Output (AOUT_6CH_G) perature Input Module FB 4 Channels Thermocouple Input (TC_4CH) Channel-isolated 8 Channels Thermocouple Input (TC_8CH_G) Channel-isolated 4 Channels Temperature/Micro-voltage Input (TCV_4CH_G) 4 Channels Temperature-Measuring Resistor Input (RTD_4CH) Channel-isolated 8 Channels Temperature-Measuring Resistor Input (RTD_4CH) Channel-isolated 8 Channels Temperature-Measuring Resistor Input (RTD_8CH_nter Module FB High-speed Counter (HIC_2CH) Channel-isolated 8 Channels Pulse Input (PIN_8CH_G) Channel-isolated 8 Channels Pulse Input (PIN_8CH_G) Al I/O Module FB	8- 2 8- 8 8- 8 8- 12 H_DG) 8- 17 nction 8- 21 8- 26 8- 29 8- 33 8- 37 8- 41 8- 45 8- 45 8- 45 8- 57 G) 8- 61 8- 65 8- 69 8- 74

A - 11

8.4.3 32 Poin	ts Digital Input (DIN_32PT)	8- 78
	ts Digital Input (DIN_64PT)	
	s Digital Output (DOUT 8PT)	
	ts Digital Output (DOUT_16PT)	
	ts Digital Output (DOUT_32PT)	
	ts Digital Output (DOUT_64PT)	
	ts Input/32 Points Output I/O Mixed (DINOUT_64PT)	
	s Input/7 Points Output I/O Mixed (DINOUT_15PT)	
	ule FB	
	Remote Station Occupying 1 Station (CCLINK_1)	
	Remote Station Occupying 2 Stations (CCLINK_2)	
	Remote Station Occupying 3 Stations (CCLINK_3)	
	Remote Station Occupying 4 Stations (CCLINK_4)	
0.0.1 00 2.11	Tromote Station Societying T Stations (SSERVIC_1)	
APPENDIX		App- 1to App-118
Appendix 1 List o	of Various Tag Type/Tag Data	Ann- 1
	Tag Data List of Various Tag Types	
	Detailed Information About Tag Data Of Various Tag Types	
Appendix 1.3	List of Applicable Tag FB/Tag Access FB/Various Functions in Vari	
Appoinant 1.0	Liet of Applicable Tag 1 B/Tag / tecese 1 B/ Valleue 1 anotherie in Vall	
Annendix 2 Error	Code List	• •
• •	ed Functions of Process	• • •
	Auto Tuning	
	1.1 Step Response Method	
	1.2 Limit Cycle Method	
Appendix 3.2	Control Output Cycle (CTDUTY), Manipulated Variable (MV), and C	
Appendix 5.2	in Time Proportioning Control	
Appendix 3.3	I/O Mode	
Appendix 3.4	Execution Cycle (△T) and Control Cycle (CT) in Loop Control	
Appendix 3.5	Various PID Control	• • • • • • • • • • • • • • • • • • • •
Appendix 3.6	Various Control	• • •
Appendix 3.7	PID Operation	
Appendix 3.7 Appendix 3.8	Control Mode	• •
• •	Velocity Type PID and Position Type PID	
	Stop Alarm Processing in Loop Control	
• • •	·	• • •
• • •	Tracking	
• • •	Simulation Function	
	Override Function	• • • • • • • • • • • • • • • • • • • •
	Tag stop Function	
• • •	Program Setter Setting Method	• • •
	S	
• •	uctions Newly Included and Changed with Upgrade	• • •
Appendix 5.1	Precautions an the compile function improvement	App-116
INDEX	lr	ndex- 1 to Index- 9

A - 12 A - 12

MANUALS

The following manuals are also related to this product. Refer to the following table for ordering a manual.

Related manuals

Manual name	Manual number (model code)
PX Developer Operating Manual (Programming Tool) Explains FBD language programming, compilation, online operation and debug methods	SH-080369E
with PX Developer. (Sold separately.)	(13JU38)
PX Developer Operating Manual (Monitor tool) Explains the operation methods of the monitor tool and methods for monitoring and controlling DDC processing with tag FB. (Sold separately.)	SH-080370E (13JU39)
PX Developer Operating Manual (GOT Screen Generator) Explains the generation procedure for GOT screen project and details about generated screen. (Sold separately.)	SH-080772ENG (13JU61)
PX Developer Operating Manual (SCADA Interaction) Explains the interaction between PX Developer monitor tool and SCADA software. (Sold separately.)	SH-080773ENG (13JU62)

CAUTION

- Please note that we do not guarantee commercially available software compatible with Microsoft[®] Windows[®] Operating System introduced in this manual.
- The software copyright of this product belongs to Mitsubishi Electric Corporation.
- No contents in this manual can be reproduced or duplicated in any form or by any means without permission.
- Although we make utmost efforts, this manual may not completely follow the revisions of the software and hardware.
- In principle, this software should be purchased by one set per personal computer or by license purchase.
- This product (including this manual) can only be used under the software license agreement.
- Please note that we are not responsible for any influence resulting from operating this product (including this manual).
- The contents of this manual are subject to change without notice.

A - 13 A - 13

HOW TO USE THIS MANUAL

"HOW TO USE THIS MANUAL" is arranged according to different needs in using: Please refer to the following contents when using this manual:

- (1) Hoping to learn features, product configuration and project flow (Chapter 1)
 - Features are described in Section 1.1; product configuration is illustrated in Section 1.2; and the project flow in Section 1.3.
- (2) Hoping to learn the programming method of FBD language (Chapter 2) FBD language and its programming method are described in Chapter 2.
- (3) Programming with FBD parts (Chapter 3 to 8, Appendix 1)
 - Reading method of instructions after Chapter 4 is described in Chapter 3.
 - Input/output pins parameter, function and program example of general functions are described in Chapter 4.
 - Input/output pins parameter, function and program example of general FB are described in Chapter 5.
 - Input/output pins parameter, function and program example of process function are described in Chapter 6.
 - Input/output pins parameter, public variable, function, and program example of process FB are described in Chapter 7.
 - Input/output pins, public variable, function, and program example of module FB are described in Chapter 8.
 - The tag data list and its detailed information are in Appendix 1.
- (4) Hoping to learn the contents of error codes for process control (Appendix 2)
 - The check method and contents of error codes for process control are elaborated in Appendix 2.
- (5) Hoping to learn process-related functions (Appendix 3, 4)
 - Process-related functions are elaborated in Appendix 3.
 - Relative terms are elaborated in Appendix 4.

A - 14 A - 14

GENERIC TERMS, ABBREVIATIONS, AND TERMS

The following table shows the generic terms, abbreviations, and terms in this manual.

(1) Generic terms and abbreviations

Generic term/abbreviation	Description		
PX Developer	Abbreviation for PX Developer Version 1 (SW1D5C-FBDQ-E)		
GX Developer	Abbreviation for GX Developer Version 7 (SW7D5C-GPPW-E Version 7.20W) or later		
FBD program	Generic term for a program created in FBD language		
FBD part	Generic term for parts (FB part, function part, variable part, constant part, comment part, etc.) used by the programming tool		
Global part	Generic term for module FB, tag FB, and global variable		
Peripheral device	Generic term for the personal computer on which PX Developer can be used		
QCPU	Generic term for Q00J, Q00, Q01, Q02(H), Q02PH, Q02U, Q03UD, Q04UDH, Q06H, Q06PH, Q06UDH, Q12H, Q12PH, Q12PRH, Q25PH, and Q25PRHCPU		
Process CPU	Generic term for Q02PHCPU, Q06PHCPU, Q12PHCPU, and Q25PHCPU		
Redundant CPU	Generic term for Q12PRHCPU and Q25PRHCPU		
CPU module	Generic term for the Process CPU and Redundant CPU		
ACPU	Generic term for the programmable controller CPU that can be used with MELSEC-A series		
Redundant type extension base unit	Abbreviation for Q65WRB extension base unit for redundant system		
CC-Link IE controller network	Abbreviation for CC-Link IE controller network system compatible with the Q series		
MELSECNET/H	Abbreviation for MELSECNET/H network system compatible with the Q series		
MELSECNET/10	Abbreviation for MELSECNET/10 network system compatible with the AnU, QnA/Q4AR		
MELSECNET/10 compatible mode	Abbreviation for function and performance-compatible mode so that the MELSECNET/H network system can have upward compatibility to existing MELSECNET/10 network system		
CC-Link IE controller	Generic term for Q80BD-J71GP21-SX and Q80BD-J71GP21S-SX		
network board	Abbreviation for CC-Link IE controller network interface board		
MELSECNET/H board	Abbreviation for MELSECNET/H interface board		
MELSECNET/10 board	Abbreviation for MELSECNET/10 interface board		
Ethernet board	Generic term for Ethernet PC card and Ethernet interface board supported by Windows®		
Personal computer	Generic term for IBM-PC/AT-compatible personal computer		
Programming tool	Abbreviation for PX Developer programming tool		
Monitor tool	Abbreviation for PX Developer monitor tool		

(2) Terms

Term	Description		
DDC	Abbreviation for Direct Digital Control		
DDC	This designates control that fulfils controller's functions with digital device.		
FB	Abbreviation for Function Block		
ГБ	This designates function block unit in a program.		
	Function Block Diagram language specified in IEC61131-3		
FBD	Programs are made by wiring specifically processed blocks, variables, and constants so that they can follow a flow		
	of data signal.		
Project	Unit that gathers and manages a series of data necessary for configuration of FBD programs executed by the CPU		
Project	module		
Tag	Identification symbol attached to each DDC processing defined by JIS		
Tay	This can be likened to a tag attached to process control equipment.		
Sequence control	Control that processes each control step according to preset order and procedures		
Loop control	Control method that repeatedly executes processing of specific parts		
Member	Basic data items in structure type data		
	Data that data attached to DDC processing indicated with a tag (process condition data/process status data) is		
Tag data	summarized		
	Accessing the tag data can monitor status and set conditions of the relevant DDC.		
Tag FB	Function block works as a controller and indicator including tag data		
Module FB	Function block for inputting/outputting data of analog I/O module, digital I/O module, and high-speed counter		
	module connected to the base unit on which the programmable controller is mounted or CC-Link field bus		
Faceplate	Gauge window on which such as a controller is displayed in image format		
Faceplate	Tag data values can be operated on this window.		

A - 15 A - 15

Term	Definition		
System resource	Programmable controller device required for executing FBD programs, used for automatically assigning variables (This cannot be used in ladder programs.)		
Ladder program	Program method designed so that contact sequence can be applied to programmable controller language Draw two vertical control bus lines and describe a contact between the buses for programming.		
Identifier	Used for setting various element names (variable name, FB variable name, structure name, etc.) Some unusable characters cannot be used for the identifier.		
Reserved word	Part names (such as VAR) that cannot be used as various element names (variable name, FB variable name, structure name, etc.)		
Operation mode	Mode for determining the operation method of the redundant system The following three modes are available. • Backup mode • Separate mode • Debug mode		
Backup mode	Mode for normal operation of the redundant system If a failure or an error occurs in the control system, the standby system switches to the control system to continue the control of the redundant system. The operation mode can be switched to the separate mode using GX Developer.		
Separate mode	Mode for maintaining a system (partial modification of a program, replacement of modules mounted on the main base unit) without stopping the control during run of the redundant system During this mode, different programs can be executed in the control system and standby system. System switching cannot be made in this mode (User switching is possible). The operation mode can be switched to the backup mode using GX Developer.		
Debug mode	Mode for performing a debug using a single system prior to redundant system operation This permits operations without connecting tracking cables. In this mode, the CPU module is fixed to system A, control system. (Tracking of the redundant system is not performed.) Set/cancel this mode in the redundant parameter setting of GX Developer.		
Operation mode change	Switching of the operation mode for system A and system B using GX Developer while the redundant system is running The operation mode can be switched between the backup mode and separate mode.		
System A	System to which system A connector for tracking cable is connected in the redundant system		
System B	System to which system B connector for tracking cable is connected in the redundant system		
System switching System switching User switching	Control switching to backup system to continue system control and network communication when a trouble occurs in the system that performs control in the redundant system (when a failure or an error occurs in the power supply system, mounted module, or network) (Switching between control system and standby system to avoid system down) The following two types are available. • System switching Automatic system switching by the redundant system when a trouble occurs • User switching System switching by sequence program/GX Developer		
Control system	A system that performs program operation, system control, and network communication in the redundant system When system A and system B start concurrently in the backup mode, the system A will be the control system (Concurrent startup: One system starts within three seconds after the other system has started.) When the system A and system B start separately, a system that starts first will be the control system.		
Standby system	Backup system to continue system control in case of a failure or an error in the module in the control system in the redundant system (The CPU module in the standby system does not calculate programs.) When system A and system B start concurrently in the backup mode, the system B will be the standby system. (Concurrent startup: One system starts within three seconds after the other system has started.) When the system A and system B start separately, a system that starts later will be the standby system.		
Tracking transfer function	Data transfer function that keeps the data of control system and standby system consistent This function enables the standby system to serve as the control system to continue the system control in case of system down of the control system. The Redundant CPU can perform tracking transfer without making the tracking settings, as it tracking transfer setting data has been set by default. (Change tracking transfer setting data using GX Developer.)		
Redundant system	System configured using Redundant CPUs This system consists of two basic systems including CPU modules, power supply modules, and network modules. (If module error occurs in one system, the other system continues the system control. Thus, system reliability is improved.) To configure the redundant system, prepare two sets of the systems where the above modules of the same models are mounted on the base unit, and connect the CPU modules with tracking cables.		
Redundant parameter	Parameter for setting operation mode of Redundant CPU system and tracking transfer setting data (tracking setting) Use GX Developer to set the parameter.		

A - 16 A - 16

MEMO

A - 17 A - 17

1 OVERVIEW

This manual covers some relative contents: the programming specification, function, instruction and programming method for programming with Function Block Diagram language (abbreviation: "FBD language") on PX Developer.

1.1 Features

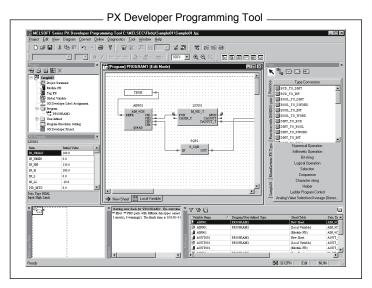
The features of PX Developer are as follows:

DDC processing program.

- (1) Enhance program productivity It is more convenient to create DDC processing program by FBD language than by ladder program, which has been quite complicated. Therefore program productivity is enhanced. (*1)
 - *1 FBD language conforms to international standard specification IEC61131-3.
- (2) Reduce the work-hour of creating DDC processing program by offering various parts.
 PX Developer provides abundant function blocks (tag FB) for loop processing, which are loaded with CPU module dedicated instructions and tag data.
 Creating FBD program with above-mentioned parts can reduce work-hour of
- (3) It can be used for creating user-defined FB By combining various FB and functions, users can create individual FB according to their needs.
- (4) Variables used by FBD program can be assigned to PLC device automatically. Variables used by FBD program can be assigned to PLC device automatically, thus trivial device assigning work is saved.
- (5) Compatibility with ladder diagram program In the batch system that combines sequence control and loop control, ladder program applicable for sequence control processing description and FBD program that is easy to describe the loop control can be executed in one CPU module simultaneously.
- (6) Compatibility with Redundant CPU system Programming applicable for Redundant CPU system is enabled.

1-1 1-1

1.2 Product Configuration

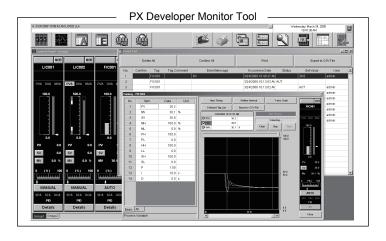

PX Developer consists of programming tool and monitor tool.

(1) Programming tool

The tool can be used for programming with FBD language (FBD program editing function), converting program edited by FBD into ladder program (compile function), as well as for monitoring and debugging.

For details about PX Developer programming tool, please refer to the following manual.

• PX Developer Operating Manual (Programming Tool)

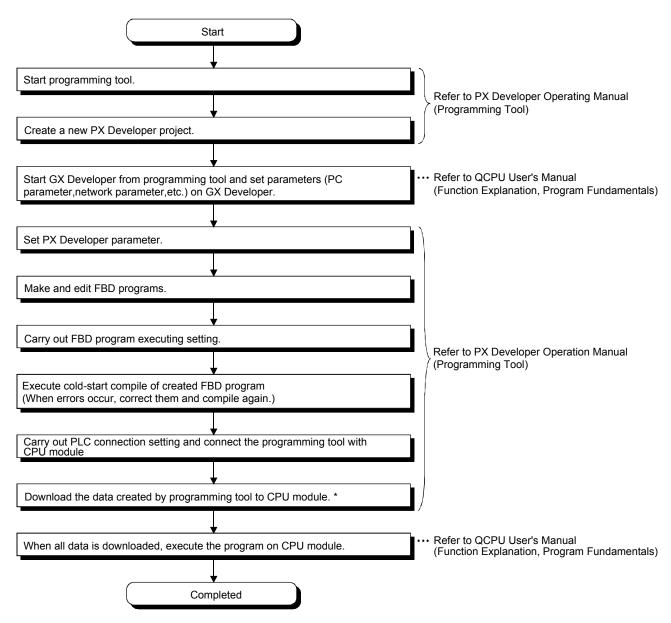


(2) Monitor tool

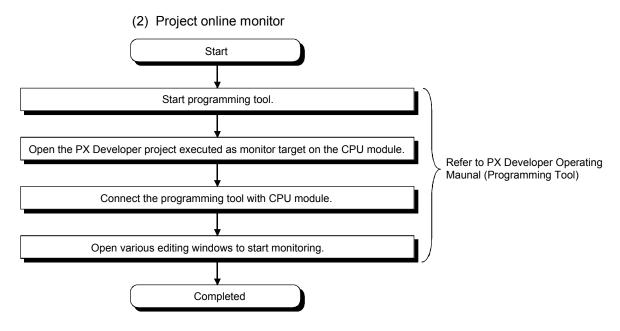
The monitor tool can be used to monitor and control DDC processing that is being executed on CPU module (DDC monitor function).

For the details about PX Developer monitor tool, please refer to the following manual.

• PX Developer Operating Manual (Monitor Tool)

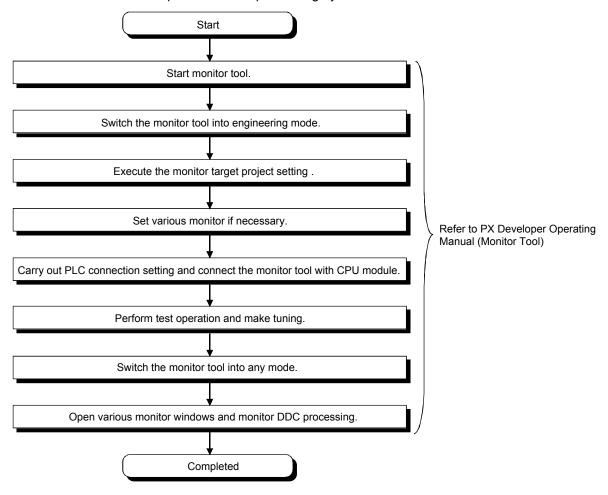

1.3 Engineering Flow

The section explains methods for creating FBD program by PX Developer and executing monitor of DDC processing.


1.3.1 Programming Procedure of FBD Program

The following paragraphs describe the sequence for executing FBD program creation and online monitor in using programming tool.

(1) Creating and executing a project

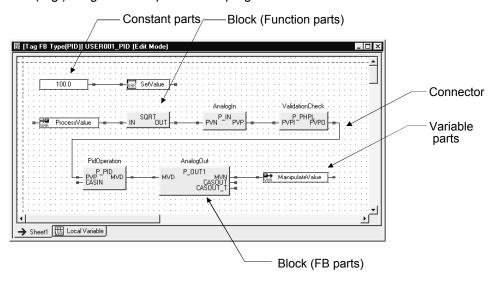


^{*:} When PLC download is performed with the programming tool, reload the monitor target project with the monitor tool.

1.3.2 Monitor Procedure of DDC Processing

The sequence of DDC processing by monitor tool is as follows:

2 PROGRAMMING SPECIFICATION


This chapter explains how to use programming tool to make FBD programs.

2.1 FBD Program

- (1) What is FBD program
 - (a) Apply the FBD language specified in IEC61131-3 as the standard language for making program by programming tool.
 - FBD program is the program that uses FBD language.
 - (b) FBD language is a kind of graphical language, highly visualized and easy to understand.

Make program by connecting the blocks (including function parts and FB parts), variable parts and constant parts that are for special processing along the flow of data and signals.

(E.g.) Program example for FBD program.

As showed in the above illustration of blocks connected by connectors, which seems quite like a electric circuit, actually, data flows from the output of blocks, variable parts or constant parts to the input of variable parts of other blocks.

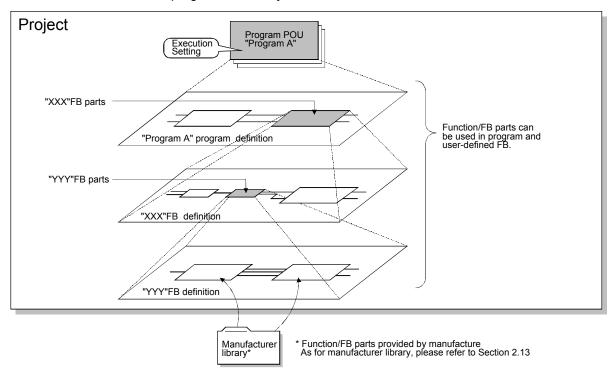
(c) Parts which compose FBD programs are called FBD parts. These parts can be used for programming.

(2) FBD parts

A FBD program consists of various FBD parts.
The program can be created by connecting FBD parts.
FBD parts described below.

FBD parts name	FBD parts graph	Contents	
Function parts	SQRT I	It indicates execution of function parts. Left pin is for input and right for output. Function part name is at the top center.	
FB parts	PidOperation PPID PVP MVD CASIN	It indicates execution of function parts. Left pin is for input, while right pin for output. Function part name is at the top centre. Above the part is FB variable name. * If it is module FB, the FB module name is at the bottom center.	
Variable parts	■— <u>[mac</u> ProcessValue —	It indicates variable. Value is acquired and saved. Variable name is shown at the centre of the part.	
Constant parts	3.141592 -■	It indicates constant part. Value or character string is directly set on the part. Value of the constant is shown at the centre of the part.	
Connector	=======================================	It indicates the data flow. Used to connect parts. Data flows from left to right. Data types of the connected parts must be the same.	
Comment parts	Comment	Any comment can be entered by will. This will not influence the execution code of compile result. (This will not affect FBD program)	

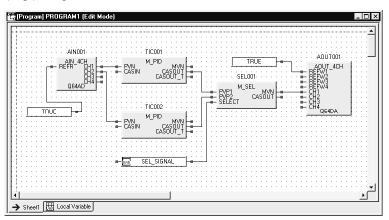
2.2 Configuration of FBD Program


This section explains on the configuration of FBD programs made by programming tool.

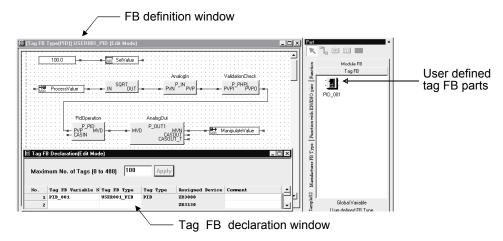
2.2.1 Program Organization Units

Elements that construct a FBD program are called Program Organization Unit (abbreviation: "POU").

POUs may be classified into three types: program, FB and function.

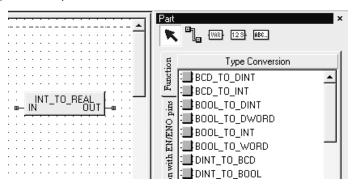

The structured design of FBD program
 A FBD program is actually a hierarchical structure of several POUs.

- (a) When users make program by FBD language for a certain processing on CPU module, create one or multiple FBD programs and define the processing contents in the FBD program. Define FBD parts after combining FB parts, function parts, etc.
- (b) User can define the FB parts that are used in FBD program. In user-defined FB parts, the defined FB parts, function parts, etc. can be combined for use.
- (c) In the hierarchical structure of FBD program, the lowest layer can be manufacturer function, FB or tag FB.
- (d) Project manages all the user-defined elements (such as POU definition, structure definition and global variable) to convert the FBD program into ladder program that can be executed on CPU module.


(2) Program

- (a) Program is the definition (made by users) of the CPU module processing through the combination of functions and FB to be explained later.Program is at the top hierarchy of the parts configuring FBD programs.
- (b) Program processes according to the executing conditions specified in Program Execution Setting of programming tool.
- (c) There can be maximally 200 programs in a project.
 - (E.g.) Program definition window

(3) FB


- (a) With its own internal memory, FB conducts control processing according to the status of input and internal memory. It is the part that conducts control processing by using Program/User-defined FB parts.
- (b) FB parts are used after being given variable names respectively.FB parts with variable name can independently conduct control processing.
- (c) There are two kinds of FB parts: user-defined FB and FB provided by manufacturers.

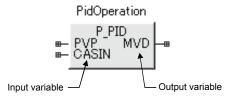
(4) Function

- (a) Function is used to conduct certain control processing to the input. Program/User-defined FB parts conducts control processing by using function parts.
- (b) Without internal memory, functions can only conduct a single processing to a single input. Function parts can operate independently without variable name.
- (c) Function parts can only be provided by manufacturers. Users cannot define them.

(E.g.) Function parts

2.2.2 Definition of POU Interface

POU has both input variable interface and output variable interface.


- (1) Input variable and output variable
 - (a) Program

Program is at the highest POU hierarchy in a FBD program. With no data exchange transferred as parameters, it has no input variable and output variable.

(b) Function/FB

Function/FB has input variable as well as output variable. (However, there are also Function/FB with no input or output variable.)

- Input variable : the variables that receive data while Function/FB parts are conducting processing.
- Output variable: the variables that transfer the data as the function/FB parts processing.

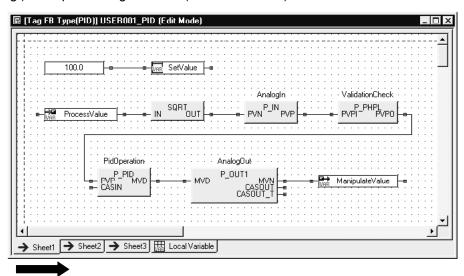
- (2) Definition of input variable and output variable of user-defined FB/tag FB parts. Define input and output variable in user-defined FB/tag FB parts.
 - (a) Input and output variable may define the variable parts with Input/Output variable type in FB Definition Window.
 - (b) The input variables and output variables inserted are automatically reflected on the local variable sheet in the corresponding order as the Input/Output pins on the user-defined FB/tag FB parts.
 - (E.g.) Input and output variable definition of user-defined FB part.

The arrangement of input/output pins on user-defined FB/tag FB parts is corresponding to the column order of input and output variables on the local variable sheet.

2.2.3 Definition of POU Processing Contents

POU processing contents can be defined through the creation of block diagram indicating processing actions on FBD sheets of Program/FB definition window. POUs that can be defined by the user are program and FB (including tag FB).

(1) Programming of POU definition


In the process of POU definition programming, different FBD parts: including function/FB parts, user-defined FB parts, and variable parts are inserted into a FBD sheet then are connected with connector according to control actions.

(2) FBD sheet

FBD sheet is an operation area where FBD parts are inserted and connected. While describing POU definition in FBD language, up to 32 FBD sheets can be added so as to improve the visibility of the definition.

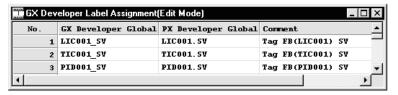
When more than one FBD sheets are used in a program, tag FBD sheets are executed one by one from left to right.

(E.g.) POU processing contents (user-defined FB)

POU processing is executed from the left tag FB sheet to the right tag FB sheet.

2.2.4 Relation with GX Developer

When GX Developer project is started in PX Developer project, the user can create ladder program or make various parameter setting with programming tool.


For more details on how to start GX Developer from programming tool, please refer to PX Developer Operating Manual (Programming tool)

The relation of FBD program in a PX Developer project with the ladder program compiled by the user is as follows.

(1) About ladder programming

- (a) Ladder program (called user-created ladder hereafter) in GX Developer can be used to describe the processing that is difficult to be described in a FBD program (such as interlock processing).
- (b) Through GX Developer label assignment setting in programming tool, the global variable in a FBD program can be used as GX Developer's global label. This allows the user to program with the variables of FBD programs on a user ladder without paying attention to devices.

For more details on GX Developer label assignment please refer to PX Developer Operating Manual. (Programming Tool)

IMPORTANT

The QDRSET(P) instruction (setting of file for file register) must not be included in the user ladder. If included, FBD program will not normally operate when the file for file register is renamed by the QDRSET(P) instruction.

(2) Download to PLC

Please use PLC download function of programming tool when downloading usercreated ladder or setting parameters compiled in GX Developer.

For more details on the operation methods of PLC download of programming tool, please refer to PX Developer Operating Manual. (Programming Tool)

2.2.5 Compiling FBD Program

FBD program can be compiled with programming tool, then transferred into codes that can be executed on CPU module (ladder program, PLC parameter etc.)

There are three methods of compile: cold-start compile and hot-start compile, and on-line change compile.

For more details on various compile methods and their functions please refer to PX Developer Operating Manual. (Programming Tool)

(1) Cold-start compile

Cold-start compile is a compile process which reassigns all the assigned devices of the currently existed variables from the very beginning. (All the variable values are changed into initial values.)

When compiling FBD program, cold-start compile is executed first.

Additionally, when executing PLC download after cold-start compile, CPU module is in STOP mode. Under this mode, FBD programs and user ladders stop executing; all the outputs (Y) are OFF, while analog output can be retained. (module side setting is possible)

(2) Hot-start compile

Hot-start compile is a compile process without changing the assigned devices of the currently existed variables. (The variable value will be kept)

During compile, current status is kept, this kind of compile can be used to make changes additions to FBD programs.

Additionally, when executing PLC download after hot-start compile, CPU module is in PAUSE mode. Under this mode, FBD programs and user ladders stop executing; output (Y) will remain the previous status, and analog output can be retained. (module side setting is possible)

(3) Online change compile

Online change compile is to compile without changing the assigned devices of present variables, and to download the project during RUN without stopping or pausing CPU module.

Online change compile is mainly used in the occasion in which it is wanted to use processing such as FBD program modification/addition with no need to stop system. (Like hot-start compile, the variable value will be kept.)

POINT

- In the case of hot-start compile and online change compile, please don't change the file register setting in PLC parameter.
 - To change the setting of file register in PLC parameter, PC download cannot be executed after hot-start compile and online change compile.
- When executing online change, the scan time will be prolonged as follows, please pay attention to this.

Item	PX Developer → Write during CPU module RUN
When blank area can be reserved on program memory	The maximum scan prolonged time (ms) = $4.0 \times (k \text{ step number of \#FBDQ000}) + 0.8$ However, 97ms will be the maximum scan prolonged time if the calculated time is less than 97ms.
When blank area can be reserved on memory card (excluding ATA card*)	The maximum scan prolonged time (ms) = $5.1 \times (k \text{ step number of \#FBDQ000}) + 0.8$ However, 97ms will be the maximum scan prolonged time if the calculated time is less than 97ms.

^{*:} In the case of using ATA card, the scan time per 30k step will be prolonged by 1.25s. Therefore, it is suggested to use SRAM card instead of ATA card in online change.

2.2.6 When Power Supply Is OFF → ON or Doing the Reset Operation

Variables are assigned to the file register by programming tool, so their values will remain unchanged when switching power supply from OFF to ON and executing reset operation.

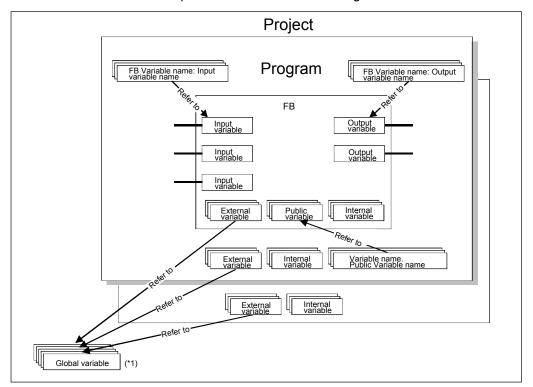
Therefore, to initialize variables and restart CPU module, please perform cold-start compile mentioned in Section 2.2.5 (1) then RUN CPU module after PLC download.

2 - 10 2 - 10

2.3 Variable

Variable is an area where various values are stored.

Data type of a variable must be declared before its value is operated.


2.3.1 Local Variable and Global Variable

Variables can be classified into local variables, which are dedicated to the use of each POU; and global variables, which can be used publicly among several POUs. The contents about local and global variables are as follows.

Item	Local variable	Global variable
Variable declaration	Declare through defining variable name and data type of variable parts. The declaration is shown on local variable sheet.	Declare through defining global variable name and data type in Global Variable Declaration Window of programming tool.
Available data type	Elementary data type, structure type, FB type.	Elementary data type, structure type.
Number of declaration available in a project	Limited by the setting range of file register (ZR) assigned to the variable.	Up to 32000 declaration can be made. But the number is limited by the setting range of file register (ZR) assigned to the variable.
Initial value setting	'0' is stored (in case of character string, null character (" ") is stored.) However, initial value of public variable can only be set in FB property window.	Initial value setting is allowed for elementary data type. '0' is stored (whose character string is null (" ")) without initial value setting. Initial value setting is not allowed for structure type.
Assignment device setting	User cannot assign the devices. Devices are automatically assigned by cold-start compile (with different devices each time).	User can assign devices when it is elementary date type or member of structure type. Intelligent function module (U \(\scrt{O} \)) can also be specified as assigned device when the variable is not string type. Devices are automatically assigned by cold-start compile (with different devices each time) if not assigned by the user.
Use of variable	Variables can be used when variable parts stated as local variable are connected.	Variable parts are assigned in FBD sheet. Variables can be used through defining external variable with the same name and data type as global variable.
Variable definition modification	The modification is made through editing local variable sheet, and reflected on all the variables with the same name in the same Program/FB Definition Window.	The modification is made through editing Global Variable Declaration Window. External variables with reference to the new global variable must be changed accordingly.

2 - 11 2 - 11

(1) Relationship between local variable and global variable The relationship between local variable and global variable is shown below.

*1 The global variable value in program/FB is applied through external variable having the same name with the global variable.

While using programming tools, external variable will automatically increase if global variable parts are dragged & dropped from parts window to FBD sheet.

2 - 12 2 - 12

(2) Local variable

Local variables are the variables stated in each FBD program (program, user-defined FB type/tag FB type) and used only in this program.

Local variables consist of the following variable types.

Variable type	Contents		
	The variable can only be used in the program and user-defined FB type/tag FB type which the internal variable is declared.		
Internal variable	External program and user-defined FB type /Tag FB type) can't access it. Stored data will be retained as internal memory.		
Input variable	The variable can be used as input value (input pin of user-defined FB type /tag FB type) in user-defined FB type/Tag FB type. The other part is same as public variable.		
Output variable	The variable can be used as output value (output pin of user-defined FB/tag FB) in user-defined FB type/tag FB type. The other part is the same as public variable.		
Public variable	All the variables inside FB/tag FB can be accessed by FB/Tag FB and the nearest outer POU. Stored data will be retained as internal memory.		
The variable used in program and user-defined FB type/Tag FB type which the external variable is declared (with reference to global variable having the same variable name). Data type of the external variable and the global variable to which the external variable has reference must be matched. With no data memory, for it is only a reference to global variable.			

FBD program type and data type that local variables can operate on varies with types as following table.

FBD program type		gram type	
Variable type	Program	User-defined FB type/ tag FB type	Data type of variables
Internal variable	0	0	Elementary data type, structure type, FB type (except tag/module FB type)
Input variable	×	0	Elementary data type, structure type
Output variable	×	0	Elementary data type, structure type
Public variable	×	0	Elementary data type, structure type
External variable	0	0	Elementary data type, structure type, tag/module FB type

 \bigcirc : Available \times : Not available

(3) Global variable

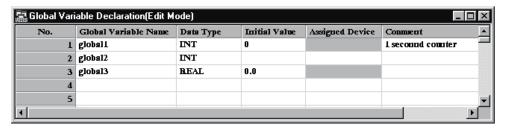
Global variables are the variables declared in global variable declaration window of programming tool, to which all the FBD programs in PX Developer can be referred.

Each FBD program being referred to global variable through external variable of local variable statement.

With global variable, data can be exchanged with other different FBD programs. Up to 32000 global variables can be defined.

2 - 13 2 - 13

- (4) Device assignment of variable
 - (a) The data operated by local variable and global variable is stored in the file register of CPU module.


The stored devices are automatically assigned during cold-start compile by programming tool (Devices assigned are different each time).

During hot-start compile or online change compile, the assigned devices of the currently existed variables are not changed. Devices will only be assigned to those newly added variables.

(b) The user may specify devices assigned to global variables.

Through device assignment specification, the user may read/write in devices using global variables.

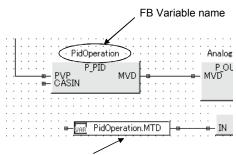
User assignment of global variables is conducted in Global Variable Declaration Window of programming tool.

(5) Access to data in FB parts in reference operator

All the internal data of each FB parts, input variable, output variable and public variable can be accessed from the nearest outer POU using reference operator symbols (.).

While accessing input variable, output variable and public variable with reference operator symbols, follow the methods below.

(a) Specify input variable, output variable and public variable of FB parts


[Specified form] 'FB variable name'. 'Input variable name'

'FB variable name'. 'Output variable name' 'FB variable name'. 'Public variable name'

For FB variable name, please specify declared FB variable name, to the I/O variable and public variable

which have been read out.

[Specified example] PidOperation.MTD

Read the value of MTD, the public variable of FB variable name PidOperation

2 - 14 2 - 14

(b) When input variable, output variable and public variable of a FB part belong to structure type, please refer to Section 2.5 for relevant details.

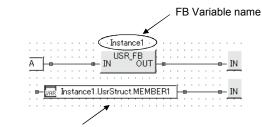
[Specified form]

'FB variable name' . 'Structure type input variable

name'. 'Structure member name'

'FB variable name' . 'Structure type output variable

name'.' Structure member name'


'FB variable name' . 'Structure type public variable

name' .'Structure member name'

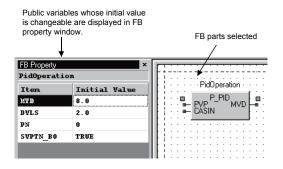
For 'FB variable name', please specify FB variable name that makes declaration to the objects read out.

[Specified example]

Instance 1.UsrStruct.MEMBER 1

Read the structure factor name MEMBER1 of structure type public variable UsrStruct attached to FB variable name Instance 1

(6) Variable initial value setting


The initial value is set through programming tool when executing PLC download on CPU module.

During cold-start compile, hot-start compile or online change compile of programming tool, the file registers are used by assignment target device of automatically assigned device. Therefore, variable values will remain unchanged after power off and reset operation. (Even latch clear operation cannot initialize the values.)

To change variable initial value, please use programming tool. Then start coldstart compile to execute PLC download on CPU module.

Initial values of variables of different types are shown in the following table.

	Variable type	Initial value contents			
Local	Internal variable, input variable, output variable	'0' is stored (In case of character string null (" ") is stored).			
Local variable	Public variable	Each FB/tag FB stores its own initial value. (Initial value cannot be changed when public variables are of structure type.) Initial values can be changed in FB Property Window.			
Global variable		Store initial value or '0' (whose character string is null (" ")).			

2 - 15 2 - 15

(7) Devices that cannot be written by the user

The file register (R) cannot be used with the programming tool. Use the ZR device.

The file register (R) can be used in user ladders.

However, when using the file register (R) in a user ladder, do not use the file register (ZR) in the range set by the system resource of the project parameter of the programming tool.

In addition, the following devices can be read /written during program execution on programming tool.

Do not change the value of these devices from global variable or user ladder.

Devices used by programming tool	Inhibited range of device value modification
ZR (or R)	The range set by system resource of project parameter*1. (However, items of tag data*2 within this range can be changed by specifying with ZR.)
Т	The range set by system resource of project parameter
Р	P3500 to P4095
М	M0 to M399
Z	Z0 to Z6
SD	SD0 to SD3 SD5 to SD8 SD16 to SD19 SD203 SD1500 to SD1501 SD1502 to SD1505
SM	SM1 SM390 SM701 SM1500, SM1501, SM1552 to 1583

^{*1:} Refer to the PX Developer operating manual (programming tool).

2 - 16 2 - 16

^{*2:} The device assigned to tag data can be checked from the tag FB declaration window of the programming tool.

2.4 Elementary Data Type

The elementary data types that can be applied in program tool are shown as follows:

Data type	Descriptions	Range
INT	16 bits integer with sign	-32768 to 32767
DINT	32 bits integer with sign	-2147483648 to 2147483647
REAL	32 bits real number (single precision floating decimal)	±1.17549 ⁻³⁸ to ±3.40282 ⁺³⁸ ,0
STRING	Variable length character string	0 to 255 bytes
BOOL	1 bit data	TRUE, FALSE
WORD	16 bits data	Он to FFFFн
DWORD	32 bits data	Он to FFFFFFFн
ADR REAL	Applied in tracking with cascade connection	_

REMARK

The variables of the elementary data types occupy the following memory capacity:

- 1. INT type and WORD type
 - 1 word.
- 2. DINT type, DWORD type, REAL type, and ADR_REAL type 2 continuous words.
- 3. STRING type

N continuous words.

N is the number of ((the maximum storage character string length of STRING type variable +1*1) ÷2). (Round off the numbers at the right side of the decimal point)

- *1: +1 represents NULL code addition.
- 4. BOOL type

Store the bit-specified representation of word device as 1 bit. (E.g. ZR5012.2)

POINT

For REAL type, an information loss error of single-precision floating-point operation may occur in the integration operation (current value + integration value up to the previous time).

"Information error" is an error that is caused by rounding (round down/round up) the lower digit of extremely small value when adding an extremely small value to an extremely large value. Generally, it occurs in computer systems that execute a floating-point operation. Real numbers in a programmable controller are represented by single-precision floating-point number.

The number of significant digits of this real number is approximately six to seven digits (when represented in decimal). Therefore, when the following real number operation is carried out, an error occurs in the operation result.

(Example of information loss on single-precision floating-point operation) $0.013333 + 32768.0 = 32768.013333 \rightarrow 32768.012$

† Current value † Integration value up to the previous time

As indicated above, the logical operation result is 32768.013333; however, the number is rounded (round down) to 32768.012. As a result, the original increment of 0.013333 becomes 0.12 so that the increment amount reduces. Additionally, the number of significant digits of decimal part decreases as the number of integer digits of integration value increases.

2 - 17 2 - 17

2.5 Structure Type

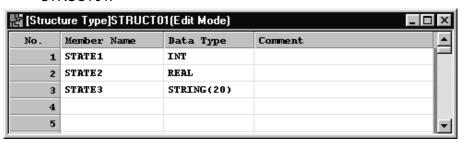
Structure type can merge maximum 255 elementary data type variables as members, and is used for merging variables of relevance.

Structure type handles variables of different elementary data types.

However, only basic data types can be declared as data types. Structure type and FB type cannot be declared as data type.

(1) Definition of structure type.

Define the structure type members in structure type definition window.

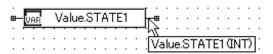

[Start procedure]

Select "User-defined" → "Structure Type" In project window.

For setting methods, please refer to PX Developer Operating Manual (Programming Tool).

[Setting window]

(E.g.) The following is a case that 3 members are defined in structure type STRUCT01.


(2) Application of structure type member.

When structure type members are applied, reference operator (.) and member names should be attached after structure type variable name.

(E.g.) When applying the member [STATE1] of structure type [STRUCT01].

[Specified format] 'Structure Type Variable Name'. 'Member Name' [Specified example] Value.STATE1

Select STRUCT01 for data type

2 - 18 2 - 18

REMARK

The memory structure of structure type is as follows:

- The members of structure type are assigned in the continuous area of word devices orderly.
- The members of elementary data type except BOOL type are assigned in the same structure as shown in the REMARK of Section 2.4.1.

+11

+12

The member of BOOL type is stored in word device as 1 bit unit. However, in case of continuous definition of BOOL type members, the maximum storage, beginning from the lowest bit unit, is 16 units.

(E.g.) Definition window of structure type and memory structure

(Definition window of structure type)

🕌 [Structure Type]STRUCT01(Edit Mode Member Name Data Type INT 1 m1 2 m2 INT BOOL 3 m3 DWORD m4 4 m5 STRING(4) 5 6 m6 BOOL 7 m7 BOOL BOOT. 8 m8 REAL m9 9 DINT 10 m10 11

b15b14b13b12b11b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 +0 m1 +1 +2 +3 +4 +5 m4 +6 m5(*) +7 +8 - - - - - - - - - - - - m8 m7 m6 +9 m9 +10

(Memory structure)

*Store 4 bytes of STRING type and NULL code .

m10

2 - 19 2 - 19

2.6 Constant

2.6.1 Constant Format

Constant does not have particular data type which the value is input itself. The data type of constant is specified by the input variable data type of function part/FB part that is connected to the constant part by connector. The elementary data types corresponding to constant input formats are described in the following table.

Input format *1	INT	DINT	REAL	WORD	DWORD	STRING	BOOL *2	Display format example
Character string	_	_	_	_	_	0	_	″ABC″ ⊢■
Decimal integer	0	0	0	0	0	_	0	100 –∞
Hexadecimal integer number	0	0	_	0	0	-	0	H123A —
Real number	_	_	0	_	_	_	_	(Displayed in radix point) 100.0 — (Displayed in exponential form) 2E+010 — (Displayed in exponential form)
TRUE/FALSE	_	_	_	_	_	_	0	TRUE ⊢■

○: Applicable —: Not applicable

*1. Input format is as follows.

Character string : The character string within (" ") that is no

more than 32 characters.

Decimal integer number : The value that consists of signs (+, -) and

numbers.

Hexadecimal integer number : The value that begins with "H" and

consists of numbers and "A" to "F".

Real number : The value that is displayed with radix point

(E.g. 100.0) or exponent (E.g. 2E+010).

Truth/False : "TRUE" or "FALSE"

*2. Input TRUE and FALSE of BOOL type by following methods
In the case of decimal integer : 0 : FALSE, 1 : TRUE

number

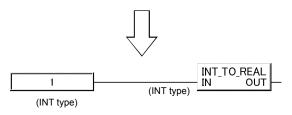
In the case of hexadecimal

: H0: FALSE, H1: TRUE

integer number

2.6.2 Constant Data Type

In the case of constant parts, the data type of constant value is not defined when inputting the constant value but defined when connecting constant part and FBD part by connector.


The data type of constant value is the same as that of the connecting FBD part by connector.

(E.g.) When 1 is input into constant value

For example, if 1 is input to constant value, there are 6 possibilities of candidate data types, they are, INT, DINT, WORD, DWORD, REAL, and BOOL type. So the data type cannot be decided under such circumstance.

The connection of constant part with FBD part by connector makes the data type of FBD part (connection target) input pins.

Due to the mutiple data type candidates, the data type cannot be defined in this case.

When connector connects constant part with FBD part, the data type can be decided. (Becomes the data type of the input pins of the connected FBD part.)

2 - 21 2 - 21

2.7 Function

2.7.1 Function

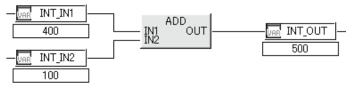
Functions perform the same operation on the input values of input variables, and output the results through output variables. Functions don't have internal memory. Functions include the following types:

- Overload function
- Input pin number changeable function
- Function with EN/ENO pins

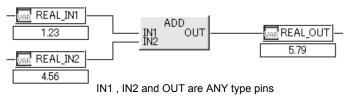
(E.g.) In case of type conversion function (INT_TO_REAL)
When input 10 by INT type, output 10.0 by REAL type.

POINT

- (1) Functions must connect all of their input pins to other FBD parts. (Except BIND (_E), CALL_DINT (_E), CALL_REAL (_E))
 - If the input pins are not connected, compile errors will occur.
- (2) If the data type of input variable and output variable of function has been defined, the FBD parts connected to input and output pins must correspond to it.


2.7.2 Overload Function

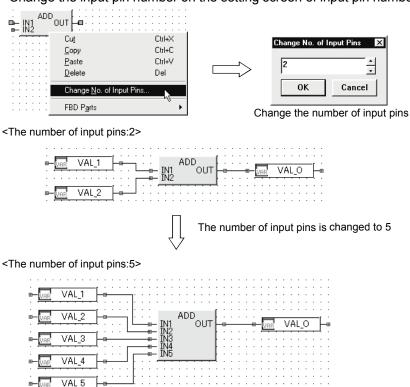
Overload function can handle several basic data types for a single input pin or output pin.


Such type that can handle several elementary data types, and decide data types automatically according to the data type of connected variable part or constant part is called ANY type.

(E.g.) The following is an example in which an ADD function connects INT type and REAL type variable.

<When connected with an INT type variable>

<When connected with a REAL type variable>


POINT

- (1) If there are several ANY type input pins, all of the elementary data types of the variable parts and constant parts connected to the ANY type input pins shall be set as the same type.
 - If input pins are set as different elementary data types, compile errors will occur.
- (2) If input and output pins are all of ANY type, all of the elementary data types of the variable parts and constant parts connected to the pins of ANY type shall be set as the same type.

If input and output pins are set as different elementary data types, compile errors will occur.

2.7.3 Input Pins Changeable Function

There is some functions whose input pin number can be changed. Change the input pin number on the setting screen of input pin number.

2.7.4 Function Execution Control (Function with EN/ENO Pins)

There are 2 kinds of functions: general function and the function with EN/ENO pins (with EN/ENO pins).

The function with EN pins can perform function operation control.

The input variable EN inputs the function operation conditions.

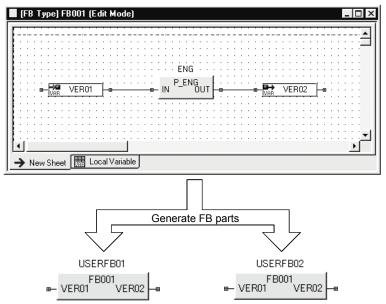
The output variable ENO outputs the status.

The operation conditions and the operation results are as follows:

Operation condition	Operation result					
EN	ENO	OUT				
TDLIF (On oretion over tion)	TRUE (No operation error)	Operation output value				
TRUE (Operation execution)	FALSE (Operation error)	Undefined value				
FALSE (Operation stop)	FALSE	Undefined value				

The name of the function with EN/ENO pins is "Function name_E".

2 - 24 2 - 24

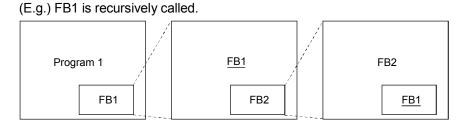

2.8 FB

2.8.1 FB

FB is used when variable of each part is named.

The FB with variable name has internal memory of its own, operates through input memory and input value of input variable, and outputs operation results through output variables.

FB is different from functions. Even if there are input pins that are not connected to FBD part by connector, compile errors will not occur.



USERFB01 and USERFB02 both perform the processing defined by user as "FB001". USERFB01 and USERFB02 work separately by using internal memories.

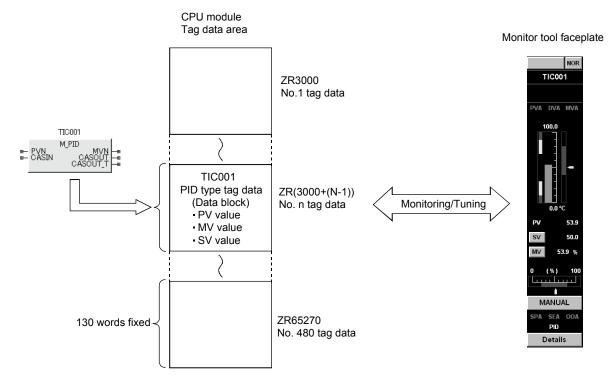
2.8.2 Recursively Call

Recursive usage in FBD program is inhibited in programming tool. In case of structured programming, the FB defined in upper hierarchy cannot be arranged on the lower hierarchy. (Recursively call) In case of programming by user-

defined FB/ tag FB, please be careful to recursive call.

2.9 Tag

2.9.1 Overview of Tag


Tag is the identifier for all kinds of the DDC processing of process control system.

Tag data is the pack of the data that are related to the DDC processing shown by tag. It is easy to implement tags by using tag FB.

Tag data is attached inside the tag FB part. The DDC processing status can be monitored through monitoring the tag data with monitor tool.

Tag data area is reserved in the device area of CPU module. The size of tag data area is set as maximum no. of tags in Tag FB definition window of programming tool. Tag data of each tag FB has a fixed head device address.

For details about monitor tool, please refer to PX Developer Operating Manual (Monitor Tool).

2.9.2 Tag FB

Tag FB is the extended POU, and it has tag data.

The differences between tag FB and FB are shown in following table:

Item	Tag FB	FB
Tag data	All of the tag types have tag data whose structure has been defined	No tag data
Variable declaration	Global declaration	Only for local declaration
User-defined	It can be defined by user with all function parts and FB parts.	It can be defined by user with all function parts and FB parts except tag access FB.

REMARK

As the structure of tag data area of CPU module has been defined, the tag data can be read once in batch and displayed on the faceplate of monitor tool.

2 - 27 2 - 27

2.9.3 Tag Type

(1) About tag type

Tag FB has the property called tag type.

Tag data structure attached to the tag FB and the faceplate type of monitor tool can be specified by the tag type.

There are 4 tag types:

Tag type	Contents
Loop tag	Tags used for loop control processing. It is equivalent to loop tags of process control instructions of CPU module.
Status tag	Tags used for monitoring and controlling ON/OFF status
Alarm tag	Tags used for alarm notification
Message tag	Tags used for guidance message notification

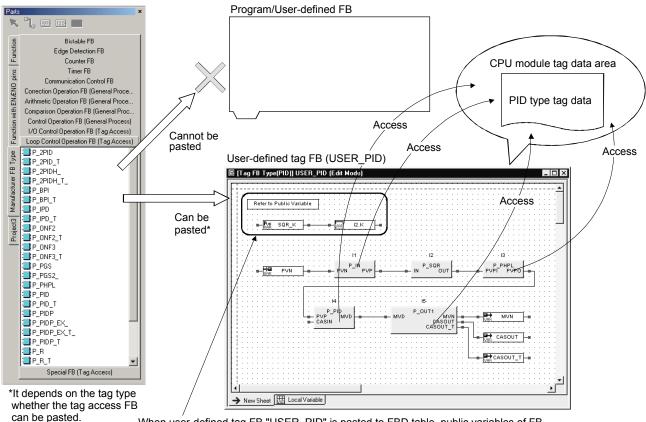
(2) List of tag type and manufacturer tag FB
Using manufacturer Tag FB part, the definition of tag processing is not needed
and the implementation of tag is realized easily.

Tag classification	Tag type	Name	Manufacturer Tag FB
	PID	Basic PID control	M_PID(_T), M_PID_DUTY(_T)
	2PID	2-Degree-of-Freedom PID Control	M_2PID(_T), M_2PID_DUTY(_T)
	2PIDH	2-Degree-of-Freedom Advanced PID Control	M_2PIDH(_T)_
	PIDP	Position type PID control	M_PIDP(_T), M_PIDP_EX(_T)_
	SPI	Sample PI control	M_SPI(_T)
	IPD	I-PD control	M_IPD(_T)
	BPI	Blend PI control	M_BPI(_T)
	R	Ratio control	M_R(_T)
Loop tag	ONF2	2 position ON/OFF control	M_ONF2(_T)
Loop tag	ONF3	3 position ON/OFF control	M_ONF3(_T)
	PGS	Program setter	M_PGS
	PGS2	Multi-point program setter	M_PGS2_
	MOUT	Manual output	M_MOUT
	MONI	Monitor	M_MONI
	MWM	Manual output with monitoring	M_MWM
	SEL	Loop selector	M_SEL(_T1) (_T2)
	ВС	Batch counter	M_BC
	PSUM	Pulse integrator	M_PSUM
	NREV	Monitor irreversible control	M_NREV
	REV	Monitor reversible control	M_REV
	MVAL1	On/OFF control 1 (without intermediate value)	M_MVAL1
Status tos	MVAL2	On/OFF control 2 (with intermediate value)	M_MVAL2
Status tag	TIMER 1	Timer 1 (timer stops when COMPLETE flag is ON)	M_TIMER1
	TIMER 2	Timer 2 (timer continues when COMPLETE flag is ON)	M_TIMER2
	COUNT1	Counter 1 (counter stops when COMPLETE flag is ON)	M_COUNTER1
	COUNT2	Counter 2 (counter continues when COMPLETE flag is ON)	M_COUNTER2
Alarm tag	ALM	Alarm	M_ALARM
Massage tag	MSG	Message	M_MESSAGE

2.9.4 User-defined Tag FB and Tag Access FB

(1) User-defined tag FB

When implementing tags, tag FB supplied by manufacturer and user-defined tag FB are both applicable.


The user-defined tag FB has the corresponding tag data structure with the tag type. Thus users can program the processing contents by using tag access FB, FB and function.

(2) Tag access FB

Tag access FB can be used only on user-defined tag FB.

Tag access FB part accesses the tag data of user-defined tag FB in which the tag access FB is pasted when it is executed.

Thus, tag access FB cannot be used in FB or program that do not have tag data.

When user-defined tag FB "USER_PID" is pasted to FBD table, public variables of FB used in USER_PID cannot be displayed on FB property window. For method of setting the initial values of these public variable on FB property window,

please refer to PX Developer Operating Manual (Programming Tool property) 8.4.4(2). The above graph is an example of setting the initial value of public variable K of I 2 (P_SQR) in FBproperty window.

POINT

When tag access FB parts are used in user-defined tag FB, the applicable tag access FB parts depend on the tag type of user-defined tag FB.

For tag type and applicable tag access FB parts, please refer to Appendix 1.3.

2.9.5 Initial Setting of Tag Data and Operation Constant

The information of setting initial values of tag data and operation constant is shown here.

(1) About initial value setting

Setting the initial value of

The initial value of tag data must be set for each tag

tag data

Setting the initial value of operation constant

It is necessary to set operation constant in the tag access FB part and FB part that has encapsulated the process control instructions of CPU module, such as tag access FB.

(2) About the setting methods

Tag data and operation constant are handled as the public variables that are attached to tag FB parts. Therefore, the initial value of tag FB parts can be set on FB property window.

Public variables whose initial values can be changed are displayed on the FB property window. The selected FB part. FB Property PidOperation PidOperation Initial Value P_PID MVD P_PVP P_CASIN MTD DVLS 2.0 PN 0 SVPTN BO TRUE

.....

2 - 30 2 - 30

2.10 Module FB

Module FB performs input /output processing of data from the module that is connected to the base unit of PLC.

In using module FB, program for data exchange can be realized without being conscious of the address of input/output X/Y device and buffer memory. The names of modules that can be used by programming tool are shown in the following table.

Classific	cation	Names of corresponding modules
Digital Input/output module		QX10, QX28, QX40, QX40-S1, QX41, QX41-S1, QX42, QX42-S1, QX50, QX70, QX71, QX72, QX80, QX81, QX82, QX82-S1, QY10, QY18A, QY22, QY40P, QY41P, QY42P, QY50, QY68A, QY70, QY71, QY80, QY81P, QH42P, QX48Y57
Analog module		Q64AD, Q68ADV, Q68ADI, Q62AD-DGH, Q64AD-GH, Q66AD-DG, Q68AD-G, Q62DA, Q62DAN, Q64DA, Q64DAN, Q68DAV, Q68DAIN, Q68DAV, Q62DA-FG, Q66DA-G
Temperature input module		Q64TD, Q64TDV-GH, Q68TD-G-H01, Q64RD, Q64RD-G, Q68RD3-G
Counter module		QD62, QD62E, QD62D, QD60P8-G
Domete Medule via CC Link	Master module	QJ61BT11, QJ61BT11N
Remote Module via CC-Link master module *1	For remote I/O station	General CC-Link Remote Station (occupy 1 to 4 station)
masici module 1	For remote device station	General CC-Link Remote Station (occupy 1 to 4 station)

^{*1} Incompatible with CC-Link Ver. 2.

2.10.1 Requirements to Use Module FB

Prior to use the module FB, complete the following operations, startup of the module, and the settings necessary to use the module (refer to (1) in this section). Then, declare the module FB with the programming tool. This allows the module FB to

be used in FBD programs. (refer to (2) in this section.)

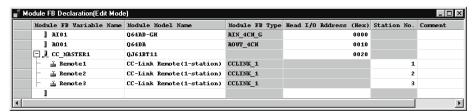
(1) Settings with GX Developer and GX Configurator

The following settings are necessary to use the analog module, temperature input module or counter module.

- Intelligent function module switch setting (set using GX Developer)
- Initial setting (set using GX Configurator or initial value write ladder program)

When making settings with GX Developer and GX Configurator, start GX Developer from the project window of the programming tool.

Use GX Developer to make the network parameter settings necessary to use the CC-Link remote module.


For details of the setting procedure and method of each module, refer to the corresponding user's manual.

2 - 31 2 - 31

(2) Settings with programming tool

Module FB parts are generated in Parts window automatically when they are declared in module FB declaration window.

For the setting methods of module FB declaration window, please refer to PX Developer Operating Manual (Programming Tool).

POINT

For the module that uses the module FB to perform data I/O processing, do not execute the automatic refresh function on the PLC devices using GX configurator. When the automatic refresh function is executed, the output values of the module FB will be illegal.

2 - 32 2 - 32

2.10.2 Access to MELSECNET/H Remote I/O Station

This section explains creating FBD programs by using data stored in buffer memory of the intelligent function module mounted to a MELSECNET/H remote I/O station.

POINT

- Module FB is incompliant with the intelligent function module mounted to a MELSECNET/H remote I/O station.
- For details of access to buffer memory of the intelligent function module mounted to a MELSECNET/H remote I/O station, refer to the following manual.

Q Corresponding MELSECNET/H Network System Reference Manual (Remote I/O network)

Intelligent function module manual

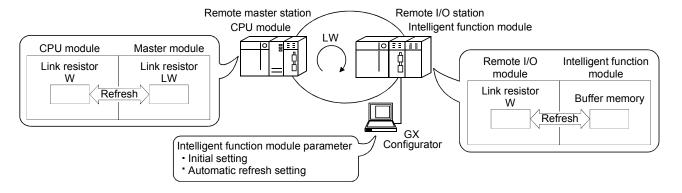
(1) Accessing MELSECNET/H remote I/O station

Read from/Write to an intelligent function module using either of the following two methods.

(a) Using the automatic refresh of GX Configurator

Use the automatic refresh function of GX Configurator to enable data to be read/written between a CPU module and intelligent function module.

(GX Configurator setting)


Make the settings so that the remote I/O module link register (W) will automatically refresh the target buffer memory in the automatic refresh setting of intelligent function module parameter.

The setting example is shown in (2).

GX Configurator for the corresponding intelligent function module is required.

(FBD program)

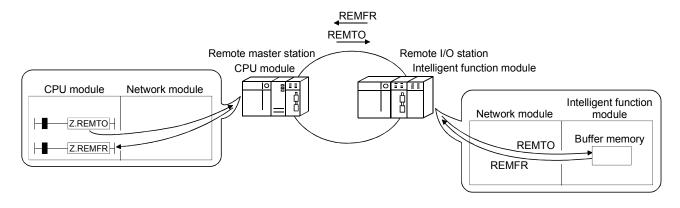
Set the link register (W) including the above automatic refresh setting in the PX Developer global variable declaration window.

POINT

When decreasing the number of link register (W) points to be set in link parameter, use data register (D) as automatic refresh target device.

In this case, make the settings using the remote I/O station device transfer parameter in order that the necessary data will be transferred from the automatic refresh setting data register (D) to link register (W).

(b) Using link-dedicated instruction

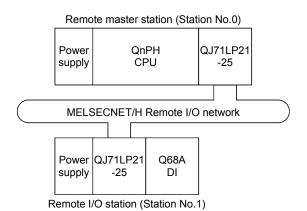

By executing a sequence program, FBD programs can be created using data read to a CPU module.

(Creating sequence program)

Use the REMER instruction/REMTO instruction to create a sequence program that reads from/writes to the intelligent function module buffer memory.

(FBD program)

Set the register that stores data which have been read from/written to the buffer memory in the PX Developer global variable window.



2 - 34 2 - 34

(2) Setting example

The following shows the example for setting link register (W) to automatic refresh target device.

(a) System configuration

(Network parameter Network range assignment)
 Remote master station Remote I/O station

Input: X100 to X10F ← Input: X000 to X00F

Output: Y100 to Y10F → Output: Y000 to Y00F

 Remote master station ← Remote I/O station Link register: W0 to W7

(b) Remote master station network parameter setting

Set network type, head I/O No., network No., number of total slave stations and mode. And then, set network range assignment and refresh parameters.

(Network range assignment)

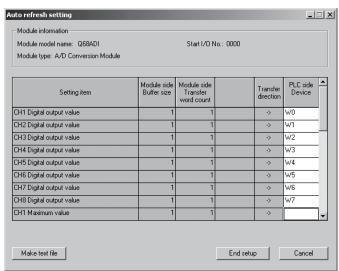
XY setting

	M station -> R station							M station <- R station ▲					
StationNo.	Υ			Y			×			×			
	Points	Start	End	Points	Start	End	Points	Start	End	Points	Start	End	
1	16	0100	010F	16	0000	000F	16	0100	010F	16	0000	000F 🕶	

•BW setting

	M station -> R station			M station <- R station			M stati	on -> R sta	ation	M station <- R station			•
StationNo.	В			В			W			W			
	Points	Start	End	Points	Start	End	Points	Start	End	Points	Start	End	
1	100									8	0000	0007	┰

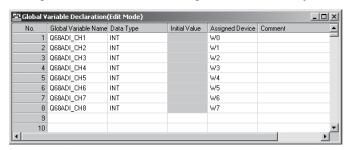
(Refresh parameter setting)


				Link side			PLC side				
	Dev. na	me	Points	Start	End		Dev. name	Points	Start	End	
Transfer SB	SB		512	0000	01FF	+	SB	512	0000	01FF	
Transfer SW	SW		512	0000	01FF	+	SW	512	0000	01FF	
Random cyclic	LB					+	▼				
Random cyclic	LW					+	▼				
Transfer1	LB	•	8192	0000	1FFF	+	В	8192	0000	1FFF	
Transfer2	LW	•	8192	0000	1FFF	#	W 🔻	8192	0000	1FFF	
Transfer3	LX	•	512	0000	01FF	#	× 🔻	512	0000	01FF	
Transfer4	LY	•	512	0000	01FF	#	Υ	512	0000	01FF	
Transfer5		•				+	₩				
Transfer6		•				+	₩			▼	

(c) Remote I/O station parameter setting

[Setting procedure]

- 1. Specify "Remote I/O" as PLC type and newly create a project.
- Start the intelligent function module utility.
 [Tool] [Intelligent function module utility]-[Startup]
- 3. Make the initial settings such as sampling and averaging processing specification, as necessary.
- 4. Assign the link register (W) that transfers buffer memory in the auto refresh setting.
- 5. Write parameters into the remote I/O station.


(GX Configurator setting)

(d) FBD program setting

Register the link register (W) that includes auto refresh setting onto the PX Developer global variable window.

Register input relay (X) and output relay (Y) that correspond to the intelligent function module I/O signals, as necessary.

2.11 Execution of FBD Program

This section describes execution of FBD program.

2.11.1 Execution Type and Priority/Phase of Program

The execution cycle, timing and priority of FBD program can be set. The execution types of FBD program will be explained below.

(1) How to execute a FBD program

FBD program can be executed in two ways: timer execution and interrupt execution. Choose method according to different needs for applying programs. The execution types will be explained below.

(a) Timer execution

Timer execution is an execution method that uses the scan time of CPU module to multiply the execution time.

Users can choose from the four types of execution time for timer execution.

Type of execution time	Contents
High-speed	Program is executed once every 200ms
Normal	Program is executed once every [(high-speed execution type cycle 200ms)×n1] ms (n1=2,3,4,5)
Low-speed	Program is executed once every [(high-speed execution type cycle 200ms)×n2] ms (n2=5,10,20,25,50)
Scan	Program is executed once for each scan, beginning from the scan after the execution of initial execution type program (that is executed once in switching from power ON to RUN or from STOP to RUN)

^{*1:} n1 and n2 can be set with programming tool

For more details please refer to PX Developer Operating Manual.

(Programming Tool)

*2: Priority and execution conditions can be set for timer executing.

Phase can be set for normal and low-speed execution.

For more details on priority and phase please refer to "(2) Priority and phase".

POINT

- (1) Timer execution at any timing other than those based on scan types will cause an error of up to +1 scan time.
 - Timer execution of other than the scan type has a larger error than interrupt execution.
- (2) Programs including general process FB, tag access FB, and loop tag FB cannot be set as scan type timer execution.
 - For more precautions with scan starting, refer to Section 2.11.1 (4)
- (3) To keep the fixed scan cycle of the program, the scan time must be within 200ms. (The scan time can be checked with GX Developer.)

(b) Interrupt execution

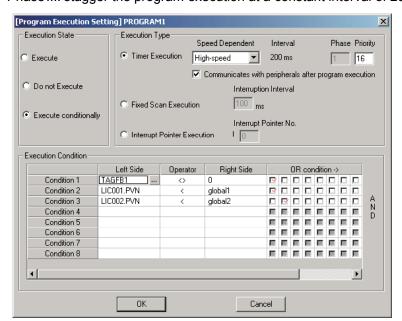
Interrupt execution is an execution type that inserts execution program in the execution process of "(a) Timer starting" program.

There are two kinds of interrupt execution: fixed scan execution based on fixed scan execution program of CPU module and interrupt pointer execution by use of interrupt pointer (I).

Execution type	Contents	
Fixed scan execution	Program is executed at fixed intervals (execution time) set by the user.	
Interrupt pointer execution	It is executed after stopping other programs for a while when interruption factors indicated in interrupt pointer (1) of CPU module occur.	

POINT

Programs that contain general process FB, tag access FB, and loop tag FB shall not be set as interrupt pointer execution. For precautions of applying interrupt execution, please refer to Section 2.11.1 (4).

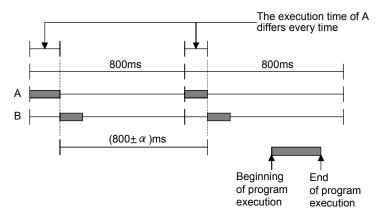

(2) Priority and Phase

The following paragraphs explain priority and phase that can be set for timer execution.

 Priority... when there are more than one programs to be executed using the same execution method, priority shall be set to decide which program is to be executed first.

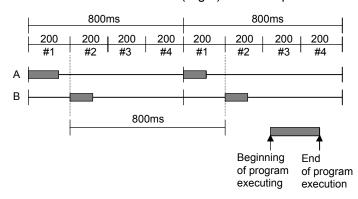
The closer to "0", the earlier the program is to be executed. Priority is only valid for programs that use the same execution method.

• Phase stagger the program execution at a constant interval of 200ms.



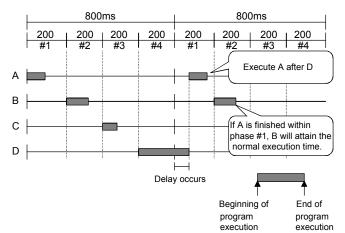
(a) Phase setting

When several programs with the same execution cycle are executed simultaneously, the program with higher priority is started prior to the other programs. This may influence the on-time performance of program.(Example 1)


(Example 2) If we divide the execution cycle into 200ms units (phase), by specifying the execution time and phase in program execution setting, the degrading of on-time performance can be effectively prevented.

(E.g.1) Constant period execution of program without phase.

Suppose program A and program B have the same execution cycle of 800ms, and are executed simultaneously, program A, with higher priority, is first executed at an interval of 800ms, and program B is executed immediately after program A finishes executing. Therefore, the execution time of program A decides execution cycle of program B, which will not be exactly 800ms. Fixed scanning performance thus degrades. (In the diagram on the left, the undetermined factor $(\pm \alpha)$ in program B execution cycle results from the fluctuation of program A execution time.)


(E.g.2) Constant period execution of program with phase

Divide the execution time 800ms into 200ms \times 4, set program A to start at phase #1 and program B at #2. As long as the execution time of A is below 200ms, the execution time of program B will hold 800ms, without influenced by the execution time of A.

(b) Precautions for phase setting

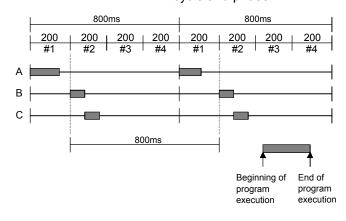
As for interrupt execution, the execution time of program may be longer than normal and the next execution time will exceed the phase time. In this case, the fixed scanning performance will degrade, which is worth user's attention. However, if the exceeded part of execution time and the next execution time is within one phase, the program will be executed in normal execution time hereafter.

(E.g.3) Fixed scan execution of program when delay occurs.

Program A is executed in phase #1, program B in phase #2, C In #3, D in #4. As for interrupt execution, execution time of program D exceeds 200ms.

Accordingly, program A cannot be executed in phase #1until program D execution ends, resulting in longer program A execution time. Therefore, the execution time of program A is not 800ms, and the on-time performance will degrade.

However, if the total sum of the exceeding time of program D and the execution time of program A is no more than 200ms, program B can be executed within normal execution time.


(c) Precautions for specifying several programs with same execution cycle and phase.

When specifying several programs with same phase, programs with higher priority will be executed first despite of the same execution time requirements.

In the case of total execution time exceeding 200ms, timeout delay occurs and program execution schedule will be disrupted. (This kind of delay cannot be avoided)

Pay attention to the total sum of execution time and scan time when setting several programs with a single phase.

(E.g.4) Constant period execution of programs with the same execution cycle and phase.

When setting program B and C with a single phase, program C is not executed until program B with higher priority finishes executing.

(3) Precautions for use of high-speed/normal-speed/low-speed timer execution. The execution timings of normal-speed and low-speed execution are determined by the execution timing of a high-speed execution type program.

The execution cycle of a high-speed execution type program is fixed at 200ms. If the execution cycle of a high-speed execution type program cannot be kept to 200ms, this affects the execution cycles of all speed execution type programs. The following expression shows the execution time relation between a high-speed execution type program and a normal/low-speed execution type program. For example, when the execution cycle of 1000ms is set to a normal-speed execution type program, the normal-speed execution type program will be executed once every five times the high-speed execution type program is executed.

 $\frac{\text{Execution cycle setting of normal-speed execution type}}{\text{Execution cycle of high-speed execution type (fixed)}} = \frac{1000 \text{ms}}{200 \text{ms}}$

If the scan time is 300ms, the high-speed execution type program is executed every 300ms. (This is because the program execution timing is controlled by adding up the scan times.)

When the execution cycle of the high-speed execution type program is 300ms, the execution cycle of the normal-speed execution type program is as follows: $300\text{ms} \times 5 = 1500\text{ms}$, producing an error. (Error 500ms)

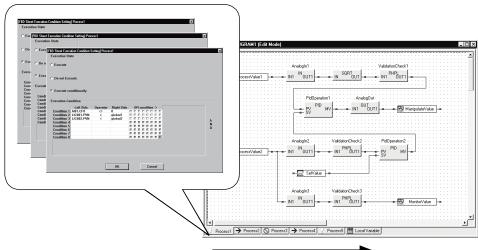
Hence, to keep the program cycle fixed, the scan time must be within 200ms. The scan time can be checked using GX Developer.

(4) Precautions for scan type timer execution and interrupt pointer execution Do not paste general process FB, tag access FB or loop tag FB in scan type timer execution and interrupt pointer execution programs. As general process FB, tag access FB and loop tag FB must execute operation processing based on execution time, setting program as timer execution scan type and interrupt execution without execution time may result in invalid control for it.

2 - 41 2 - 41

2.11.2 Setting of FBD Sheet Execution Conditions

User-defined FB/program are executed according to the conditions setting in execution condition setting dialog box.

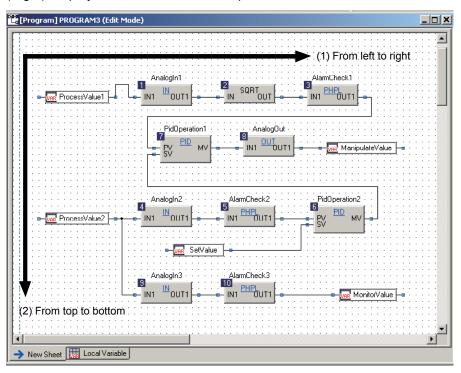

If user-defined FB/program execution conditions are described in several FBD sheets, these FBD sheets are executed one by one from left to right.

FBD sheet will not be executed if condition is not satisfied.

The execution condition setting of FBD sheet can be used as interlock of FBD sheet unit in the processing contents of POU definition.

For the setting method for execution condition setting dialog box and the details of setting items, please refer to PX Developer Operating Manual (Programming Tool)

Execution conditions can also be set in FBD sheets



After execution condition setting for each FBD sheet, these sheets will be executed one by one from left to right if condition is satisfied.

2.11.3 Executing Order of FBD Parts

Inserting, arranging and connecting various FBD parts on FBD sheet shall be executed in the sequence from (1) to (3) as described in the following graph.

(E.g.1) Display execution order of FBD parts

(3) From the FBD sheet of the left tabs to the one of the right

POINT

- (1) For all the parts arranged on a FBD sheet, variable/FB parts shall have specified variable name/data type; constant parts should have specified value/data type.
- (2) FBD parts to be input with value shall be executed after executing the FBD parts that are connected to the input pin. (Whether inputting value is finished shall be assessed in order from top to bottom)
- (3) The execution order of FBD parts inserted and connected in FBD sheet can be confirmed in [Display Execution Order of FBD parts] of programming tool. For details, refer to PX Developer Operating Manual (Programming Tool).
- (4) Recursive call and closed loop are not allowed.

2.12 Identifier and Reserved Words

(1) Identifier

Identifier is used in the names of various programming tool members (such as variable names, FB variable names, structure type names etc.)

Qualified identifier should meet the following requirements.

- (a) Specify with a string of less than 32 characters.
- (b) Do not use reserved words. (refer to (2) below)
- (c) Use the following specified characters: Alphabet number underscore (_).
- (d) Do not use underscore (_) at the end.Do not use two underscores or more continuously.
- (e) Do not use space.
- (f) Do not use a number as initial character.
- (g) Constant is not allowed. (For identifier that starts with "H" or "h", if "H" or "h" is followed by consecutive hexadecimal (0 to F) (up to 9 digits including "H" or "h", (excluding 0 that directly follows H/h) are processed as a constant. (e.g.:"hab0"))
- (h) Names with elementary data type cannot be used.
- (i) Function/FB parts names are not allowed.

(2) Reserved words

This is the invalid character strings for identifier when make program by programming tool.

The reserved words are character strings that are used by system and cannot be used as identifier.

Error occurs only when identifier is identical with the reserved words listed as below, independently of the upper/lower case.

	Reserved words (in alphabetical order)	
^	ACTION, ANY, ANY_BIT, ANY_DATE, ANY_DERIVED, ANY_ELEMENTARY, ANY_INT, ANY_MAGNITUDE, ANY_NUM,	
Α	ANY_REAL, ANY_SIMPLE, ANY_STRING, ARRAY, AT	
В	BOOL, BY, BYTE	
С	CASE, CONFIGURATION, CONSTANT	
D	DATE, DATE_AND_TIME, DEVICE, DINT, DO, DS, DT, DWORD	
	ELSE, ELSIF, ELSEIF, EN, END_ACTION, END_CASE, END_CONFIGURATION, END_FOR, END_FUNCTION,	
Е	END_FUNCTION_ BLOCK, END_IF, END_PROGRAM, END_REPEAT, END_RESOURCE, END_STEP, END_STRUCT,	
	END_TRANSITION, END_TYPE, END_VAR, END_WHILE, ENO, EXIT	
F	FALSE, F_EDGE, FOR, FROM, FUNCTION, FUNCTION_BLOCK	
- 1	IF, INT, INITIAL_STEP	
L	LINT, LREAL, LWORD	
0	OF, ON	
Р	PDD, PROGRAM	
R	READ_ONLY, READ_WRITE, REAL, R_EDGE, REPEAT, RETAIN, RETURN, RESOURCE	
S	SINT, STEP, STRING, STRUCT	
Т	TASK, THEN, TIME, TIME_OF_DAY, TO, TOD, TRANSITION, TRUE, TYPE	
U	UDINT, UINT, ULINT, UNTIL, USINT	
	VAR, VAR_ACCESS, VAR_CONSTANT, VAR_EXT, VAR_EXTERNAL, VAR_EXTERNAL_CONSTANT,	
V	VAR_EXTERNAL_FB, VAR_EXTERNAL_PG, VAR_GLOBAL, VAR_GLOBAL_CONSTANT, VAR_GLOBAL_FB,	
	VAR_GLOBAL_PG, VAR_IN_OUT, VAR_INPUT, VAR_OUTPUT, VAR_PUBLIC, VAR_TEMP	
W	WORD, WHILE, WITH, WSTRING	

2.13 Manufacturer Library

Library list provided by the manufacturer is as follows.

The following function/FB parts will be shown in parts window of programming tool. For more details about each library please refer to "Reference".

Library classification		Command classification	Reference
		Type conversion function (with EN/ENO)	
		Numerical operation function (with EN/ENO)	
		Arithmetic operation function (with EN/ENO)	
		Bit-string (with EN/ENO)	
Company	ination (with EN/ENO)	Logical operation function (with EN/ENO)	Chapter 4
General function (with EN/ENO)		Selection function (with EN/ENO)	
İ		Comparison function (with EN/ENO)	
ı		Character string function (with EN/ENO)	
		Helper function (with EN/ENO)	
		Ladder program control function (with EN/ENO)	
		Bistable FB	
		Edge detection FB	
General F	₹B	Counter FB	Chapter 5
		Timer FB	
		Communication control FB	
Process function (with EN/ENO)		Analogue value selection and average function (with EN/ENO)	Chapter 6
		Correction operation FB	
	General process FB	Arithmetic operation FB	
		Comparison operation FB	
		Control operation FB	
Drassas	Tag access FB	Input/output control FB	
Process FB		Loop control FB	Chapter 7
1 15		Special FB	
		Loop tag FB	
	Tag FB	Status tag FB	
		Alarm tag FB	
		Message tag FB	
Module FB		Analog module FB	
		Temperature input module FB	
		Pulse input module FB Digital input module FB	

POINTS

- Whether to continue/stop CPU processing when operation error occurs is based on the PLC parameter settings.
- When operation error occurs on the function, the output of corresponding function becomes inconsistent value.
- When operation error occurs on FB, the output of corresponding FB holds the previous value.

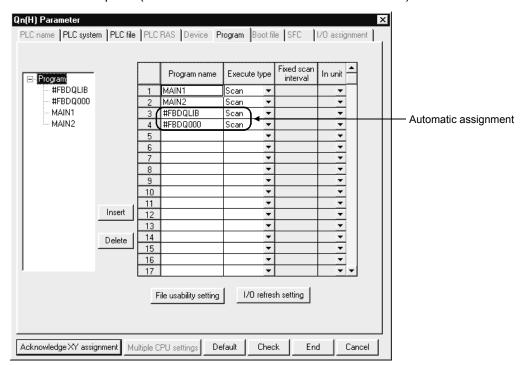
2.14 Precautions when using GX Developer

The following provides the precautions when using GX Developer.

POINTS

Handle the PX Developer project using GX Developer while paying attention to precautions given in the PX Developer operating manual (programming tool).

2.14.1 GX Developer/PX Developer version


GX Developer is required to use the PX Developer programming tool. Note that the combination of GX Developer and PX Developer varies with the CPU module connected as shown below.

Connected CPU	PLC type	Using the CC-Link IE controller network connection		Not using the CC-Link IE controller network connection	
		GX Developer	PX Developer	GX Developer	PX Developer
Process CPU	Q02PHCPU, Q06PHCPU	Version 8.68W	Version 1.18U	Version 8.68W	Version 1.18U
	Q12PHCPU, Q25PHCPU			Version 7.20W	Version 1.00A
Redundant CPU	Q12PRHCPU, Q25PRHCPU			Version 8.18U	Version 1.06G

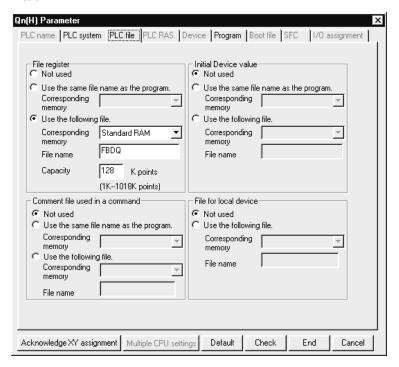
2.14.2 PLC parameters

- (1) About program setting of PLC parameter
 - (a) Program name and execution type on a user-created ladder must be set in program setting of PLC parameter.
 - (b) With the compile functions of programming tool, FBD programs can be converted into ladder program files (#FBDQ □) for its own use, and program setting of PLC parameter can be automatically assigned. (*1) When FBD programs and user ladders are mixed together, FBD programs are first recompiled with the programming tool, then automatically assigned at the end of the program setting.

However, when the "#FBDQ..." files are assigned in PLC parameter, the order of the program setting will not be changed even if the programs are recompiled. (The "#FBDQ..." files will not move to the last.)

*1 According to the execution type of program execution, FBD programs automatically create files by following methods.

Execution type	PC parameter program setting		
	Program name	Execution type	
Scan	#FBDQ000	Scan	
Stand-by	#FBDQLIB	Wait	
Fixed scan starting	#FBDQ***	Fixed scan	


 In "#FBDQ***", *** is assigned with a consecutive number starting from 001 during each compile.

POINT

Make sure no changes are made on setting screen of the FBD program (#FBDQ□) automatically assigned by PLC parameter program setting.

(2) About PLC file setting of PLC parameter

(a) File registers used in FBD programs are automatically set with programming tool.

(b) Through PLC file setting of GX Developer's PLC parameter, users can change the" Corresponding memory", "File name", and "Capacity" of the currently used file register.

File used can be chosen from "Use the following file".

IMPORTANT

The number of the file register compiled in target memory must be set to 1. If a file register already exists in the target memory, it should be deleted before file register of other name is written in.

POINT

During hot-start compile, do not change PLC parameter file register setting.

When PLC parameter file register setting is changed, do not execute downloading after hot-start compile or online change compile.

For more details on hot-start compile or online change compile, please refer to Section 2.2.5.

- (3) PLC system setting using PLC parameters
 - (a) Keep the low speed timer limit to 100ms in "Timer limit setting".
 - (b) Set "Common pointer No." within the range of 0 to 3500.(The default value is 3500.)

2.14.3 Ladder programming

Precautions for various parameter settings, etc. made by user ladder creation or using GX Developer will be explained.

(1) Setting in user ladder creation or GX Developer/GX Configurator When making setting by user ladder creation*1 or using GX Developer/GX Configurator, start the GX Developer project from the project window of the programming tool.

(2) Devices that must not be rewritten from user ladder

The following devices can be read /written during program execution on programming tool.

Do not change the value of these devices from global variable or user ladder.

Devices used by programming tool	Inhibited range of device value modification
ZR (or R)	The range set by system resource of project parameter* ² . (However, items of tag data* ³ within this range can be changed by specifying with ZR.)
Т	Range set by the system resource in the project parameter setting. *2
Р	P3500 to P4095
M	M0 to M399
Z	Z0 to Z6
SD	SD0 to SD3 SD5 to SD8 SD16 to SD19 SD203 SD1500 to SD1501 SD1502 to SD1505
SM	SM1 SM390 SM701 SM1500, SM1501, SM1552 to 1583

^{*2:} Refer to the PX Developer Operating Manual (Programming Tool).

(3) Instructions that must not be used in user ladder

The QDRSET(P) instruction (setting of file for file register) must not be included in the user ladder. If included, FBD program will not normally operate when the file for file register is renamed by the QDRSET(P) instruction.

(4) Number of user ladders that can be created

Up to 122 ladder programs can be created. However, if the fixed scan type program is created using the programming tool, this will affect the number of ladder programs, i.e., it will decrease by the number of the created fixed scan type programs.

^{*1:} Including comment and device memory editing.

^{*3:} The device assigned to tag data can be checked from the tag FB declaration window of the programming tool.

(5) Ladder program that must not be edited in GX Developer project In the GX Developer project started from the programming tool, do not edit or delete the ladder program "#FBDQ****".

If it is edited or deleted, FBD programs will not operate normally.

IMPORTANT |

If Replace device is performed for any program other than "#FBDQ***" in Replace device on GX Developer, the devices in the "#FBDQ***" program may also be replaced.

If the above dialog box is displayed in Replace device, click the "No" button. If the "Yes" button is clicked, the devices in "#FBDQ***" are also replaced and FBD programs will not operate normally.

If the devices in "#FBDQ***" have been replaced by clicking the "Yes" button, recompile the project again with the programming tool.

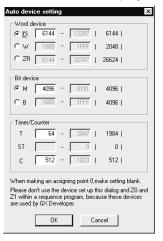
- (6) Compatibility with the function block of GX Developer There is no compatibility between the function block that can be created by label programming of GX Developer and the function block used with the programming tool.
- (7) Overwrite by global variable (label) setting of GX Developer at compile When the project is compiled with the programming tool, the settings made in the GX Developer label assignment window of the programming tool are overwritten by the global variable (label) setting of the GX Developer project.

 At this time, when Auto External setting*⁴ has been performed in the global variable (label) setting of the GX Developer, the settings are also overwritten by the local variables (labels) of the reflection destination.*⁵
 - *4: Auto External setting reflects the settings made by the global variable (label) setting of the GX Developer on all local variable (label) settings or the specified local variable (label) setting.
 - *5: The settings are automatically overwritten only when using PX Developer Version 1.04E or later and GX Developer Version 8.03D or later.

2 - 50 2 - 50

(8) Auto device setting of GX Developer

Set the ranges of the devices automatically assigned to local labels by GX Developer so that they do not overlap the devices that must not be rewritten from user ladder indicated in (2) of this section.


POINT

When the device range (file register: ZR, timer: T) of the system resource has been changed in the project parameter setting of the programming tool, confirm the contents of the automatic assignment device setting of GX Developer in the following procedure.

If it overlaps the assignment range of the automatic assignment device, change the setting so that it does not overlap the assignment range.

[Setting procedure]

- 1. Open the GX Developer project from the programming tool.
- 2. Open the Global variable (label) setting window on GX Developer.
- 3. Click the [Edit] → [Auto device setting] menu of GX Developer.
- 4. Set the device range in the Auto device setting window so that it does not overlap the device ranges of the device that must not be rewritten from user ladder, indicated in (2) of this section, and the project parameter setting.

(9) Utilization of GX Simulator

GX Simulator does not support the process control instructions of the QnPHCPU. Hence, it cannot simulate the execution of an FBD program.

On the other hand, the execution of a user ladder can be simulated by deleting all "#FBDQ***" settings from the program setting of the PLC parameter.

When performing PLC download after simulation of user ladder execution, it is necessary to restore the deleted "#FBDQ***" settings to their original values.

In this case, perform compile again with the programming tool, and then execute PLC download.

(10) Auto refresh by GX Configurator when module FB is used

In the module where the module FB performs data I/O processing, do not use the auto refresh function for the PLC devices using GX Configurator.

If the auto refresh function is used, the output value of the module FB will be illegal.

2.14.4 Redundant parameters

Redundant parameters are for continuing the system control by switching system (system A \longleftrightarrow system B) when the system control by Redundant CPU fails.

The following shows the redundant parameters.

Set either of them using GX Developer. (Batch setting is not allowed for internal devices in the tracking setting of redundant parameter.)

Menu	Parameter	Parameter outline	Reference
	Operation mode	Makes the settings for power-on and debug mode/backup	GX Developer operating
	setting mode.		manual
Redundant parameter	Tracking setting	Transfers system information and device memory information used to continue the system control by Redundant CPU at the time of system switching from control system to standby system.	(1) to (4) in this section GX Developer operating manual

(1) Tracking device setting

Tracking target device range is divided as follows.

(a) Tracking device range needs to be set by user The following device rages must be set by user.

Tracking block No. Tracking target device range		Remark
	Output Y device	Transfer triggers (SN1520 to SM1551)
Either of No.1 to 32	B device, W device for host station transmission	corresponding to tracking block No.1 to 32
	Various devices used in user ladder program*1	need to be ON in user ladder program.*2

- *1: The device range to be set as the PX Developer system resource is extruded.
- *2: For tracking block No.1, automatic transfer (SM1520 automatically turns ON) can be selected.

(b) Tracking device range to be automatically set by the programming tool

The followings are automatically registered in the tracking setting of redundant parameter of GX Developer. Therefore, the settings need not be made by user.

Tracking block No.	Tracking target device range	File register file setting	Remark
No. 33 to 36	None (setting is cleared)	None (setting is cleared)	Reserved for future use of PX Developer
No.64	'	File register target memory and file name set in the PLC parameter	Tracking is performed in backup mode only.

^{*3:} The device range that stores the information peculiar to system A/system B (project identification code) is extruded.

(2) Tracking setting for signal flow (rising/falling execution instruction history)

Basically, tracking of signal flow is not required when FBD program is executed using PX Developer.

However, make the settings if tracking of signal flow is required to execute user ladder program.

POINT

When tracking of signal flow is selected in the redundant parameter setting window of GX Developer, the tracking block No.64 device range setting may appear with the following dialog box.

In this case, make the settings in order that the number of tracking points within the system resource device range will be 84kwords or less, as shown below.

[Setting procedure]

- 1. Open the project parameter setting window from the programming tool and select <System resource> tab.
- 2. Decrease the number of system resource device points (ZR device, T device) so that the following condition will be satisfied.

{(Number of ZR device setting points)

- + (Number of T device setting points) x 9/8} \leq 86016
- 3. Execute a compile using the programming tool.
- 4. Open the redundant parameter setting window of GX Developer after the compile is completed, and select the tracking setting of signal flow again.

(3) Adjustment for tracking time reduction

Scan time is extended by the following time according to the number of device points in the programming tool system resource.*1

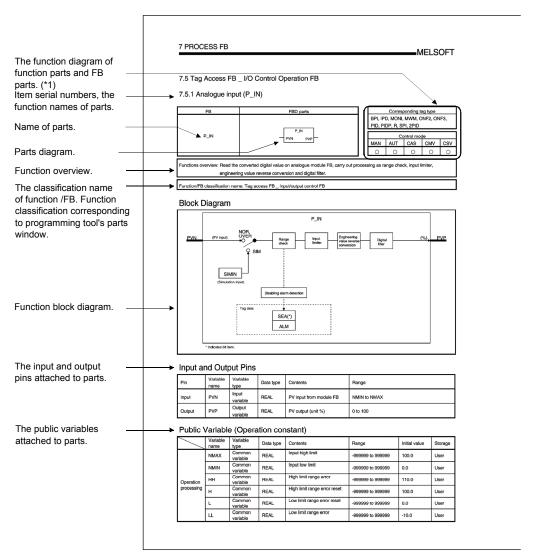
Reference of tracking time within the system resource device range {(Number of ZR device setting points) +

(Number of T device setting points) x 9/8} x 0.35*2 μs

- *1: Actual total delay time due to tracking increases by the device range (tracking block No.1 to 32) used for user ladder program and transfer time of signal flow or the like.
- *2: Indicates the time constant when creating the file register within standard RAM.

The delay of scan time can be decreased by decreasing the number of system resource device points as shown on the next page. However, note that insufficient system resource may cause a compile error.

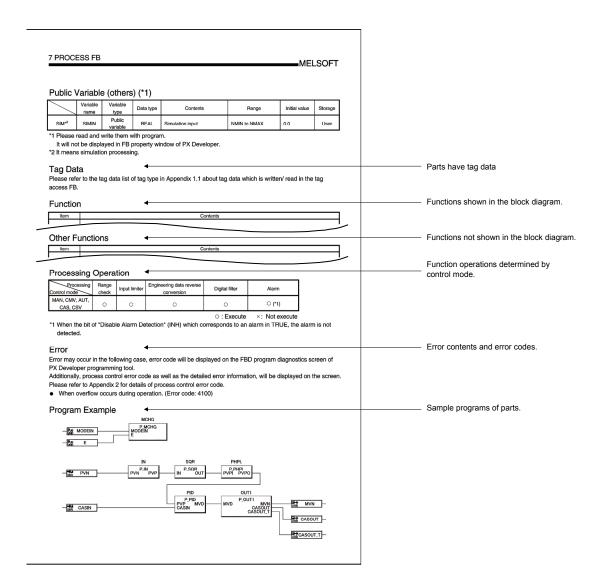
[Adjustment procedure]


- Reduce "Maximum No. of Tags" in the tag FB window to the minimum number required.*3
- 2. Execute a compile and confirm the number of remaining system resource points displayed in the output window.
- Open the project parameter setting window by referring to the number of remaining system resource points, select <System resource> tab, and reduce the number of system resource device points (ZR device, T device) to the minimum number required. *4
- *3: When changing "Maximum No. of Tags", make sure to consider the tags required for future use, as this requires cold start compile.
- *4: When changing the number of system resource device points, make sure to consider the device points required for future use, as read to CPU during RUN will be disabled.

(4) Tracking transfer mode setting

By default, the tracking transfer mode is set to tracking synchronous mode. Switch to program priority mode as necessary.

3 ABOUT COMPREHENDING FUNCTION PARTS AND FB PARTS


From next chapter on, function parts and FB parts are illustrated through the following format:

- *1 shows the corresponding relationships of different functions between function parts and FB parts.
- (a) General function/process function (Chapter 4 and 6)For details of function, please refer to Section 2.7.

With EN/ENO pins	0
Overload	0
Input pin number changeable (range)	2 to 8

- 1) Shows functions with EN/ENO pins.
- 2) Shows overload functions.
- 3) Shows the input pin changeable range of input pin changeable function.

(b) Tag access FB/tag FB (Section 7.5 to 7.11)

For details of tag access FB/tag FB, please refer to Section 2.9.

- Shows the tag type corresponding to tag access FB/ tag FB.
 For the tag type corresponding to tag access FB/ tag FB, please refer to Appendix 1.3.
- 2) Shows the selectable control mode.

However, the module is not available when the corresponding bit of "Disable Mode Change (MDIH)" of the tag data is TRUE. For control mode, refer to Appendix 3.8.

Cascade direct (CASDR) mode of control mode is selectable when the tag type is 2PIDH.

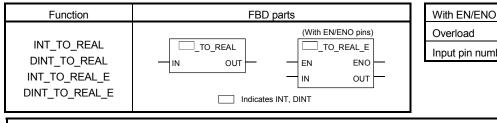
Corresponding tag type		
BPI, IPD, MONI, MWM, ONF2, ONF3,		
PID, PIDP, R, SPI, 2PID		

Control mode					
MAN	AUT	CAS	CMV	CSV	
0	0	0	0	0	

4 GENERAL FUNCTION

General functions are classified as follows.

Classification name	Contents	Reference
Type conversion function	Conversion among data types	Section 4.1
Numerical Operation	Output the absolute value, square root, operation results of (natural logarithm, logarithm base 10 and natural exponential), ASIN value, ACOS value, and ATAN value.	Section 4.2
Arithmetic operation function	Output the sum, product, difference, quotient and remainder of the input value.	Section 4.3
Bit-string function	Shift or rotate the input value to the left or right by n bits.	Section 4.4
Logical operation function	Output the AND, OR, XOR and NOT of the input value.	Section 4.5
Selection function	Select the output method for input value	Section 4.6
Comparison function	Output the comparison results of the input data value	Section 4.7
Character string function	Execute string length detection, middle character, concatenation, inserting, deleting, replacing and searching for characters.	Section 4.8
Helper function	Select the output methods for various data types	Section 4.9
Ladder program control function	Sub-routine program call, program scan execution registration, program standby execution, program output OFF standby instruction, program low-speed execution registration.	Section 4.10


4

4-1 4-1

4

4.1 Type Conversion Function

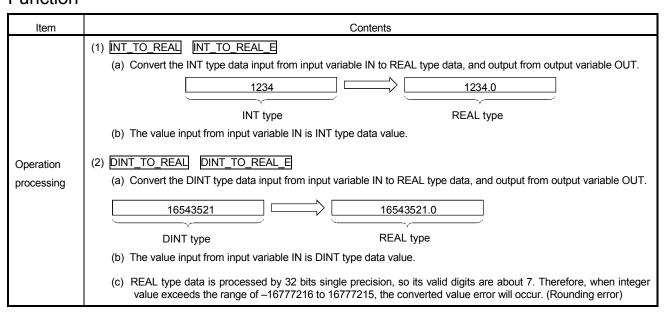
4.1.1 INT/DINT Type → REAL Type Conversion (INT_TO_REAL(_E), DINT_TO_REAL(_E))

With EN/ENO pins	0
Overload	_
Input pin number changeable (range)	_

Function overview: Converts data type INT/DINT to REAL

Function/ FB classification name: Type conversion function

Input and Output Pins


(1) INT TO REAL INT TO REAL E

Pin	Variable name	Variable type	Data type	Contents
Innut	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input	IN	Input variable	INT	Input
Output	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	REAL	Output

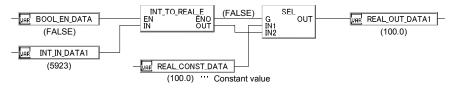
(2) DINT_TO_REAL DINT_TO_REAL_E

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input	IN	Input variable	DINT	Input
Output	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	REAL	Output

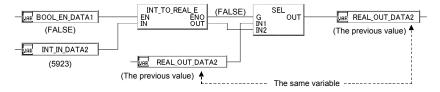
Function

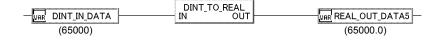

4-2 4-2

Item		Contents			
	(1) Functions without EN/ENO pins				
Execution conditions and operation results are as follows:				3:	•
Operation		Execution condition	(Operation result	
results		EN	ENO	OUT	
		TRUE (Operation execution)	TRUE	Operation output value	
		FALSE (Operation stop)	FALSE (*)	Inconsistent value	
	,	* When the output of ENO pins is FA In this case, please do not use the	•	•	e value.


There is no operation error caused by INT_TO_REAL (_E), DINT_TO_REAL (_E).

Program Example


- (1) The program that converts INT type data input from input variable IN to REAL type data, and output from output variable OUT.
 - (a) Basic program example (INT_TO_REAL)


(b) The program example that outputs constant value when input variable EN is FALSE, (INT_TO_REAL_E)

(c) The program example that outputs the previous value when input variable EN is FALSE, (INT_TO_REAL_E)

- (2) The program that converts DINT data input from input variable IN to REAL type data, and output from output variable OUT.
 - (a) Basic program example (DINT_TO_REAL)

4.1.2 INT Type → DINT Type Conversion (INT_TO_DINT(_E))

Function	FBD parts		
		(With EN/ENO pins)	
INT_TO_DINT INT_TO_DINT _E	INT_TO_DINT IN OUT	INT_TO_DINT_E EN ENO IN OUT	

With EN/ENO pins	0
Overload	
Input pin number changeable (range)	П

Function overview: Converts data type INT to DINT.

Function/ FB classification name: Type conversion function

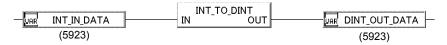
Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
прис	IN	Input variable	INT	Input
0.44	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	DINT	Output

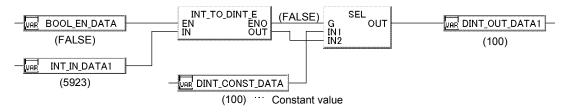
Function

Item	Contents						
Operation	(1) Convert the INT type data input from input variable IN to DINT type data, and output from output variable OUT. 1234 1234						
processing	INT type DIN (2) The value input from input variable IN is INT type data.	T type					
	 (1) Functions without EN/ENO pins Execute operation processing. Output the operation output value from OUT pi (2) Functions with EN/ENO pins Execution conditions and operation results are as follows: 	in.					
	Execution condition Operation result						
Operation results		IT.					
•	EN ENO OL	UT output value					

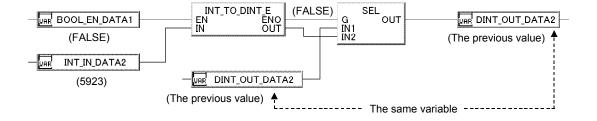
Error


There is no operation error caused by INT_TO_DINT (_E).

4 - 4 4 - 4


Program Example

The program that converts the INT type data input from input variable IN to DINT type data, and output from the output variable OUT.


(1) Basic program example (INT_TO_DINT)

(2) The program example that outputs constant value when input variable EN is FALSE, (INT_TO_DINT_E)

(3) The program example that outputs the previous value when input variable EN is FALSE, (INT_TO_DINT_E)

4.1.3 DINT Type \rightarrow INT Type Conversion (DINT_TO_INT(_E))

Function	FBD parts				
DINT TO INT	(With EN/ENO pins) DINT TO INT DINT TO INT E				
DINT_TO_INT DINT_TO_INT_E	IN OUT EN ENO				

With EN/ENO pins	0
Overload	_
Input pin number changeable	
(range)	_

Function overview: Converts data type DINT to INT.

Function/FB classification name: Type conversion function

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
прис	IN	Input variable	DINT	Input
0.44	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	INT	Output

Function

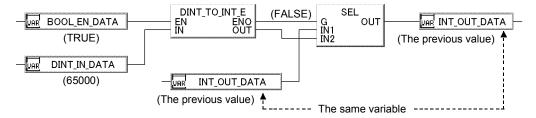
Item	Contents					
Operation processing	(1) Convert the INT type data input from 1234 DINT type (2) The value input from input variable		data, and output from output va	ariable OUT.		
	(1) Functions without EN/ENO pins The operation results are as follows	3:				
	Operation result	OUT				
		Operation output value				
	No operation error	Operation outp	out value			
	No operation error Operation error occur	Operation outp				
Operation	<u> </u>	Inconsistent	value			
Operation results	Operation error occur (2) Functions with EN/ENO pins Execution conditions and operation	Inconsistent results are as follows:	value			
•	Operation error occur (2) Functions with EN/ENO pins Execution conditions and operation Execution condition EN	Inconsistent results are as follows: Operation	on result			
	Operation error occur (2) Functions with EN/ENO pins Execution conditions and operation Execution condition	Inconsistent results are as follows: Operation ENO TRUE	on result OUT			

Error may occur in the following case, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

• When input value is not in the range of -32768 to 32767. (Error code: 4100)

Program Example

The program that converts DINT type data input from input variable IN to INT type data, and output from output variable OUT.


(1) Basic program example (DINT_TO_INT)

- (2) The program example that outputs constant value when input variable EN is FALSE, or operation errors occur, (DINT_TO_INT_E)
 - (E.g.) When operation errors occur

- (3) The program example that outputs the previous value when input variable EN is FALSE, or operation errors occur, (DINT_TO_INT_E)
 - (E.g.) When operation errors occur

4 - 7 4 - 7

4.1.4 INT/DINT Type \rightarrow BCD Type Conversion (INT_TO_BCD (_E), DINT_TO_BCD (_E))

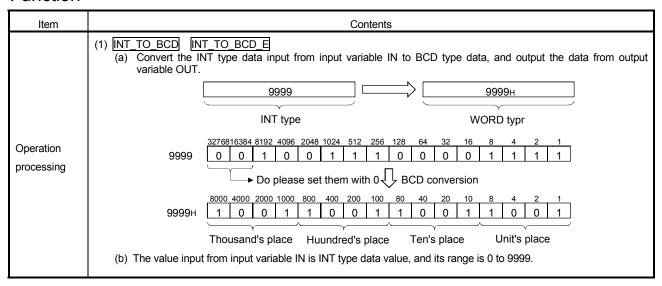
Function	FBD parts			
	(With EN/ENO pins)			
INT_TO_BCD	TO_BCDTO_BCD_E			
DINT_TO_BCD	IN OUT EN ENO			
INT_TO_BCD_E	IN OUT			
DINT_TO_BCD_E	Indicates INT, DINT			

With EN/ENO pins	0
Overload	
Input pin number changeable (range)	_

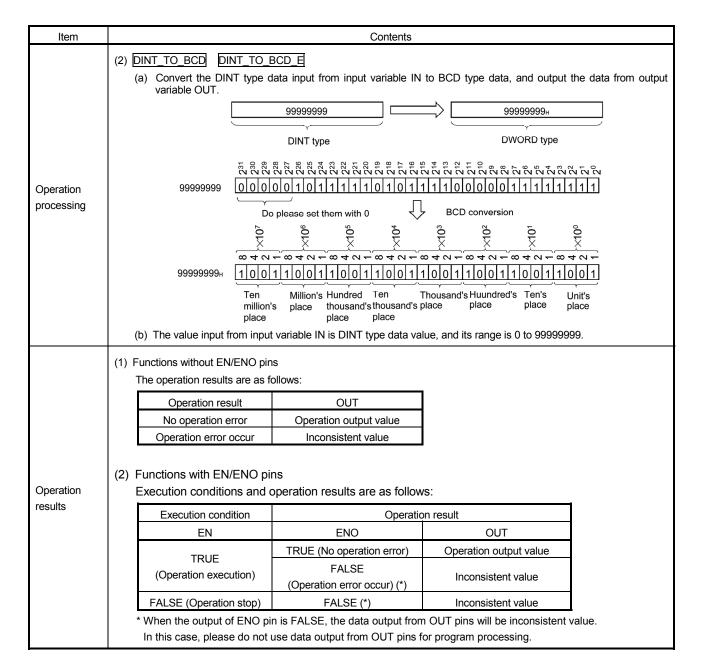
Function overview: Converts data type INT/DINT to REAL

Function/ FB classification name: Type conversion function

Input and Output Pins


(1) INT_TO_BCD INT_TO_BCD_E

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
IIIput	IN	Input variable	INT	Input
Outro d	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	WORD	Output


(2) DINT TO BCD DINT TO BCD E

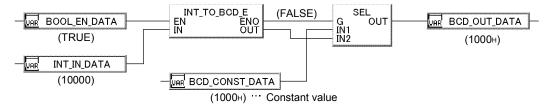
Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
IIIput	IN	Input variable	DINT	Input
Outrout.	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	DWORD	Output

Function

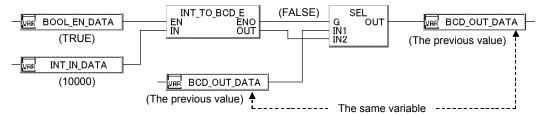
4 - 8 4 - 8

Error may occur in the following case, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

- INT_TO_BCD_(_E)): When input value is out of 0 to 9999 range (Error code: 4100)
- DINT TO BCD (E)): When input value is out of 0 to 99999999 range (Error code: 4100)


4-9 4-9

Program Example


- (1) The program that converts INT type data input from input variable IN to BCD type data, and output the data from output variable OUT.
 - a) Basic program example (INT TO BCD)

- b) The program example that outputs constant value when input variable EN is FALSE, or operation errors occur, (INT_TO_BCD_E)
 - (E.g.) When operation errors occur

- c) The program example that outputs the previous value when input variable EN is FALSE, or operation errors occur, (INT_TO_BCD_E)
 - (E.g.) When operation errors occur

- (2) The program that converts DINT type data input from input variable IN to BCD type data, and output the data from output variable OUT.
 - a) Basic program example (DINT TO BCD)

4 - 10 4 - 10

4.1.5 INT/DINT Type \rightarrow WORD Type Conversion (INT_TO_WORD (_E), DINT_TO_WORD (_E))

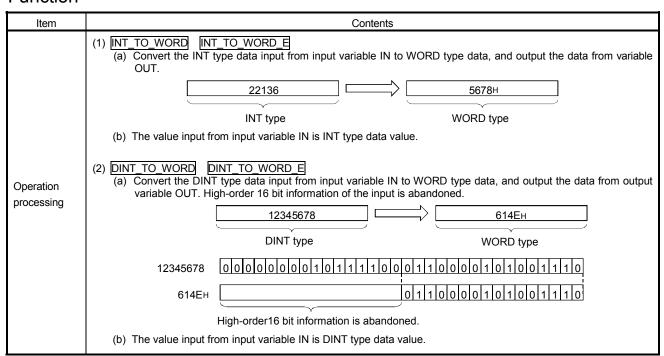
Function	FBD parts			
INT_TO_WORD DINT_TO_WORD	(With EN/ENO pins)			
INT_TO_WORD_E DINT_TO_WORD_E	IN OUT Indicates INT, DINT			

With EN/ENO pins	0
Overload	1
Input pin number	
changeable (range)	

Function overview: Converts data type INT/DINT to WORD

Function/ FB classification name: Type conversion function

Input and Output Pins


(1) INT_TO_WORD INT_TO_WORD_E

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
прис	IN	Input variable	INT	Input
0.44	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	WORD	Output

(2) DINT TO WORD DINT TO WORD E

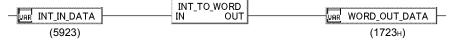
Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input	IN	Input variable	DINT	Input
0.44	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	WORD	Output

Function

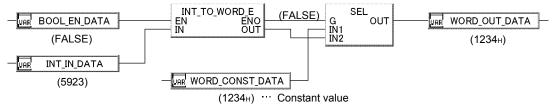
4 - 11 4 - 11

	Contents				
	(1) Functions without EN/ENO pins Execute operation processing. Output the operation output value from OUT pin.				
(2) Functions with EN/ENO pins Execution conditions and operation results are as follows:					
Execution condition Operation result					
	EN	ENO	OUT		
	TRUE (Operation execution)	TRUE	Operation output value		
FALSE (Operation stop) FALSE (*) Inconsistent value					
	(2) Fu	Execute operation processing. Output the (2) Functions with EN/ENO pins Execution conditions and operation resu Execution condition EN TRUE (Operation execution)	(1) Functions without EN/ENO pins Execute operation processing. Output the operation output va (2) Functions with EN/ENO pins Execution conditions and operation results are as follows: Execution condition EN ENO TRUE (Operation execution) TRUE	(1) Functions without EN/ENO pins Execute operation processing. Output the operation output value from OUT pin. (2) Functions with EN/ENO pins Execution conditions and operation results are as follows: Execution condition	

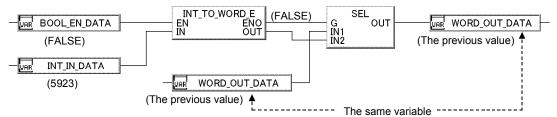
POINT

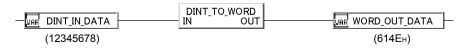

Information on the high-order 16 bits of the DINT type data input from input variable IN is abandoned while executing DINT_TO_WOED_(E)

Error


There is no operation error caused by INT TO WORD(E), DINT TO WORD(E).

Program Example


- (1) The program that converts INT data input from input variable IN into WORD data, and output the data from output variable OUT.
 - (a) Basic program example (INT TO WORD)


(b) The program example that outputs constant value when input variable EN is FALSE, (INT_TO_WORD_E)

(c) The program example that outputs the previous value when input variable EN is FALSE, (INT_TO_WORD_E)

- (2) The program that converts DINT data input from input variable IN into WORD data, and output the data from output variable OUT.
 - (a) Basic program example (DINT_TO_WORD)

4 - 12 4 - 12

4.1.6 INT/DINT Type \rightarrow DWORD Type Conversion (INT_TO_DWORD(_E), DINT_TO_DWORD(_E))

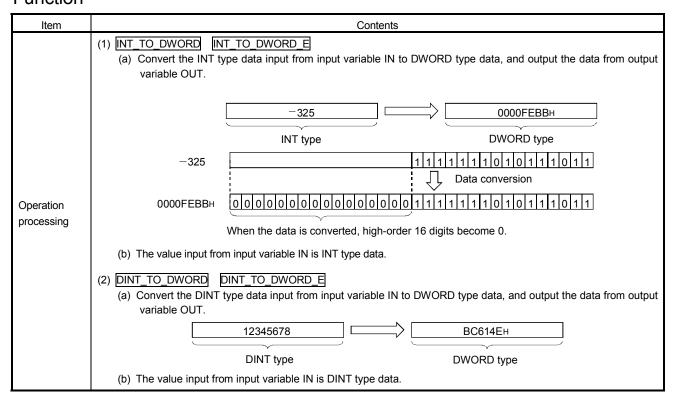
Function	FBD parts		
INT_TO_DWORD DINT_TO_DWORD INT_TO_DWORD_E	(With EN/ENO pins)		
DINT_TO_DWORD_E	Indicates INT, DINT		

With EN/ENO pins	0
Overload	ı
Input pin number changeable (range)	_

Function overview: Converts data type INT/DINT to DWORD.

Function/ FB classification name: Type conversion function

Input and Output Pins

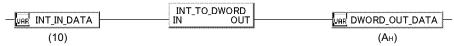

(1) INT_TO_DWORD INT_TO_WORD_E

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
put	IN	Input variable	INT	Input
O. store st	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	DWORD	Output

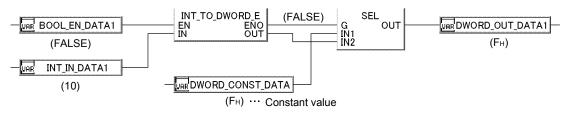
(2) DINT TO DWORD DINT TO DWORD E

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
	IN	Input variable	DINT	Input
Outnut	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	DWORD	Output

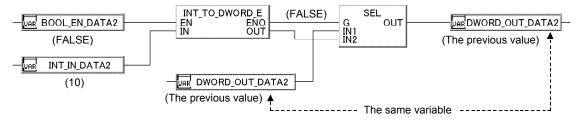
Function

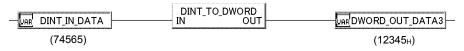

4 - 13 4 - 13

Item		Contents			
	(1) F				
Onovetion		Execution condition	(
Operation results	ion	EN	ENO	OUT	
resuits		TRUE (Operation execution)	TRUE	Operation output value	
		FALSE (Operation stops)	FALSE (*)	Inconsistent value	
		* When the output of ENO pins is FA In this case, please do not use the	•	· ·	etent value.


There is no operation error caused by INT_TO_DWORD(_E), DINT_TO_DWORD(_E)

Program Example


- (1) The program that converts INT type data input from input variable IN to DWORD type data, and output the data from output variable OUT.
 - (a) Basic program example (INT_TO_DWORD)


(b) The program example that outputs constant value when input variable EN is FALSE, (INT_TO_DWORD_E)

(c) The program example that outputs the previous value when input variable EN is FALSE, (INT TO DWORD E)

- (2) The program that converts DINT type data input from input variable IN to DWORD type data, and output the data from output variable OUT.
 - (a) Basic program example (DINT_TO_DWORD)

4 - 14 4 - 14

4.1.7 INT/DINT Type → BOOL Type Conversion (INT_TO_BOOL(_E), DINT_TO_BOOL(_E))

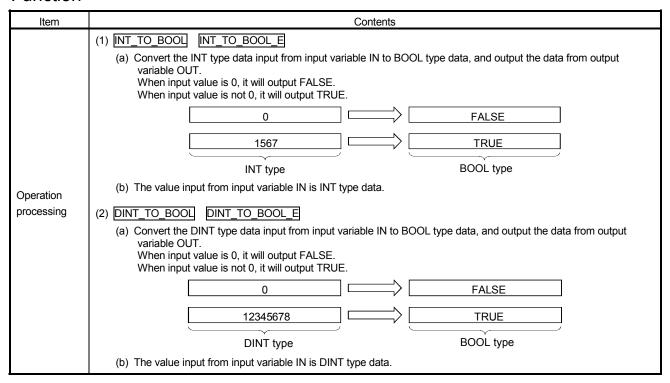
Function	FBD parts		
INT_TO_BOOL DINT_TO_BOOL INT_TO_BOOL_E DINT_TO_BOOL_E	(With EN/ENO pins)		

With EN/ENO pins	0
Overload	_
Input pin number changeable (range)	

Function overview: Converts data type INT/DINT to BOOL.

Function/ FB classification name: Type conversion function

Input and Output Pins

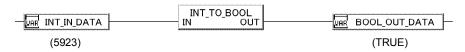

(1) INT_TO_BOOL INT_TO_BOOL_E

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
	IN	Input variable	INT	Input
Output	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	BOOL	Output

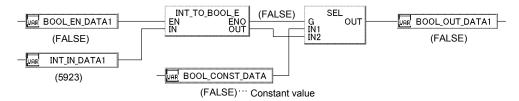
(2) DINT TO BOOL DINT TO BOOL E

Pin	Variable name	Variable type	Data type	Contents	
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)	
	IN	Input variable	DINT	Input	
Output	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)	
Output	OUT	Output variable	BOOL	Output	

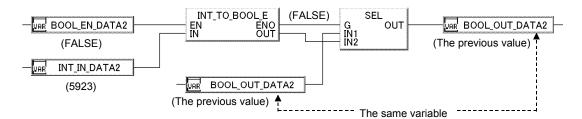
Function

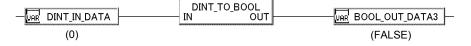

4 - 15 4 - 15

Item	em Contents								
	(1) F (2) F								
Operation		Execution condition EN	Opera ENO	ation result OUT					
results		TRUE (Operation execution)	TRUE	Operation output value					
		FALSE (Operation stop)	FALSE (*)	Inconsistent value					
		* When the output of ENO pins is FA In this case, please do not use the			stent value.				


There is no operation error caused by INT_TO_BOOL (_E), DINT_TO_BOOL (_E)

Program Example


- (1) The program that converts INT type data input from input variable IN to BOOL type data, and output the data from output variable OUT.
 - (a) Basic program example (INT TO BOOL)


(b) The program example that outputs constant value when input variable EN is FALSE, (INT TO BOOL E)

(c) The program example that outputs the previous value when input variable EN is FALSE, (INT_TO_BOOL_E)

- (2) The program that converts DINT type data input from input variable IN to BOOL type data, and output the data from output variable OUT.
 - (a) Basic program example (DINT TO BOOL)

4 - 16 4 - 16

4.1.8 REAL Type → INT/DINT Type Conversion (REAL_TO_INT(_E), REAL_TO_DINT(_E))

Function	FBD parts		
	(With EN/ENO pins)		
REAL _TO_ INT REAL _TO_ DINT	REAL_TOE IN OUT EN ENO		
REAL_TO_INT_E REAL_TO_DINT_E	IN OUT Indicates INT, DINT		

With EN/ENO pins	0
Overload	
Input pin number changeable (range)	_

Function overview: Converts data type REAL to INT/DINT.

Function/ FB classification name: Type conversion function

Input and Output Pins

(1) REAL_TO_INT REAL_TO_INT_E

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
	IN	Input variable	REAL	Input
Output	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	INT	Output

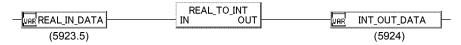
(2) REAL_TO_DINT REAL_TO_DINT_E

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
IIIput	IN	Input variable	REAL	Input
Output	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	DINT	Output

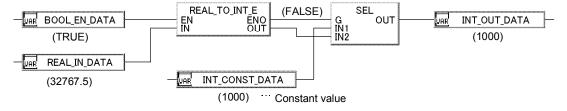
Function

Item	Contents	
Operation processing	(1) REAL_TO_INT REAL_TO_NT_E (a) Convert the REAL type data input from input variable IN to INT type data, and output the data from covariable OUT. 1234.0 REAL type (b) The value input from input variable IN is REAL type data, its range is -32768 to 32767. (c) The converted data is the value that comes from rounding up REAL type data's first digit after the decimal point. (2) REAL_TO_DINT REAL_TO_DINT_E (a) Convert the REAL type data input from input variable IN to DINT type data, and output the data from outpower variable OUT. 16543521.0 REAL type DINT type (b) The value input from input variable IN is REAL type data, its range is -2147483648 to 2147483647. (c) The converted data is the value that comes from rounding up REAL type data's first digit after the decimal point.	oint.

4 - 17 4 - 17


Functions without EN/ENO pins The operation results are as follows Operation result No operation error Operation error occur Functions with EN/ENO pins Execution conditions and operation	OUT Operation output value Inconsistent value	
No operation error Operation error occur Functions with EN/ENO pins	Operation output value Inconsistent value	
Operation error occur Functions with EN/ENO pins	Inconsistent value	
Functions with EN/ENO pins		
•	roculte are as follows:	
Execution condition	1	on result
EN	ENO	OUT
	TRUE (No operation error)	Operation output value
TRUE (Operation execution)	FALSE (Operation error occur) (*)	Inconsistent value
FALSE (Operation stop)	FALSE (*)	Inconsistent value
	TRUE (Operation execution) FALSE (Operation stop) * When the output of ENO pins is	EN ENO TRUE (No operation error) TRUE (Operation execution) FALSE (Operation error occur) (*)

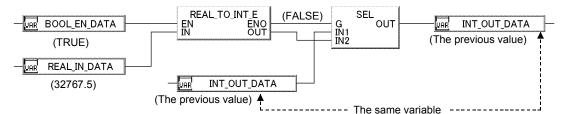
Error may occur in the following case, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.


- REAL_TO_INT(_E): When input value is in the range other than -32768 to 32767 (Error code: 4100)
- REAL_TO_DINT(_E): When input value is in the range other than -2147483648 to 2147483647 (Error code: 4100)

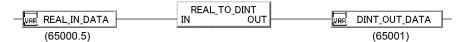
Program Example

- (1) The program that converts REAL type data input from input variable IN to INT type data, and output the data from output variable OUT.
 - (a) Basic program example. (REAL_TO_INT)

- (b) The program example that outputs constant value when input variable EN is FALSE, or operation errors occur. (REAL_TO_INT_E)
 - (E.g.) When operation errors occur



4 - 18 4 - 18


(c) The program example that outputs the previous value when input variable EN is FALSE.

(REA_TO_INT_E)

(E.g.) When operation errors occur

- (2) The program that converts REAL type data input from input variable IN to DINT type data, and output the data from output variable OUT.
 - (a) Basic program example (REAL_TO_DINT)

4 - 19 4 - 19

4.1.9 BCD Type → INT/DINT Type Conversion (BCD_TO_INT(_E), BCD_TO_DINT(_E))

Function	FBD parts	With EN/ENO pir
BCD TO INT	(With EN/ENO pins) BCD TO □ BCD TO □ E	Overload
BCD_TO_INT BCD_TO_INT_E BCD_TO_DINT_E	IN OUT EN ENO IN OUT IN OUT	Input pin number changeable (rang
Function overview: Converts	data type RCD to INT/DINT	

With EN/ENO pins

Overload

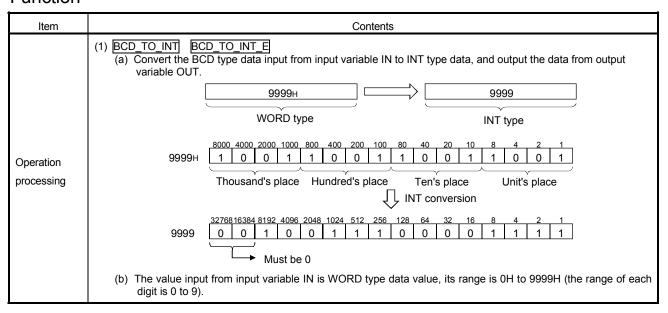
Input pin number changeable (range)

—

Function overview: Converts data type BCD to INT/DINT.

Function/ FB classification name: Type conversion function

Input and Output Pins


(1) BCD_TO_INT BCD_TO_INT_E

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input	IN	Input variable	WORD	Input
0	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	INT	Output

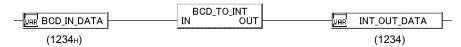
(2) BCD_TO_DINT BCD_TO_DINT_E

Pin	Variable name	Variable type	Data type	Contents	
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)	
Input	IN	Input variable	DWORD	Input	
0.44	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)	
Output	OUT	Output variable	DINT	Output	

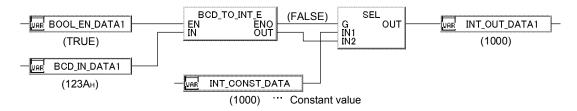
Function

4 - 20 4 - 20

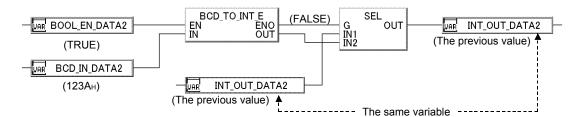
Item	Contents								
	(2) BCD_TO_DINT BCD_TO_DINT_E (a) Convert the BCD type data input from input variable IN to BCD type data, and output the data from output variable OUT.								
		99999999н 💮	9999999						
		DWORD type	DINT type						
Operation processing	99999999 100 0 0 0 0 Must b	place thousand's thousand's place place place place place place	1 1 0 0 1 1 0 0 1 1 0 0 1 and's Hundred's Ten's place place conversion 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	e of each digit					
	(1) Functions without EN/ENO pins The execution results are as fo	lows:							
	Execution result	OUT							
	No operation error	Operation output value							
	Operation error occur	Inconsistent value							
Operation results	(2) Functions with EN/ENO pins Execution conditions and Exec	ution results are as follows:							
	Execution condition	Operation :	result						
	EN	ENO	OUT						
	TRUE (Operation execution)	TRUE (No operation error)	Operation output value						
	THOE (Operation excedition)	FALSE (Operation error occur) (*)	Inconsistent value						
	FALSE (Operation stop)	FALSE (*)	Inconsistent value						
		s FALSE, the data output from OUT pin e data output from OUT pins for progran							

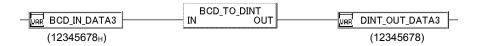

Error may occur in the following case, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

• The value of each digit of the input value is in the range other than 0 to 9. (Error code: 4100)


4 - 21 4 - 21

Program Example


- (1) The program that converts BCD type data input from input variable IN to INT type data, and output the data from output variable OUT.
 - (a) Basic program example (BCD TO INT)


(b) The program example that outputs constant value when input variable EN is FALSE, or operation errors occur, (BCD_TO_INT_E)

(c) The program example that outputs the previous value when input variable EN is FALSE, (BCD TO INT E)

- (2) The program that converts BCD type data input from input variable IN into DINT type data, and output the data from output variable OUT.
 - (a) Basic program example (BCD_TO_DINT)

4 - 22 4 - 2

4.1.10 WORD Type \rightarrow INT/DINT Type Conversion (WORD_TO_INT(_E), WORD_TO_DINT(_E))

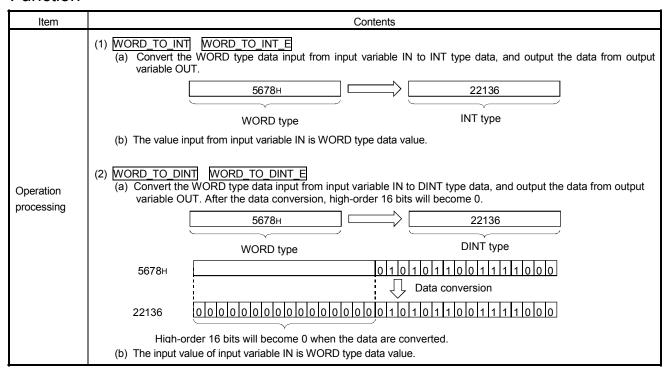
Function	FBD parts		
WORD _TO_ INT WORD _TO_ DINT	(With EN/ENO pins) WORD_TO_□		
WORD _TO _ INT _E WORD _TO _DINT _E	IN OUT Indicates INT, DINT		

With EN/ENO pins	0
Overload	_
Input pin number changeable (range)	_

Function overview: Converts data type WORD to INT/DINT.

Function/ FB classification name: Type conversion function

Input and Output Pins

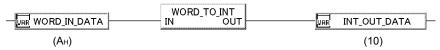

(1) WORD_TO_INT WORD_TO_INT_E

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
input	IN	Input variable	WORD	Input
Outout	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	INT	Output

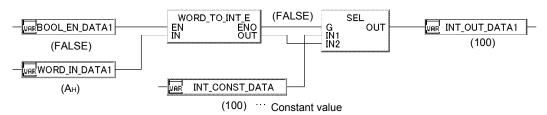
(2) WORD TO DINT WORD TO DINT E

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
прас	IN	Input variable	WORD	Input
O	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	DINT	Output

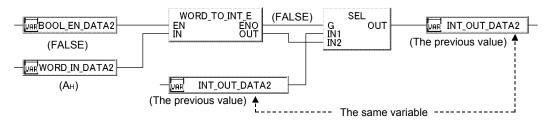
Function

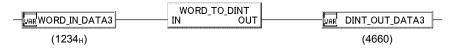

4 - 23 4 - 23

Item	Contents					
	 (1) Functions without EN/ENO pins Execute operation processing. Output the operation output value from OUT pin. (2) Functions with EN/ENO pins Execution conditions and operation results are as follows: 					
Operation results		Execution condition Operation result EN ENO OUT				
TRUE (Operation execution) TRUE Operation output value FALSE (Operation stop) FALSE (*) Inconsistent value						
	* When the output of ENO pins is FALSE, the data output from OUT pins will be inconsistent value. In this case, please do not use the output data from OUT pins for program processing.					

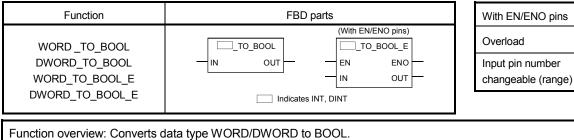

There is no operation error caused by WORD_TO_INT(_E), WORD_TO_DINT(_E).

Program Example


- (1) The program that converts WORD type data input from input variable IN to INT type data, and output the data from output variable OUT
 - (a) Basic program example (WORD_TO_INT)


(b) The program example that outputs constant value when input variable EN is FALSE, or operation errors occur (WORD_TO_INT_E)

(c) The program example that outputs the previous value when input variable EN is FALSE (WORD_TO_INT_E)


- (2) The program that converts WORD type data input from input variable IN to DINT type data, and output the data from output variable OUT
 - (a) Basic program example (WORD TO DINT)

4 - 24 4 - 24

 \bigcirc

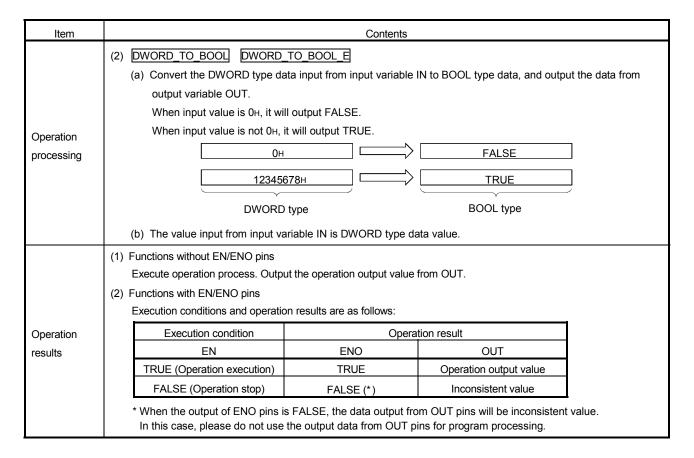
4.1.11 WORD/DWORD Type → BOOL Type Conversion (WORD TO BOOL(E), DWORD_TO_BOOL(_E))

Function/ FB classification name: Type conversion function

Input and Output Pins

(1) WORD_TO_BOOL WORD_TO_BOOL_E

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
прис	IN	Input variable	WORD	Input
0.44	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	BOOL	Output

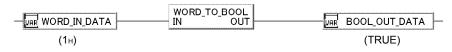

DWORD_TO_BOOL_E (2) DWORD_TO_BOOL

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
mput	IN	Input variable	DWORD	Input
O. start at	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	BOOL	Output

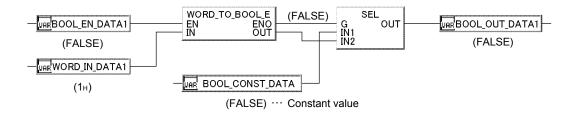
Function

Item	Contents					
Operation processing	(1) WORD_TO_BOOL WORD_TO_BOOL_E (a) Convert the WORD type data input from input variable IN to BOOL type data, and output the data from output variable OUT. When input value is 0н, it will output FALSE. When input value is not 0н, it will output TRUE.					

4 - 25 4 - 25

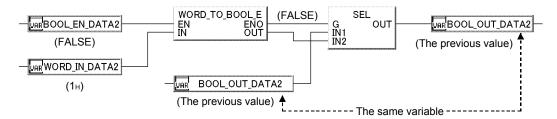


Frror


There is no operation error caused by WORD_TO_BOOL (_E), DWORD_TO_BOOL (_E).

Program Example

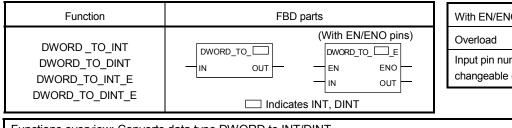
- (1) The program that converts WORD type data input from input variable IN to BOOL type data, and output the data from output variable OUT.
 - (a) Basic program example (WORD_TO_BOOL)



(b) The program example that outputs constant value when input variable EN is FALSE (WORD_TO_BOOL_E)

4 - 26 4 - 26

(c) The program example that outputs the previous value when input variable EN is FALSE (WORD_TO_BOOL_E)



- (2) The program that converts DWORD type data input from input variable IN to BOOL type data, and output the data from output variable OUT
 - (a) Basic program example (DWORD_TO_BOOL)

4 - 27 4 - 27

4.1.12 DWORD Type → INT/DINT Type Conversion (DWORD TO IN(E), DWORD_TO_DINT(_E))

With EN/ENO pins	0
Overload	_
Input pin number changeable (range)	_

Functions overview: Converts data type DWORD to INT/DINT.

Function/FB classification name: Type conversion function

Input and Output Pins

(1) DWORD_TO_INT DWORD_TO_INT_E

Pin	Variable name	Variable type	Data type	Contents
lanut	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input	IN	Input variable	DWORD	Input
0.44	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	INT	Output

(2) DWORD_TO_DINT DWORD_TO_DINT_E

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
IIIput	IN	Input variable	DWORD	Input
Output	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	DINT	Output

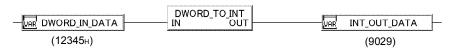
Function

Item	Contents						
	(1) DWORD_TO_INT DWORD_TO_INT_E						
	(a) Convert the DWORD type data input from the input variable IN to INT type and output from output variable OUT. High-order 16 bit information of the input is abandoned.						
	BC614EH						
	DWORD type INT type						
	BC614EH 000000010111110001110000101010011110						
Operation	24910 0110000101100						
Processing	The high-order 16 bit information of the input is abandoned. (b) The input value of input variable IN is DWORD type data.						
	(2) DWORD_TO_DINT DWORD_TO_DINT_E						
	(a) Convert the Data of DWORD type input from input variable IN to DINT type data and output from output variable OUT.						
	BC614EH 12345678						
	DWORD type DINT type						
	(b) The input value of input variable IN is DWORD type data.						

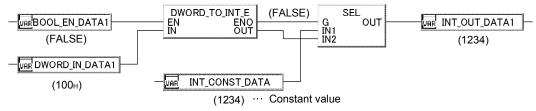
4 - 28 4 - 28

Item		Contents			
	(1) Functions without EN/ENO pins				
o "		Execution conditions and operation results are as follows:			
Operation		Executing condition	Operation result		1
results		EN	ENO	OUT	
		TRUE (Operation execution)	TRUE	Operation output value	
		FALSE (Operation stop)	FALSE (*)	Indefinite value	
		* When the output of ENO pins is FALSE, the data output from OUT pins will be indefinite value. In this case, please do not use the output data from OUT pins for program processing.			

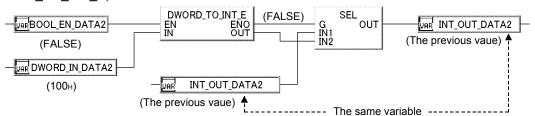
PΩ	NIT


High-order 16 bit information of the DWORD type data input from input variable IN is abandoned in executing DWORD TO INT (E)

Error


There is no operation error caused by DWORD_TO_INT(_E) and DWORD_TO_DINT(_E).

Program Example


- (1) The program that converts DWORD type data input from input variable IN to INT type data and output from output variable OUT.
 - (a) Basic program example (DWORD TO INT)


(b) The program example that outputs constant value when input variable EN is FALSE. (DWORD TO INT E)

(c) The program example that outputs previous value when input variable EN is FALSE.(DWORD TO INT E)

- (2) The program that converts DWORD type data input from input variable IN to DINT type data, and output from output variable OUT.
 - (a) Basic program example (DWORD TO DINT)

4 - 29 4 - 29

4.1.13 WORD Type → DWORD Type Conversion (WORD_TO_DWORD (_E))

Function	FBD parts		
WORD_TO_DWORD WORD_TO_DWORD_E	(With EN/ENO pins) WORD_TO_DWORD IN OUT EN ENO IN OUT		

With EN/ENO pins	0
Overload	1
Input pin number	
changeable (range)	

Functions overview: Converts data type WORD to DWORD.

Function/FB classification name: Type conversion function

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
input	IN	Input variable	WORD	Input
Outroot	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	DWORD	Output

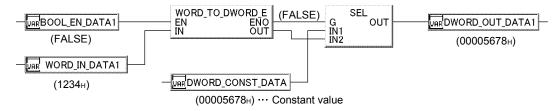
Function

Item	Contents					
	(1) Convert the WORD type data from input variable IN to DWORD type data and output it from output variable OUT					
	After the conversion the 16 high-order bits become 0.					
Operation	5678H 00005678H					
processing	WORD type DWORD type					
	(2) The value input from input variable IN is WORD type data.					
	(1) Functions without EN/ENO pins Execute operation processing. Output the operation output value from OUT pin.					
	·					
	·					
Operation	Execute operation processing. Output the operation output value from OUT pin. (2) Functions With EN/ENO pins					
	Execute operation processing. Output the operation output value from OUT pin. (2) Functions With EN/ENO pins Execution conditions and operation results are as follows:					
Operation results	Execute operation processing. Output the operation output value from OUT pin. (2) Functions With EN/ENO pins Execution conditions and operation results are as follows: Execution condition Operation result					

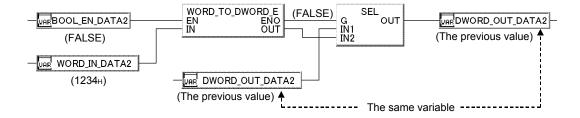
Error

There is no operation error caused by WORD_TO_DWORD (_E).

4 - 30 4 - 30


Program Example

The program that converts WORD type data input from variable IN to DWORD type data, and output from output variable OUT.


(1) Basic program example (WORD TO DWORD)

(2) The program example that outputs constant value when input variable EN is FALSE. (WORD_TO_DWORD_E)

(3) The program example that outputs previous value when input variable EN is FALSE. (WORD_TO_DWORD_E)

4 - 31 4 - 31

4.1.14 DWORD Type \rightarrow WORD Type Conversion (DWORD_TO_WORD(_E))

Function	FBD parts		
DWORD_TO_WORD DWORD_TO_WORD_E	(With EN/ENO pins) DWORD_TO_WORD IN OUT OUT OUT OUT		

With EN/ENO pins	0
Overload	
Input pin number changeable (range)	

Functions overview: Converts data type DWORD to WORD.

Function/FB classification name: Type conversion function

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
iliput	IN	Input variable	DWORD	Input
Outroot	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	WORD	Output

Function

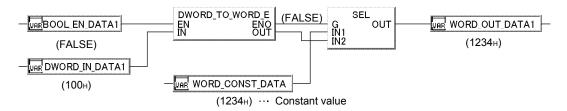
Item	Contents					
	(1) Convert the DWORD type data input from input variable IN to WORD type data and output from variable OUT. High-order 16 bit information of the input is abandoned					
	12345678н 5678н					
	DWORD Type WORD Type					
Operation processing	1 2 3 4 5 6 7 12345678H 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0					
	The high-order 16 bit information of the input are abandoned					
	(2) The data input from input variable IN is DWORD type data. (1) Functions without EN/ENO pins					
	Execute operation processing. Output the operation output value from OUT pin.					
	(2) Functions With EN/ENO pins					
	Execution conditions and operation result are as follows:					
Operation	Execution condition Operation result					
esults	EN ENO OUT					
	TRUE (Operation execution) TRUE Operation output value					
	FALSE (Operation stop) FALSE (*) Indefinite value					
	* When the output of ENO pins is FALSE, the data output from OUT pins will be indefinite value of the output data from OUT pins for program processing.					

POINT

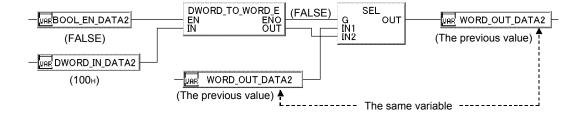
High-order 16 bit information of the DWORD type data input from input variable IN is abandoned in executing DWORD_TO_ WORD (_E)

4 - 32 4 - 32

There is no operation error caused by DWORD_TO_WORD (_E)


Program Example

The program that converts DWORD type data input from input variable IN to WORD type data, and output from output variable OUT


(1) Basic program example (DWORD_TO_WORD)

(2) The program example that outputs constant value when input variable EN is FALSE. (DWORD_TO_WORD_E)

(3) The program example that outputs previous value when input variable EN is FALSE. (DWORD_TO_WORD_E)

4 - 33 4 - 33

4.1.15 INT/DINT Type \rightarrow STRING Type Conversion (INT_TO_STRING(_E), DINT_TO_STRING(_E))

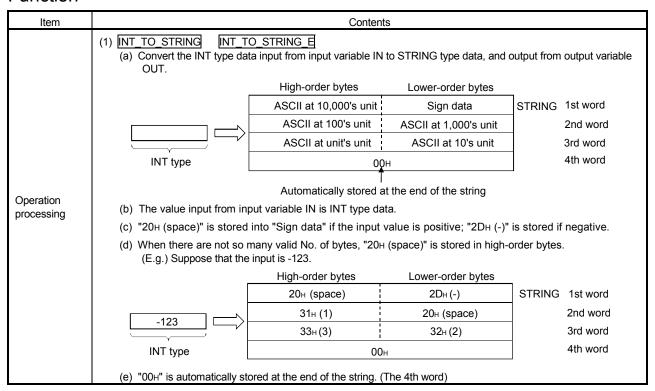
Function	FBD parts
INT_TO_STRING DINT_TO_STRING INT_TO_STRING_E DINT_TO_STRING_E	(With EN/ENO pins)

With EN/ENO pins	0
Overload	_
Input pin number changeable (range)	

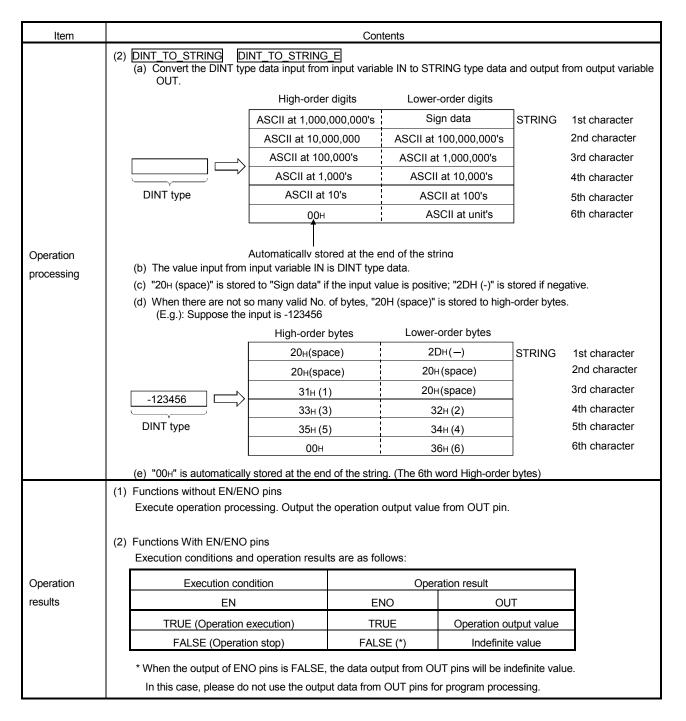
Functions overview: Converts data type INT/DINT to STRING

Function/FB classification name: Type conversion function

Input and Output Pins


(1) INT_TO_STRING INT_TO_STRING_E

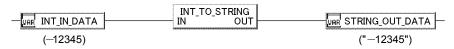
Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
iliput	IN	Input variable	INT	Input
Output	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	STRING (6)	Output


(2) DINT_TO_STRING DINT_TO_STRING_E

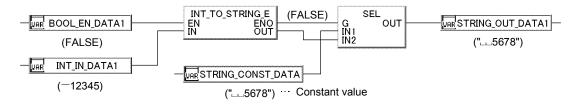
Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
iliput	IN	Input variable	DINT	Input
Output	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	STRING (11)	Output

Function

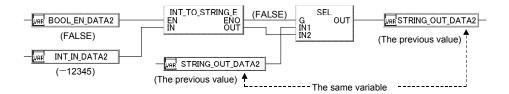
4 - 34 4 - 34

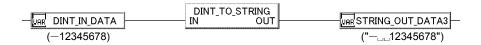


There is no operation error caused by INT_TO_STRING(_E), DINT_TO_STRING(_E).


4 - 35 4 - 35

Program Example


- (1) The program that converts the INT type data input from input variable IN to STRING type data, and output from the output variable OUT
 - (a) Basic program example. (INT_TO_STRING)


(b) The program example that output constant value when input variable EN is FALSE (INT_TO_STRING_E)

The program example that outputs previous value when input variable EN is FALSE (INT_TO_STRING_E)

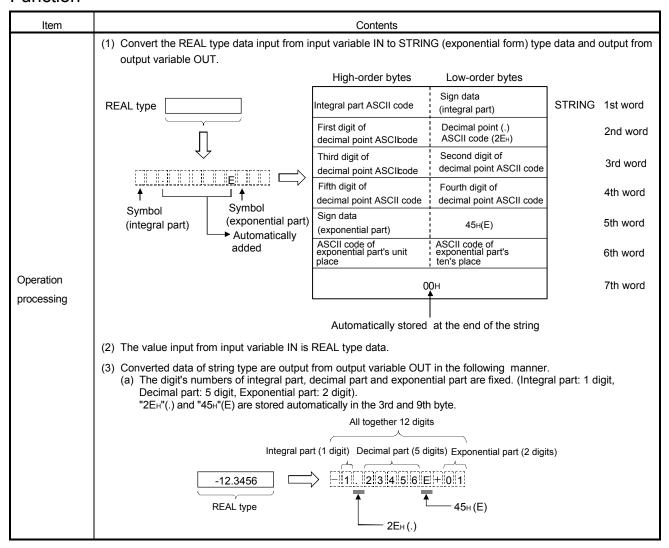
- (2) The program that converts the DINT type data input from input variable IN to STRING type data and output from the output variable OUT
 - (a) Basic program example (DINT_TO_STRING)

4 - 36 4 - 36

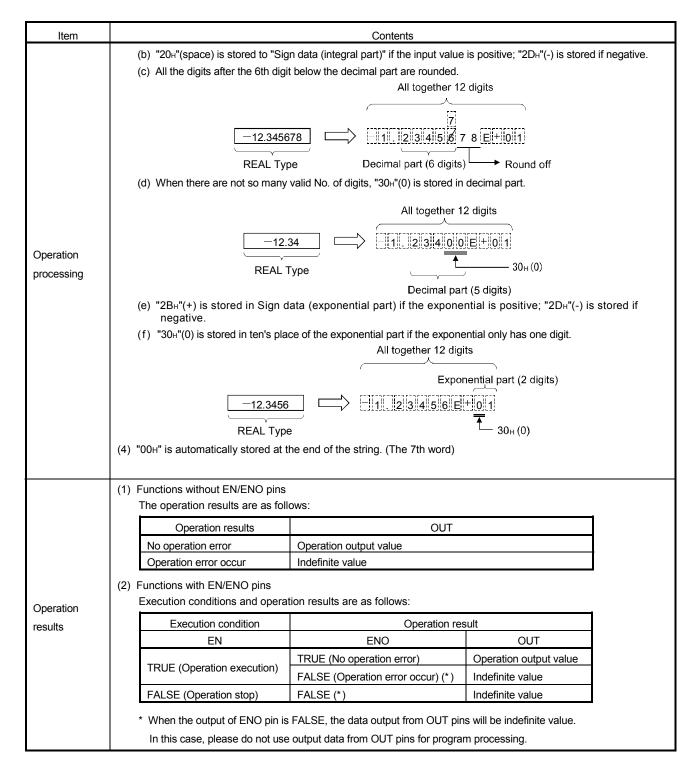
4.1.16 REAL Type → STRING Type (Exponent Form) Conversion (REAL_TO_STRING(_E))

Function	FBD parts				
	(With EN/ENO pins)				
REAL_TO_STRING REAL_TO_STRING_E	REAL_TO_STRING_E				
	IN OUT - EN ENO -				
	IN OUT				

With EN/ENO pins	0
Overload	
Input pin number changeable (range)	l


Functions overview: Converts data type REAL to STRING (Exponent form).

Function/FB classification name: Type conversion function

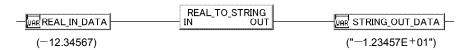

Input and Output Pins

Lead pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute, FALSE: Stop)
'	IN	Input variable	REAL	Input
Output	ENO	Output variable	BOOL	Output status (TRUE: Normal, FALSE: Abnormal)
Output	OUT	Output variable	STRING (12)	Output

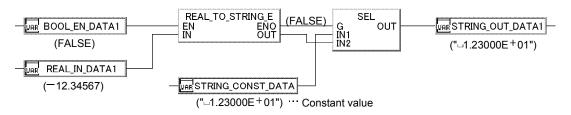
Function

4 - 37 4 - 37

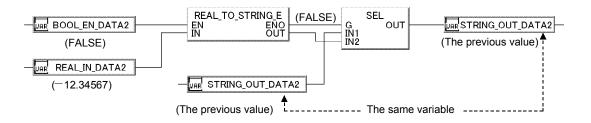
Error may occur in the following cases, and the error code will be displayed on the FBD program diagnosis screen of PX Developer programming tool.


• Input values other than "0" do not fall in the range of ±1.17549⁻³⁸ to ±3.40282⁺³⁸. (Error code: 4100)

4 - 38 4 - 38


Program Example

The program that converts the REAL type data input from input variable IN to STRING type data, and output from the output variable OUT. (Exponent form)


(1) Basic program example (REAL_TO_STRING).

- (2) The program example that outputs constant value when input variable EN is FALSE, or operation error occurs.(REAL_TO_STRING_E)
 - (E.g.) When the input variable EN is FALSE

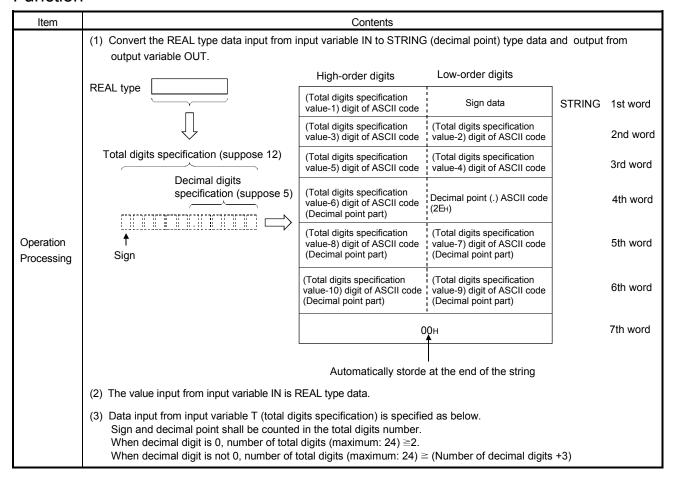
- (3) The program example that outputs the previous value when input variable EN is FALSE, or operation error occurs.(REAL_TO_STRING_E)
 - (E.g.) When the input variable EN is FALSE

4 - 39 4 - 39

4.1.17 REAL Type → STRING Type (Decimal Point Form) Conversion (REAL_TO_STRING_EX(_E))

Function	FBD parts		
REAL_TO_STRING_EX REAL_TO_STRING_EX_E	(With EN/ENO pins) REAL_TO_STRING_EX		

With EN/ENO pins	0
Overload	_
Input pin number changeable (range)	-


Functions overview: Converts data type REAL to STRING (Decimal Point Form).

Function/FB classification name: Type conversion function

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
	EN	Input variable	BOOL	Executing condition (TRUE: Execute, FALSE: Stop)
Input	IN	Input variable	REAL	Input
iliput	T	Input variable	INT	Total digits specification
	D	Input variable	INT	Decimal digits specification
Output	ENO	Output variable	BOOL	Output status (TRUE: Normal, FALSE: Abnormal)
Output	OUT	Output variable	STRING (24)	Output

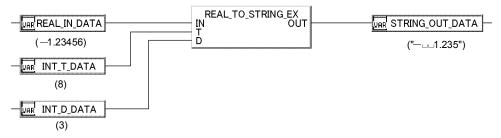
Function

4 - 40 4 - 40

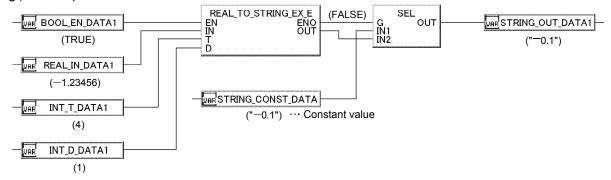
Item		Contents							
	(4) Data input from input variable D (decinumber of decimal digits ≦ (Number of	• • •	ranged between 0 and 7. (Make s	ure that					
	 (5) Converted data of string type are output from the output variable OUT in the following manner. (a) "20+"(space) is stored to sign data (integral part) if the input value is positive; "2D+"(-) is stored if negative. (b) If the decimal digits of a REAL type data exceed the valid range specified in decimal digits specification, the Low-order digits beyond the range are rounded off. 								
		Total digits							
	IN12.3456								
	T 8(Total digits) Decimal digits Decimal digits → Rounded off								
	(c) When decimal digit is set other that part.	n "0", "2E _H "(.) is automatically sto	red to the first digit after the specific	ed decimal					
	When decimal digit is "0", "2E _H "(.)	is not stored.							
		Total digits							
	IN -1.23456][3]						
Operation	T 8(Total dig	its)	——————————————————————————————————————						
processing	D 2(Decimal d	:-:4-)	Decimal digits Automatically added						
	(d) "20H"(space) is stored to each excess integral digit between sign digit and integral part when the total digits minus one digit for sign, one for decimal point and decimal digits for decimal part exceed the required digits for the REAL type integral part.								
	,, , , , ,	Total o	ligits						
	IN1.23456								
	T 8(Total digits) Decimal digits D 2(Decimal digits) Decimal digits								
	(e) When there are not so many valid No. of digits, "30⊦"(0) is stored to in decimal part. Total digits								
	1000 0000								
	IN								
	T 8(Total digits) 30H								
	D 2(Decimal digits) Decimal digits								
	(6) "00H" is automatically stored at the end of the string.								
	(1) Functions without EN/ENO pins.								
	Operation results are as follows:								
	Operation results	OUT							
	No operation error	Operation output value							
	Operation error occur Indefinite value								
Operation	(2) Functions With EN/ENO pins. Execution conditions and operation results are as follows:								
results	Executing condition	Operation							
	EN	ENO	OUT						
	TRUE (Operation execution)	TRUE (No operation error) FALSE (Operation error occurs)(*)	Operation output value Indefinite value						
	FALSE (Operation stop)	FALSE (*)	Indefinite value						
	* When the input to ENO is FALSE, data output from OUT pins will be Indefinite value. In this case, please do not use the output data from OUT pins for program processing.								

4 - 41 4 - 41

Operation error is incurred in the following condition. Error code will be displayed on FBD program diagnosis screen of PX developer programming tool.

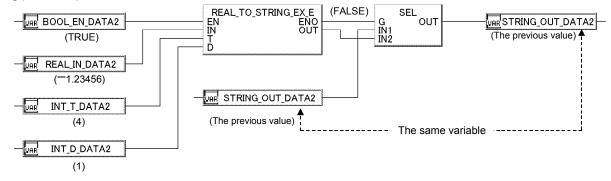

- Input values other than "0" do not fall in the range of ±1.17549⁻³⁸ to ±3.40282⁺³⁸. (Error code: 4100)
- Data input to the input variable IN exceeds length of string the total digits specified after type conversion.
- Data input to the input variable T (total digits specification) is beyond the valid range specified as below:
 (Error code: 4100)
 - When decimal digit is "0", number of total digits (maximum: 24) ≥2.
 - When decimal digit is not "0", number of total digits (maximum: 24) ≥ (Number of decimal digits +3)
- Data input to the input variable D (decimal digits specification) is beyond the valid range specified as below: (Error code: 4100)

Number of decimal digits does not exceed total digits minus 3


Program Example

The program converts the REAL type data input from input variable IN to STRING (decimal point) type data and output from the output variable OUT.

(1) Basic program example (REAL TO STRING EX)



- (2) The program example that outputs constant value when the input variable EN is FALSE, or operation error occurs. (REAL_TO_STRING_EX_E)
 - (E.g.) When operation errors occur

(3) The program example that outputs the previous value when the input variable EN is FALSE, or operation error occurs. (REAL TO STRING EX E)

(E.g.) When operation errors occur

4 - 42 4 - 42

4.1.18 STRING Type \rightarrow INT/DINT Type Conversion (STRING_TO_INT (_E), STRING_TO_DINT(_E))

Function	FBD parts			
	(With EN/ENO pins)			
STRING_TO_INT	STRING_TOE			
STRING_TO_DINT	IN OUT - EN ENO-			
STRING_TO_INT_E	IN OUT			
STRING_TO_DINT_E	☐ Indicates INT, DINT			

With EN/ENO pins	0
Overload	
Input pin number changeable (range)	

Functions overview: Converts data type STRING to INT/DINT

Function/FB classification name: Type conversion function

Input and Output Pins

(1) DWORD STRING_TO_INT STRING_TO_INT_E

Lead pin	Variable name	Variable type	Data type	Contents	
Innut	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)	
input	Input IN Input variable STRING		STRING (6)	Input	
0.44	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)	
Output	OUT	Output variable	INT	Output	

(2) STRING_TO_DINT STRING_TO_DINT_E

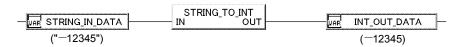
Lead pin	Variable name	Variable type	Data type	Contents
loout	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input	IN	Input variable	STRING (11)	Input
Outroot	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	DINT)	Output

Function

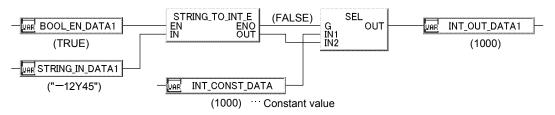
Item	Contents						
	(a) Data of STR	(1) STRING_TO_INT STRING_TO_INT_E (a) Data of STRING type input to input variable (IN) are converted into data of INT type and output from variable (OUT)					
	STRING 1st word 2nd word 3rd word	High-order byte	Low-order byte	_			
Operation		ASCII at 10,000's place	Sign data				
Processing		ASCII at 100's place	ASCII at 1,000's place				
		ASCII at unit's place	ASCII at 10's place				
	4th word	00H(indicates the en	d of the string)	INT type			
		data may be in the following range: "30H" to stween -32768 to 32767.					

4 - 43 4 - 43

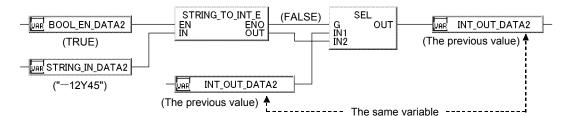
Item					Со	ntents		
	(2) STRING_TO_DINT STRING_TO_DINT_E (a) Convert the STRING type data input from input variable IN to DINT type data and output from the output variable OUT.							e output
		Hig			order digits	Lower-order digit	s	
		STRING	1st word	ASCII at 1,0	00,000,000's place	Sign data		
			2nd word	ASCII at 1	0,000,000's place	ASCII at 100,000,000's	s place	
			3rd word	ASCII at	100,000's place	ASCII at 1,000,000's	place	
Operation			4th word	ASCII a	t 1,000's place	ASCII at 10,000's pl	ace	
processing			5th word	ASCII	at 10's place	ASCII at 100's place	DINT ty	ре
			6th word		оон	ASCII at unit's pla	ce	
	(1)	 (b) Data input from input variable (IN) are of STRING type. ASCII of these data may be in the followi "30н" to "39н", "20н", "20н", "00н". Figure of STRING type should be ranged between -214748364 2147483647. (1) Functions without EN/ENO pins Operation results are as follows: 						
		One	ration result	te	O	JT		
		No operation error			output value			
		Operation error occur		Indefinite value				
Operation	(2)	Functions Wit Execution cor			results are as foll	ows:		_
results		Execu	ution conditi	on		Operation resu	ult	
			EN		l	ENO	OUT	
		TRUE (Or	peration exe	ecution)	TRUE (No	operation error)	Operation output value	
		11.02 (0)	ocidilori exe	,oution,	FALSE (Operation error occurs)(*)		Indefinite value	
		FALSE	(Operation	stop)	FA	LSE (*)	Indefinite value	J
	* When the output of ENO pins is FALSE, data output from OUT pins will be Indefinite value. In this case, please do not use the output data from OUT pins for program processing.						e, please do	


Operation error is incurred in the following condition. Error code will be displayed on FBD program diagnostic screen in PX developer programming tool.

- ACSII of the input is not "30H" to "39H", "20H", "2DH", "00H" (Error code: 4100)
- ACSII of the input is beyond the range specified as below: (Error code: 4100)
 STRING_TO_INT (_E): "-32768 to 32767"
 STRING_TO_DINT (_E): "-2147483648 to 2147483647"


4 - 44 4 4 4 4 4

Program Example


- (1) The program that converts STRING type data input from input variable IN to INT type data, and output from output variable OUT.
 - (a) Basic program example (STRING_TO_INT)

- (b) The program example that outputs constant value when input variable EN is FALSE, or operation error occurs. (STRING_TO_INT_E)
 - (E.g.) When operation errors occur

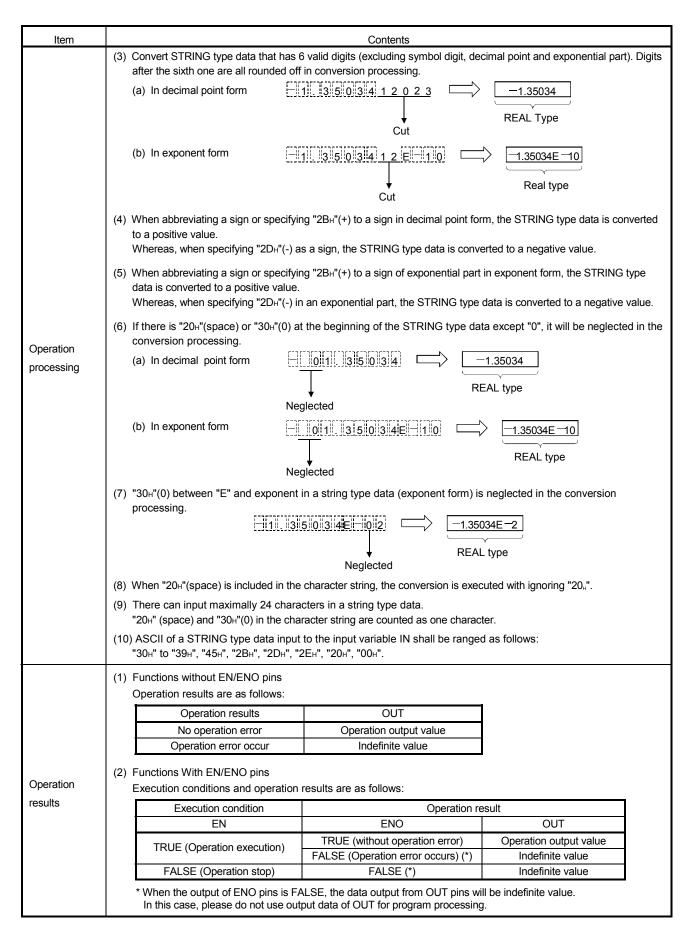
(c) The program example that outputs the previous value when input variable EN is FALSE, or operation error occurs. (STRING_TO_INT_E) (in case of operation error) (E.g.) When operation errors occur

- (2) The program that converts STRING type data input from input variable IN to DINT type data, and output from the output variable OUT
 - (a) Basic program example (STRING_TO_DINT)

4 - 45 4 - 45

$4.1.19 \; STRING \; Type \rightarrow REAL \; Type \; Conversion \; (STRING_TO_REAL(_E))$

Function	FBD parts	With EN/EN	IO pins)			
STRING TO REAL	(With EN/ENO pins) STRING_TO_REAL STRING_TO_REAL_E	Overload	=	_			
STRING_TO_REAL_E	IN OUT EN ENO IN OUT	Input pin nu changeable		_			
Functions overview: Converts data type STRING to REAL.							
Function/FB classification name: Type conversion function							


Input and Output Pins

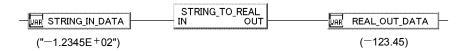
Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
iliput	IN	Input variable	STRING (12)	Input
Output	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	REAL	Output

Function

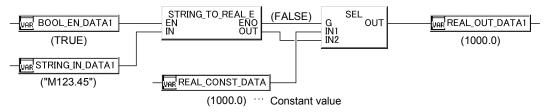
Item			Contents					
	(1) Convert the STRING OUT.	3 type data input from inpu	it variable IN to REAL type	e data, and output from output variable				
		High-order byte	Low-order byte					
	STRING 1st word	1st character ASCII code	Sign data					
	2nd word	3rd character ASCII code	2nd character ASCII code					
	3rd word	5th character ASCII code	4th character ASCII code					
	4th word	7th character ASCII code	6th character ASCII code					
	5th word	9th character ASCII code	8th character ASCII code	REAL type				
	6th word	11th character ASCII code	10th character ASCII code	NEAL type				
	7th word	00н (Implying th	e end of the string)					
		(2) Data of string type may be converted into real type of both decimal form and exponent form. (a) In decimal point form						
		High-order byte	Low-order byte					
	STRING 1st word	31H(1)	2DH (-)					
Operation	2nd word	33H (3)	2EH (.)					
processing	3rd word	30H (0)	35H(5)					
	4th word	34н (4)	33н (3)	<u>-1.35034</u>				
	5th word	00		REAL type				
	(b) In exponent form							
		High-order byte	Low-order byte					
	STRING 1st word	31H(1)	2DH ()					
	2nd word	33H(3)	2EH(.)					
	3rd word	30H(0)	35H (5)					
	4th word	34н (4)	33H (3)	☐ 1.35034E ☐ 10				
	5th word	2DH ()	45H (E)	REAL type				
	6th word	30H(0)	31H (1)	· ·				
	7th word	00						
		11. 350	3 4 E 1 0					

4 - 46 4 - 46

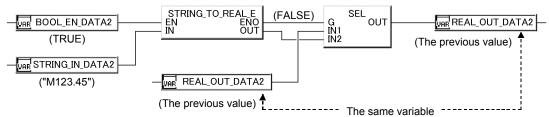
4 - 47 4 - 47


The following situation indicate operation error occurrence. In this case, error code will be displayed on the FBD program diagnosis screen of PX Developer programming tool.

- There is character of the integral/decimal part is beyond the range of "30H"(0) to "39H"(9). (Error code: 4100)
- There exists two or more "2EH"(.). (Error code: 4100)
- There is character whose exponential part is not "45H2BH"(E+), or "45H2DH"(E-), or there are several exponential parts. (Error code: 4100)
- Converted data is except 0 or does not fall in the range of ±1.17549⁻³⁸ to ±3.40282⁺³⁸.
 (Error code: 4100)
- There are no character or more than 24 characters. (Error code: 4100)


Program Example

The program that converts STRING type data input from input variable IN to REAL type data, and output from output variable OUT.


(1) Basic program example (STRING TO REAL)

- (2) The program example that outputs constant value when input variable EN is FALSE, or operation error occurs. (STRING_TO_REAL_E)
 - (E.g.) When operation errors occur

- (3) The program example that outputs the previous value when input variable EN is FALSE, or operation error occurs. (STRING_TO_REAL_E)
 - (E.g.) When operation errors occur

4 - 48 4 - 48

4.1.20 BOOL Type \rightarrow INT/DINT Type Conversion (BOOL_TO_INT(_E), BOOL_TO_DINT(_E))

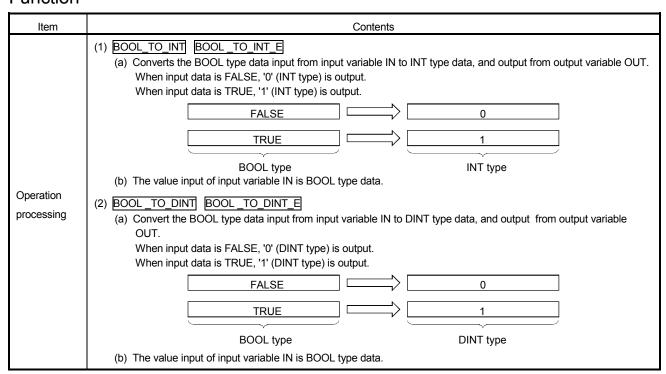
Function	FBD parts			
	(With EN/ENO pins)			
BOOL_TO_INT	BOOL_TOE			
BOOL_TO_DINT	-IN OUT - EN ENO -			
BOOL_TO_INT_E	IN OUT			
BOOL_TO_DINT_E	☐ Indicates INT, DINT			

With EN/ENO pins	0
Overload	
Input pin number changeable (range)	

Functions overview: Converts data type BOOL to INT/DINT.

Function/FB classification name: Type conversion function

Input and Output Pins


(1) BOOL_TO_INT BOOL_TO_INT_E

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
iriput	IN	Input variable	BOOL	Input
Output	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	INT	Output

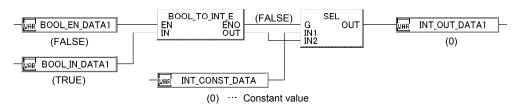
(2) BOOL TO DINT BOOL TO DINT E

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
IIIput	IN	Input variable	BOOL	Input
Output	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	DINT	Output

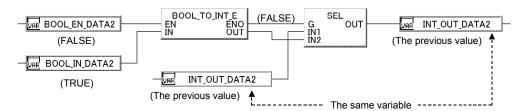
Function

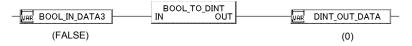

4 - 49 4 - 49

Item		Contents						
	 (1) Functions without EN/ENO pins. Execute operation processing and output the operation output value from OUT. (2) Functions With EN/ENO pins. Execution conditions and operation results are as follows: 							
Operation result		Execution condition EN	Oper ENO	ration result OUT				
		TRUE (Operation execution)	TRUE	Operation output value				
		FALSE (Operation stop)	FALSE (*)	Indefinite value				
	4	* When the output of ENO pins is FAL In this case, please do not use the ou		•	efinite value.			


There is no operation error caused by BOOL_TO_INT (_E), BOOL_TO_DINT (_E).

Program Example


- (1) The program that converts BOOL type data input from input variable IN to INT type data, and output from output variable OUT.
 - (a) Basic program example (BOOL TO INT)


(b) The program example that outputs constant value when input variable EN is FALSE. (BOOL_TO_INT_E)

(c) The program example that outputs the previous value when input variable EN is FALSE. (BOOL_TO_INT_E)

- (2) The program that converts BOOL type data input from input variable IN to DINT type data, and output from the output variable OUT.
 - (a) Basic program example (BOOL TO DINT)

4 - 50 4 - 50

4.1.21 BOOL Type \rightarrow WORD/DWORD Type Conversion (BOOL_TO_WORD(_E), BOOL_TO_DWORD (_E))

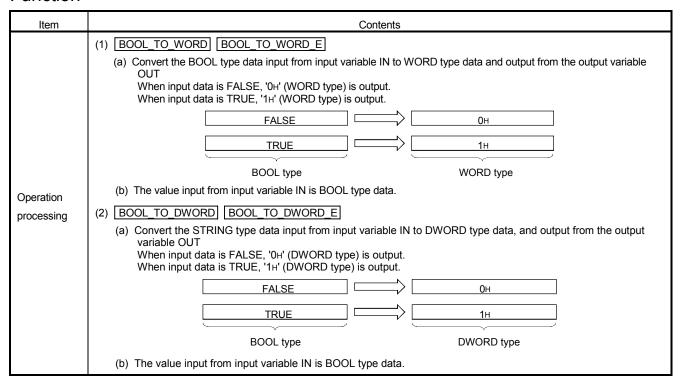
Function	FBD parts			
BOOL_TO_WORD	(With EN/ENO pins) BOOL_TOE			
BOOL_TO_DWORD BOOL_TO_WORD_E	IN OUT — EN ENO — IN OUT —			
BOOL_TO_DWORD_E	☐ Indicates WORD, DWORD			

With EN/ENO pins	0
Overload	ı
Input pin number changeable (range)	ı

Functions overview: Converts data type BOOL to WORD/DWORD.

Function/FB classification name: Type conversion function

Input and Output Pins

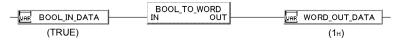

(1) BOOL_TO_WORD BOOL_TO_WORD_E

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
прис	IN	Input variable	BOOL	Input
Output	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	WORD	Output

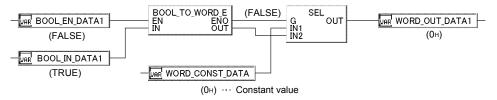
(2) BOOL TO DWORD BOOL TO DWORD E

Pin	Variable name	Variable type	Data type	Contents	
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)	
iliput	IN	Input variable	BOOL	Input	
Output	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)	
Output	OUT	Output variable	DWORD	Output	

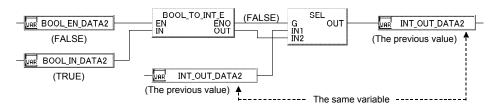
Function

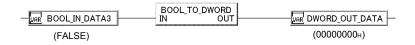

4 - 51 4 - 51

· ·			Contents			
	 (1) Functions without EN/ENO pins. Execute operation processing and output the operation output value from OUT pin. (2) Functions With EN/ENO pins. Execution conditions and operation results are as follows: 					
Operation result		Execution condition EN				
		TRUE (Operation Execution)	TRUE	Operation output value		
	FALSE (Operation stop) FALSE (*) Indefinite value					


There is no operation error caused by BOOL_TO_WORD (_E), BOOL_TO_DWORD (_E).

Program Example


- (1) The program that converts BOOL type data input from input variable IN to WORD type data, and output from output variable OUT.
 - (a) Basic program example (BOOL _TO_WORD)


(b) The program example that outputs constant value when input variable EN is FALSE. (BOOL_TO_WORD_E)

(c) The program example that outputs the previous value when the input variable EN is FALSE. (BOOL_TO_WORD_E)

- (2) The program that converts BOOL type data input from input variable IN to DWORD type data, and output from output variable OUT.
 - (a) Basic program example (BOOL_TO_DWORD)

4 - 52 4 - 52

4.2 Numerical Operation Function

4.2.1 Absolute Value (ABS(_E))

Function	FBD parts			
ABS ABS_E	(With EN/ENO pins) ABS IN OUT BNO IN OUT			

With EN/ENO pins	0
Overload	0
Input pin number changeable (range)	

Function overview: Output absolute value of input value.

Function/FB classification name: Numerical operation function

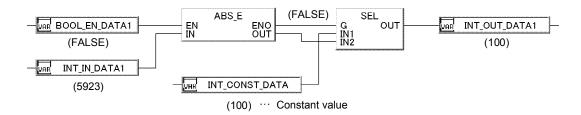
Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input			INT	
IIIput	IN	Input variable	DINT	Input
			REAL	
	ENO	Output variable	BOOL	Output condition (TRUE: Normal FALSE: Abnormal)
Outnut			INT	
Output	OUT	Output variable	DINT	Output
			REAL	

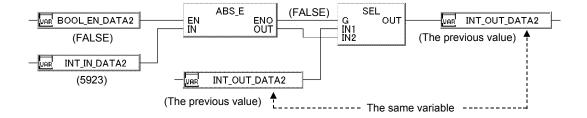
Function

Item	Contents					
Operation processing	 (1) Through the same data type as input variable IN from the output variable OUT, output the absolute value of INT/DINT/REAL type data that have been input from input variable IN. The following equality is enabled assuming that the input value is A and operation output value is B. B= A (2) The input value from input variable IN is of INT/DINT/REAL type data value (3) If the data type of input variable IN is INT type and the input value is –32768, the output value from the output variable OUT will be -32768. If the data type of input variable IN is DINT type and the input value is –2147483648, the output value from the output variable OUT will be -2147483648. (The operation processing is error-free. Additionally, in the case of ABS_E, the output value from output variable ENO will be TRUE.) 					
Operation	(1) Function without EN/ENO pins Execute operation processing and output operation output value from OUT. (2) Function With EN/ENO pins Execution condition and operation result are as follows: Operation result					
results		EN	ENO	OUT		
		TRUE (Operation execution)	TRUE	Operation output value		
		FALSE (Operation stop)	FALSE (*)	Indefinite value		
* When the output from ENO is FALSE, the output data from OUT will be indefinite value. In this case, please do not use output data from OUT in program processing.						

4 - 53 4 - 53


Program Example

In following program examples, the absolute value (of INT/DINT/REAL type data that are input from input variable IN through the same data type as input variable IN) is output from output variable OUT.


(1) Basic program example (ABS)

(2) The program example in which the output value is constant value when the input variable EN is FALSE. (ABS_E)

(3) The program example in which the output value is the previous one when the input variable EN is FALSE. (ABS_E)

4 - 54 4 - 54

4.2.2 Square Root (SQRT(_E))

Function	FBD parts		
SQRT SQRT_E	(With EN/ENO pins) SQRT IN OUT EN ENO IN OUT		

With EN/ENO pins	0
Overload	_
Input pin number changeable (range)	_

Function overview: Output square root of input value.

Function/FB classification name: Numerical operation function

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
Innut	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input	IN	Input variable	REAL	Input
Otmt	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	REAL	Output

Function

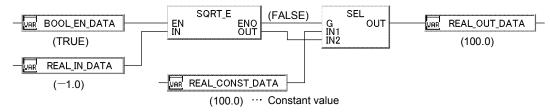
Item		Contents						
Operation processing	T	 (1) From output variable OUT, output the square root of the REAL type data that are input from input variable IN. The following equality is enabled assuming that the input value is A and the operation output value is B. B=√A (2) The input value of input variable IN is of REAL type within the range of positive number. 						
	, ,	Function without EN/ENO pins The operation result is as follows	:					
		Operation result	OUT					
		No operation error	Operation output value					
		Operation error occurs	Indefinite value					
	(2) Function with EN/ENO pins							
Operation	The execution condition and operation result are as follows:							
results		Execution condition	Operation re	sult				
		EN	ENO	OUT				
		TPLIE (Operation execution)	TRUE (No operation error)	Operation output value				
		TRUE (Operation execution)	TRUE (No operation error) FALSE (Operation error occurs) (*)	Operation output value Indefinite value				

Error

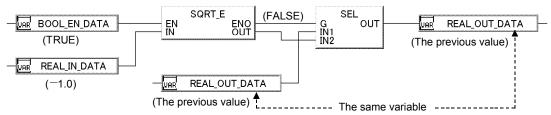
Following situations indicate operation error occurring, and the error codes will be displayed on the FBD program diagnostic screen of PX Developer programming tool.

• When the input value is negative number. (Error code: 4100)

4 - 55


Program Example

In following program examples, output the square root of REAL type data from output variable OUT that are input from input variable IN.


(1) Basic program example (SQRT)

- (2) The program example (SQRT_E) in which the output is constant value when the input variable EN is FALSE or operation error occurs.
 - (E.g.) When operation errors occur

- (3) The program example (SQRT_E) in which the output is the previous value when the input variable EN is FALSE or operation error occurs.
 - (E.g.) When operation errors occur

4 - 56 4 - 56

4.2.3 Natural Logarithm/Logarithm Base 10 (LN (_E), LOG (_E))

Function	FBD parts		
LN LOG LN_E LOG_E	(With EN/ENO pins) IN OUT EN ENO IN OUT indicates LN,LOG		

With EN/ENO pins	0
Overload	_
Input pin number changeable (range)	_

Function overview: LN (_E) Output natural logarithm operation result of input value. LOG(_E) Output logarithm base 10 result of input value.

Function/FB classification name: Numerical operation function

Input and Output Pins

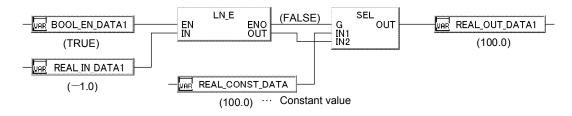
Pin	Variable name	Variable type	Data type	Contents
Innut	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input	IN	Input variable	REAL	Input
0	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	REAL	Output

Function

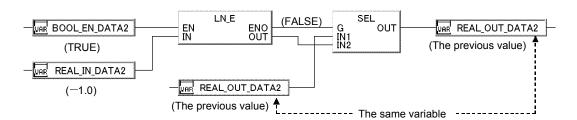
Item	Contents					
Operation processing	(1) LN LN_E This processing performs natural logarithm (using (e) as its base number) on the REAL type data that are in input variable IN and outputs the result from the operation output variable OUT. The following equality is enabled assuming that the input value is A and the operation output value is B. B=log e ^A In natural logarithm operation, the base number (e) is "2.71828"					
) Function without EN/ENO pins The operation result is shown in the following table: Operation result OUT No operation error Operation output value					
	Operation error occurs Indefinite value					
Operation results	(2) Function with EN/ENO pins The execution condition and operation result are as follows: Execution condition Operation result					
	EN ENO OUT					
	TRUE (Operation execution) TRUE (No operation error) FALSE (Operation error occurs) (*) Indefinite value					
	FALSE (Operation stop) FALSE (*) Indefinite value					
	* When the output from ENO is FALSE, the output data from OUT will be indefinite value. In this case, please do not use the output data from OUT in program processing.					


4 - 57 4 - 57

Following situations indicate operation error occurring, and the error codes will be displayed on the FBD program diagnostic screen of PX Developer programming tool.


- When input value is negative number. (Error code: 4100)
- When the converted data are 0 or out of the range"±1.17549⁻³⁸ to ±3.40282⁺³⁸". (Error code: 4100)

Program Example


- (1) Following are the program examples in which natural logarithm operation (of REAL type data input from input variable IN with (e) as the base number) is executed, and the result is output from the output variable OUT.
 - (a) Basic program example (LN)

- (b) This is a program example in which the output is constant value when the input variable EN is FALSE or operation error occurs. (LN_E)
 - (E.g.) When operation errors occur

- (c) This is a program example in which the output is the previous value when the input variable EN is FALSE or operation error occurs. (LN_E)
 - (E.g.) When operation errors occur

- (2) This is a program example in which the logarithm Base 10 (of REAL type data input from input variable IN with (10) as the base number) is executed, and the result is output from the output variable OUT.
 - (a) Basic program example (LOG)

4 - 58 4 - 58

4.2.4 Natural Exponential (EXP(_E))

Function	FBD parts			
EXP EXP_E	(With EN/ENO pins) EXP IN OUT EXP_E EN ENO IN OUT			

With EN/ENO pins	0
Overload	_
Input pin number changeable (range)	_

Function overview: Output the natural exponential result of input value.

Function/FB classification name: Numerical operation function

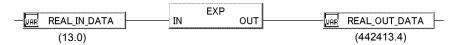
Input and Output Pins

Pins	Variable name	Variable type	Data type	Contents
Innut	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input	IN	Input variable	REAL	Input
O. 14m. 14	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	REAL	Output

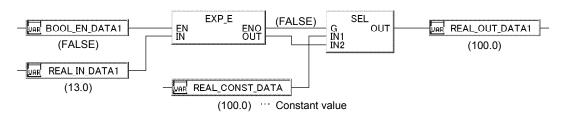
Function

Item	Contents					
Operation processing	 (1) This processing performs natural exponential on REAL type data input from input variable IN and outputs the result from the output variable OUT. The following equality is enabled assuming that the input value is A and the operation output value is B. B=e^A In natural exponential, the base number (e) is "2.71828". (2) The input value of input variable IN is REAL type data. 					
Operation	(1) Function without EN/ENO pins The operation result is shown in the following table. Operation result OUT No operation error Operation output value Operation error occurs Indefinite value (2) Function with EN/ENO pins The execution condition and operation result are as follows:					
results	Execution condition Operation result EN ENO OUT TRUE (Operation execution) FALSE (Operation error occurs) (*) FALSE (Operation stop) * When the output from ENO is FALSE, the output data from OUT will be indefinite values. In this case, please do not use the output data from OUT in program processing.					

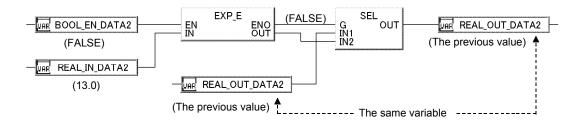
4 - 59 4 - 59


Following situations indicate operation error occurring, and the error codes will be displayed on the FBD program diagnostic screen of PX Developer programming tool.

• When the converted data are beyond the range of ±1.17549⁻³⁸ to ±3.40282⁺³⁸. (Error code: 4100)


Program Example

Following are the program examples in which natural exponential (of REAL type data input from input variable IN) is executed, and the result is output from output variable OUT.


(1) Basic program example (EXP)

- (2) This is a program example in which the output is constant value when input variable EN is FALSE or operation error occurs. (EXP_E)
 - (E.g.) When input variable EN is FALSE

- (3) This is a program example in which the output is the previous value when input variable EN is FALSE or operation error occurs. (EXP_E)
 - (E.g.) When input variable EN is FALSE

4 - 60 4 - 60

4.2.5 SIN/COS/TAN Operation (SIN(_E), COS(_E), TAN(_E))

Function	FBD parts
SIN COS TAN SIN_E COS_E TAN_E	(With EN/ENO pins) IN OUT EN ENO IN OUT indicates SIN, COS, TAN

With EN/ENO pins	0
Overload	_
Input pin number changeable (range)	_

Function overview: SIN(_E) outputs the SIN (sine) of input value

COS(_E) outputs the COS (cosine) of input value

TAN(_E) outputs the TAN (tangent) of input value

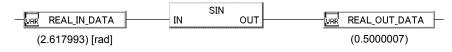
Function/FB classification name: Numerical operation function

Input and Output Pins

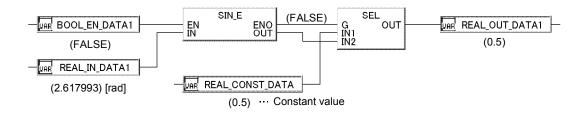
Pin	Variable name	Variable type	Data type	Contents
Innut	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input	IN	Input variable	REAL	Input
0	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	REAL	Output

Function

4 - 61 4 - 61

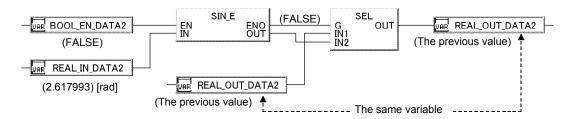

Item	Contents					
	` ′	Function without EN/ENO pins The operation result is shown in	the following table.			
		Operation result OUT				
		No operation error	Operation output value			
		Operation error occurs	Indefinite value			
Operation results	` ′	Function with EN/ENO pins The execution condition and ope	eration result are shown in the following	table:		
		Execution condition	Operation res	ult		
		Execution condition EN	Operation res ENO	ult OUT		
.553.13			'			
		EN	ENO TRUE (No operation error)	OUT Operation output value		
.555.5		EN TRUE (Operation execution) FALSE (Operation stop) * When the output from ENO is R	ENO TRUE (No operation error) FALSE (Operation error occurs) (*)	OUT Operation output value Indefinite value Indefinite value e indefinite values.		

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

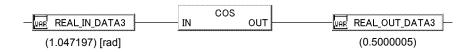

- When the input value is -0 (Error code: 4100)
- In the case of TAN (_E), the converted data are 0 or out of the range" ±1.17549⁻³⁸ to ±3.40282⁺³⁸".
 (Error code: 4100)

Program Example

- (1) Following are the program examples in which SIN (sine) operation (of the REAL type data (angle) input from the input variable IN) is executed, and the result is output from output variable OUT.
 - (a) Basic program example (SIN)



- (b) This is a program example in which the output result is constant value when the input variable EN is FALSE or operation error occurs.
 - (E.g.) When the input variable EN is FALSE



4 - 62 4 - 62

- (c) This is a program example in which the output result is the previous value when the input variable EN is FALSE or operation error occurs.
 - (E.g.) When the input variable EN is FALSE

- (2) This is a program example in which COS (cosine) operation (of the REAL type data (angle) input from the input variable IN) is executed, and the result is output from the output variable OUT.
 - (a) Basic program example (COS)

- (3) This is a program example in which TAN (tangent) operation (of the REAL type data (angle) input from the input variable IN) is executed, and the result is output from the output variable OUT.
 - (a) Basic program example (TAN)

4 - 63 4 - 63

4.2.6 ASIN/ACOS/ATAN Operation (ASIN(_E),ACOS(_E),ATAN(_E))

Function	FBD parts
ASIN ACOS ATAN ASIN_E ACOS_E ATAN_E	(With EN/ENO pins) IN OUT EN ENO OUT OUT OUT OUT OUT OUT OUT OUT OUT OU

With EN/ENO pins	0
Overload	_
Input pin number changeable (range)	_

Function overview: ASIN(_E) outputs the SIN⁻¹ (principal arc sine) of input value

ACOS(_E) outputs the COS⁻¹ (principal arc cosine) of input value

ATAN(_E) outputs the TAN⁻¹ (principal arc tangent) of input value

Function/FB classification name: Numerical operation function

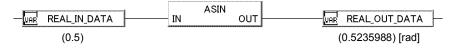
Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
Innut	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input	IN	Input variable	REAL	Input
O. stanust	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	REAL	Output

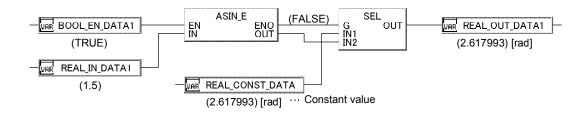
Function

Item	Contents
Operation processing	(1) ASIN ASIN E This processing performs ASIN (arc sine) operation on the REAL type data input from input variable IN and outputs the result from output variable OUT. The following equality is enabled assuming the input value is A and the operation output value is B. B=SIN¹A (2) ACOS ACOS E This processing performs ACOS (arc cosine) operation on the REAL type data input from input variable IN and outputs the result from output variable OUT. The following equality is enabled assuming the input value is A and the operation output value is B. B=COS¹A (3) ATAN ATAN E This processing performs ATAN (arc tangent) operation on the REAL type data input from input variable IN and outputs the result from output variable OUT. The following equality is enabled assuming the input value is A and the operation output value is B. B=TAN¹¹A (4) The range of the REAL type data input into input variable IN is shown as follows: ASIN (E), ACOS (E): -1.0 to 1.0 ATAN (E): ±1.17549³8 to ±3.40282⁴38
	(5) The output value (angle) of output variable OUT uses radian (angle $ imes \pi/180$) as its unit.

4 - 64 4 - 64


Item	Contents					
	(1) Function without EN/ENO pins The operation result is shown in the following table.					
		Operation result	OUT			
		No operation error	Operation output value			
		Operation error occurs	Indefinite value			
Operation results	(2) Function with EN/ENO pins The execution condition and operation result are shown in the following table:					
		Execution condition	Operation result			
		EN TRUE (Operation on)	ENO TRUE (No operation error) FALSE (Operation error occurs) (*)	OUT Operation output value Indefinite value		
		FALSE (Operation stops)	FALSE (*)	Indefinite value		
	* When the output from ENO is FALSE, the output data from OUT will be indefinite values. In this case, please do not use the output data from OUT in program processing.					

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.


- When the input value is -0. (Error code: 4100)
- In the case of ASIN (_E) and ACOS (_E), the input value is beyond the range of -1.0 to 1.0. (Error code: 4100)

Program Example

- (1) Following are the program examples in which ASIN (arc sine) operation (of the REAL type data input from input variable IN) is executed, and the result is output from output variable OUT.
 - (a) Basic program example (ASIN)



- (b) This is a program example in which the output is constant value when the input variable EN is FALSE or an operation error occurs. (ASIN E)
 - (E.g.) When operation errors occur

4 - 65 4 - 65

- (c) This is a program example in which the output is the previous value when the input variable EN is FALSE or operation error occurs. (ASIN_E)
 - (E.g.) When operation errors occur

- (2) This is a program example in which ACOS (arc cosine) operation (of the REAL type data input from input variable IN) is executed, and the result is output from the output variable OUT.
 - (a) Basic program example (ACOS)


- (3) This is a program example in which ATAN (arc tangent) operation (of the REAL type data input from input variable IN) is executed, and the result is output from the output variable OUT.
 - (a) Basic program example (ATAN)

4 - 66 4 - 66

4.3 Arithmetic Operation Function

4.3.1 Addition (ADD(_E))

With EN/ENO pins	0
Overload	0
Input pin number changeable (range)	2 to 8

Function overview: Output the sum of input value (IN1+IN2+ • • • +IN8)

Function/FB classification name: Arithmetic operation function

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input			INT	
IIIput	IN1 to IN8	Input variable	DINT	Input
			REAL	
	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output			INT	
Output	OUT	Output variable	DINT	Output
			REAL	

Function

Item	Contents				
Operation processing	Contents (1) This processing performs addition operation (IN1+IN2++IN8) on the REAL type data input from input variables IN1 to IN8 and outputs the result from the output variable OUT in the same data type as that of input variable IN. (E.g.) when data type is INT 1234				
	-32767+ (-2) = 32766 It is a positive value because the highest bit is 0. (8000H) (FFFEH) (7FFEH)				

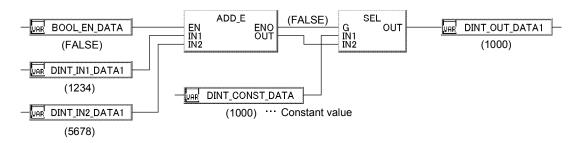
4 - 67 4 - 67

Item			Contents		
Operation	(Besides, TRUE will be output	· ·	ADD_E. because the highest digit is	
processing	(-2147483648 + (-2) = 2147 (80000000H) (FFFEH) (7F) (c) When the data type is REAL If operation error occurs, indet	FFFFEH)	because the highest digit is	
	(1) F	Function without EN/ENO pins			
	7	The operation result is shown as	follows:		
		Execution result	OUT		
		No operation error	Operation output value		
		Operation error occurs	Indefinite value		
Operation results	The execution condition and operation result are shown as follows.				
		EN	ENO	OUT	
		TRUE (Operation execution)	TRUE (No operation error)	Operation output value	
		TRUE (Operation execution)	FALSE (Operation error occurs) (*)	Indefinite value	
		FALSE (Operation stop)	FALSE (*)	Indefinite value	
	* When the output from ENO is FALSE, the output from OUT will be indefinite value.				
		In this case, please do not use the output data from OUT for program processing.			

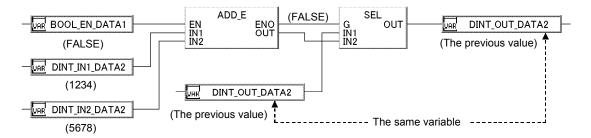
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

• When the data type is REAL type, the input value and output value are not 0 and beyond the range of ±1.17549⁻³⁸ to ±3.40282⁺³⁸. (Error code: 4100)

4 - 68 4 - 68


Program Example

Following are the program example in which addition operation (IN1+IN2+...+IN8) (of the INT/DINT/REAL type data input from input variable IN1 to IN8) is executed, and the result is output from the output variable OUT in the same data type with input variable IN.


(1) Basic program example (ADD)

- (2) This is a program example in which the output is constant value when the input variable EN is FALSE or operation error occurs.
 - (E.g.) When the input variable EN is FALSE

- (3) This is a program example in which the output is the previous value when the input variable EN is FALSE or operation error occurs.
 - (E.g.) When the input variable EN is FALSE

4 - 69 4 - 69

4.3.2 Multiplication (MUL(_E))

Function	FBD parts		
MUL MUL_E	MUL IN1 OUT IN2 IN8 Pin number of input variable IN can be	(With EN/ENO pins) MUL_E EN ENO IN1 OUT IN2 IN8 We changed within range of 2 to 8.	

With EN/ENO pins	0
Overload	0
Input pin number changeable (range)	2 to 8

Function overview: Output the product (IN1 \times IN2 \times $\, \bullet \, \bullet \, \times$ IN8) of input value.

Function/FB classification name: Arithmetic operation function.

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input			INT	
mput	IN1 to IN8	Input variable	DINT	Input
			REAL	
	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output			INT	
Output	OUT	OUT Output variable	DINT	Output
			REAL	

Function

Item	Contents				
Operation processing	 (1) This processing performs multiplication operation (IN1 × IN2 × × IN8) on the INT/DINT/REAL type data input from input variables IN1 to IN8 and outputs the operation result from output variable OUT in the same data type as that of the input variable IN.				

4 - 70 4 - 70

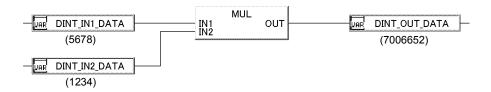
Item	Contents				
Operation processing	(b) When the data type is DINT type Operation error will not occur even in the case of underflow/overflow occurs. Besides, TRUE will be output from output variable ENO in the case of MUL_E. If the operation result exceeds the range of DINT type data, the output will still be DINT type data. (The operation result is 64-bits data but the output data will be DINT type data after the deletion of high-order 32 bits) If the operation result exceeds the DINT type data range, please convert the REAL type data via DINT_TO_REAL before performing operation. (c) When the data type is of REAL type If operation error occurs, indefinite value will be output.				
Operation results	The execution condition and operation result are shown as follows:				
. count		Execution condition	Operation res	ult	
		EN	ENO	OUT	
		TRUE (Operation execution)	TRUE (No operation error)	Operation output value	
		, ,	FALSE (Operation error occurs) (*)	Indefinite value	
		FALSE (Operation stop)	FALSE (*)	Indefinite value	
	* When output from ENO is FALSE, the output from OUT will be indefinite value. In this case, please do not use the output data from OUT in program processing.				

POINT

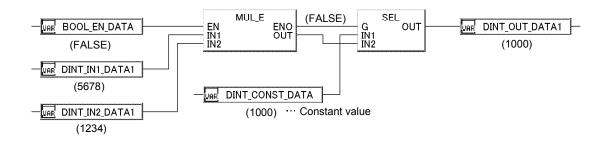
When the operation result exceeds the data type range, please convert the data type of the input value before performing operation.

Error

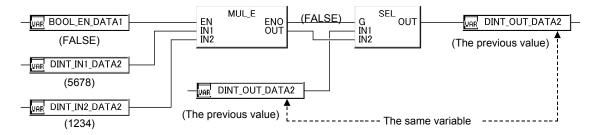
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.


• When the data type is REAL, the input value and output value are not 0 and beyond the range of ±1.17549⁻³⁸ to ±3.40282⁺³⁸. (Error code: 4100)

4 - 71 4 - 71


Program Example

Following are the program examples in which multiplication operation (IN1 \times IN2 \times ... \times IN8) (of the IN/DINT/REAL type data input from input variables IN1 to IN8) is executed, then the operation result is output from the output variable OUT in the same data type with input variable IN.


(1) Basic program example (MUL)

- (2) This is a program example in which the output is constant value when the input variable EN is FALSE or operation error occurs.
 - (E.g.) When the input variable EN is FALSE

- (3) This is a program example in which the output is the previous value when the input variable EN is FALSE or operation error occurs.
 - (E.g.) When the input variable EN is FALSE

4 - 72 4 - 72

4.3.3 Subtraction (SUB(_E))

Function	FBD parts			
SUB SUB_E	SUB IN1 OUT IN2	(With EN/ENO pins) SUB_E EN ENO IN1 OUT IN2		

With EN/ENO pins	0
Overload	0
Input pin number changeable (range)	=

Function overview: Output the difference (IN1-IN2) of the input values

Function/FB classification name: Arithmetic operation function.

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Innut	INIA		INT	
Input	Input IN1	Input variable	DINT	Input
IN2	INZ		REAL	
	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output			INT	
Output	OUT	OUT Output variable	DINT	Output
			RAL	

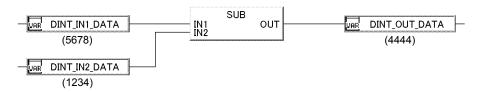
Function

Item	Contents
Operation processing	(1) This processing performs subtraction operation (IN1-IN2) on the INT/DINT/REAL type data input from input variables IN1 and IN2 and outputs the operation result from output variable OUT in the same data type as that of input variable IN. (E.g.) When data type is INT type 12345

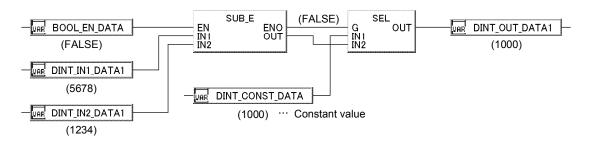
4 - 73

Item	Contents					
(b) When the data type is DINT type Operation error will not occur even in the case of underflow/overflow occur. Besides, TRUE will be output from output variable ENO in the case of SUB_E. 2147483647 + 2 = -2147483647 It is a negative value because the higher than the case of SUB_E. Operation (7FFFFFFFH) (0002H) (80000001H) -2147483648 + (-2) = 2147483646 It is a positive value because the higher than the case of underflow/overflow occur. Besides, TRUE will be output variable ENO in the case of SUB_E. 2147483647 2 = -2147483647 It is a negative value because the higher than the case of underflow/overflow occur. Besides, TRUE will be output variable ENO in the case of SUB_E. 2147483648 + (-2) = -2147483647 It is a negative value because the higher than the case of SUB_E. (FFFFFFFH) (0002H) (7FFFFFFFH) (C) When the data type is REAL If operation error occurs, indefinite value will be output.				f SUB_E. because the highest bit is 1.		
Operation results	Operatio No ope Operatio (2) Function With The execution	result is shown as ation result eration error nerror occurs EN/ENO pins a condition and ope	OUT Operation output value Indefinite value			
	Execution condition		Operation res			
		EN	ENO	OUT		
	TRUE (Ope	TRUE (Operation execution)	TRUE (No operation error)	Operation output value Indefinite value		
	EALSE (Operation step)	FALSE (Operation error occurs) (*)			
	FALSE (Operation stop) FALSE (*) Indefinite value					
	* When output from ENO is FALSE, the output from OUT will be of indefinite value.					
	In this case, please do not use the output data from OUT in program processing.					

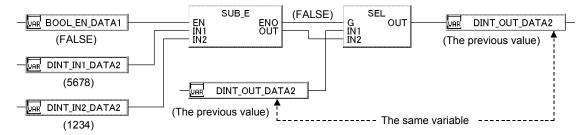
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer.


• When the data type is REAL, input/output values are not 0 and beyond the range of ±1.17549⁻³⁸ to ±3.40282⁺³⁸. (Error code: 4100)

4 - 74


Program Example

Following are the program example in which subtraction operation (IN1-IN) (of the INT/DINT/REAL type data input from input variable IN1, IN2) is executed, and the result is output from the output variable OUT in the same data type with input variable IN.


(1) Basic program example (SUB)

- (2) This is a program example in which the output is constant value when the input variable EN is FALSE or operation error occurs. (SUB_E)
 - (E.g.) When the input variable EN is FALSE

- (3) This is a program example in which the output is the previous value when the input variable EN is FALSE or operation error occurs. (SUB_E)
 - (E.g.) When the input variable EN is FALSE

4 - 75 4 - 75

4.3.4 Division (DIV(_E))

Function	FBD parts			
DIV DIV_E	IN1 OUT	(With EN/ENO pins) DIV_E EN ENO IN1 OUT IN2		

With EN/ENO pins	0
Overload	0
Input pin number changeable (range)	_

Function overview: Output the quotient (IN1÷IN2) of input values.

Function/FB classification name: Arithmetic operation function

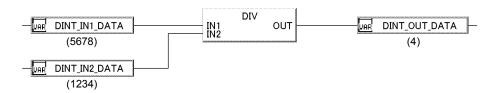
Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Innut	INIA		INT	
Input	IN1 IN2	Input variable	DINT	Input
			REAL	
	END	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	INT, DINT,	Outrot
			REAL	Output

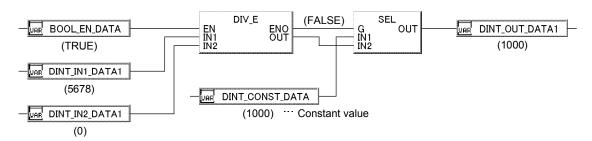
Function

Item	Contents				
	(1) This processing performs division operation (IN1 ÷ IN2) on the INT/DINT/REAL type data input from input variables IN1, IN2, and outputs the result of quotient from the output variable OUT in the same data type as that of input variable IN. (Example) When the data type is INT type				
Operation	(Quotient) (Remainder)				
Operation processing	5 : 2 : INT (INT type) : INZ (INT type) : INT type : No output				
	(2) The value input from input variable IN1 and IN2 is INT/DINT/REAL type value. (However, the input value of input variable IN2 cannot be 0)				
	(1) Function without EN/ENO pins The operation result is shown as follows.				
	Operation result No operation error Operation output value Operation error occurs Indefinite value				
Operation	(2) Function with EN/ENO pins The execution condition and operation result are as follows:				
results	Execution condition Operation result				
	EN ENO OUT				
	TRUE (Operation execution) TRUE (No operation error) Operation output value FALSE (Operation error occurs) (*) Indefinite value				
	FALSE (Operation stop) FALSE (*) Indefinite value				
	* When the output from ENO is FALSE, the output data from OUT will be indefinite value. In this case, please do not use the output data from OUT in program processing.				

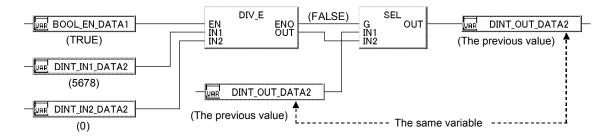
4 - 76


Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

- When the data type is REAL or the input/output value is not within the following range: (Error code: 4100)
 Input value: ±1.17549⁻³⁸ to ±3.40282⁺³⁸
 - Output value: $0, \pm 1.17549^{-38}$ to $\pm 3.40282^{+38}$
- When input value of input variable IN2 is 0. (Error code: 4100)


Program Example

Following are the program example in which division operation (IN1 \div IN2) (of the INT/DINT/REAL type data input from input variable IN1 and IN2) is executed, and the result is output from the output variable OUT in the same data type with input variable IN.


(1) Basic program example (DIV)

- (2) This is a program example in which the output is constant value when the input variable EN is FALSE or operation error occurs. (DIV_E)
 - (E.g.) When operation errors occur

- (3) This is a program example in which the output is the previous value when the input variable EN is FALSE or operation error occurs. (DIV E)
 - (E.g.) When operation errors occur

4 - 77 4 - 77

4.3.5 Modulus Operation (MOD(_E))

Function	FBD parts			
	MOD	(With EN/ENO pins)		
MOD_E	IN1 OUT	EN ENO UT IN2		

With EN/ENO pins	0
Overload	0
Input pin number changeable (range)	1

Function overview: Output the remainder value (IN1÷IN2) of input values

Function/FB classification name: Arithmetic operation function

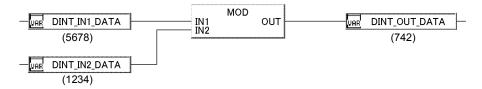
Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Innut	INIA		INT	
Input	IN1 IN2	Input variable	DINT	Input
			REAL	
	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	INT	Outrant
			DINT	Output

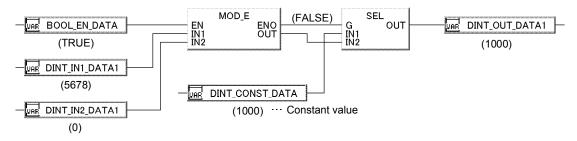
Function

Item	Contents	
	(1) This processing performs division operation (IN1 ÷ IN2) on the REAL type data input from input variable IN2 and outputs the result from the output variable OUT in the same data type as that of input variable IN (Example) When the data type is INT type (Quotient) (Remainder)	
Operation processing		
	(2) The value input from input variables IN1 and IN2 is INT/DINT type value. (However, the input value of input variable IN2 can not be 0.)	
	(1) Function without EN/ENO pins The operation result is shown as follows:	
	Operation result No operation error Operation output value Operation error occurs Indefinite value	
Operation	(2) Function With EN/ENO pins The execution condition and operation result are shown as follows:	
results	Execution condition Operation result	
	EN ENO OUT	
	TRUE (Operation execution) TRUE (No operation error) Operation output value FALSE (Operation error occurs) (*) Indefinite value	
	FALSE (Operation stop) FALSE (*) Indefinite value	
	* When the output from ENO is FALSE, the output data from OUT will be indefinite value. In this case, please do not use the output data from OUT in program processing.	

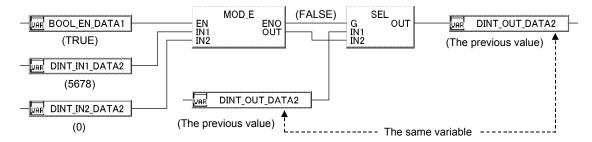
4 - 78 4 - 78


Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

• When input value of input variable IN2 is 0. (Error code: 4100)


Program Example

Following are the program example in which division operation (IN1÷IN2) (of the INT/DINT/REAL type data input from input variable IN1 and IN2) is executed, and the result is output from the output variable OUT in the same data type with input variable IN.


(1) Basic program example (MOD)

- (2) This is a program example in which the output is constant value when the input variable EN is FALSE or operation error occurs. (MOD_E)
 - (E.g.) When operation errors occur

- (3) This is a program example in which the output is the previous value when the input variable EN is FALSE or operation error occurs. (MOD E)
 - (E.g.) When operation errors occur

4 - 79 4 - 79

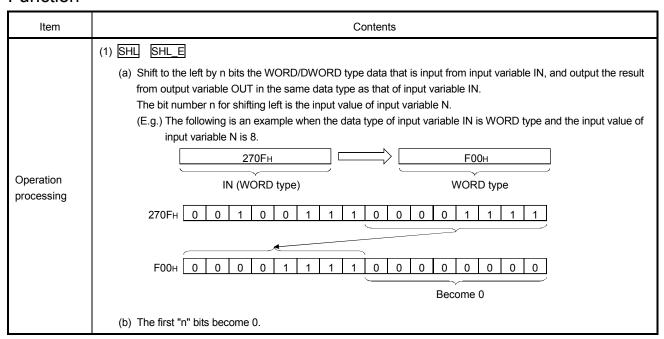
4.4 Bit-string Function

4.4.1 Shift Left, Shift Right (SHL (_E), SHR (_E))

Function	FBD parts			
SHL SHR SHL_E SHR_E	(With EN/ENO pins) IN OUT EN EN OUT N UN OUT IN OUT N Indicates SHR, SHL			

With EN/ENO pins	0
Overload	0
Input pin number changeable (range)	_

Function overview: SHL (_E) shifts the input value to the left by n bits, and then outputs the result.


SHR (_E) shifts the input value to the right by n bits, and then outputs the result.

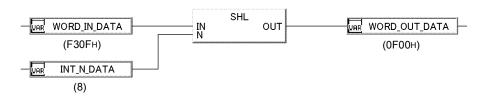
Function/ FB classification name: Bit-string function

Input and Output Pins

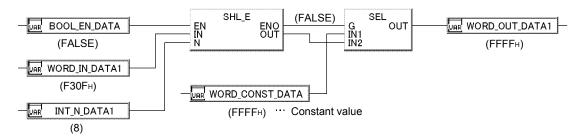
Pin	Variable name	Variable type	Data type	Contents	
	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)	
Input	IN	Input variable	WORD	Input	
			DWORD		
	N	Input variable	INT	Shift bit number specification	
	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)	
Output	OUT	Output variable	WORD	Outroit	
			DWORD	Output	

Function

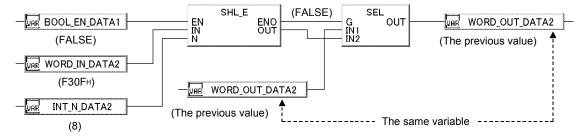
4 - 80 4 - 80

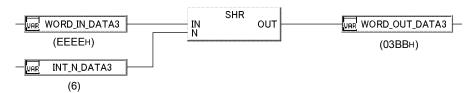

Item	Contents				
Operation processing	(2) SHR SHRE (a) Shift to the right by n bits the WORD/DWORD type data that is input from input variable IN, and output the result from output variable OUT in the same data type as that of input variable IN. The bit number n for shifting left is the input value of input variable N. (E.g.) The following is an example when the data type of input variable IN is WORD type and the input value of input variable IN is 8. 270FH IN (WORD type) WORD type 270FH 0 0 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 Become 0 (b) The first "n" bits become 0. (3) The value input from input variable IN is WORD/DWORD type data. (4) The value input from input variable N (shift bit number specification) is INT type data, and its range is as follows. (a) When the data type of input variable IN is WORD/ bype The input value of variable N is within 0 to 15. Applying the 4 low-order bits of the value input from the input variable N. E.g. When input value is 6 : 6 When input value of variable IN is bound in the input variable N. E.g. When the data type of input variable IN is DWORD type The input value of variable N is within 0 to 31. Applying the 5 low-order bits of the value input from the input variable N. E.g. When input value is 6 : 6 When input value is 22 : 22				
Operation results					

There is no operation error caused by SHL (_E), SHR (_E).


4 - 81 4 - 81

Program Example


- (1) Following are the program example in which left shift operation (of the WORD/DWORD type data input from input variable IN) is executed, and the result is output from the output variable OUT in the same data type with input variable IN.
 - (a) Basic program example (SHL)


(b) This is a program example in which the output is constant value when the input variable EN is FALSE. (SHL E).

(c) This is a program example in which the output is the previous value when the input variable EN is FALSE. (SHL_E)

- (2) Following is the program example in which right shift operation (of the WORD/DWORD type data input from input variable IN) is executed, and the result is output from the output variable OUT in the same data type with input variable IN.
 - (a) Basic program example (SHR)

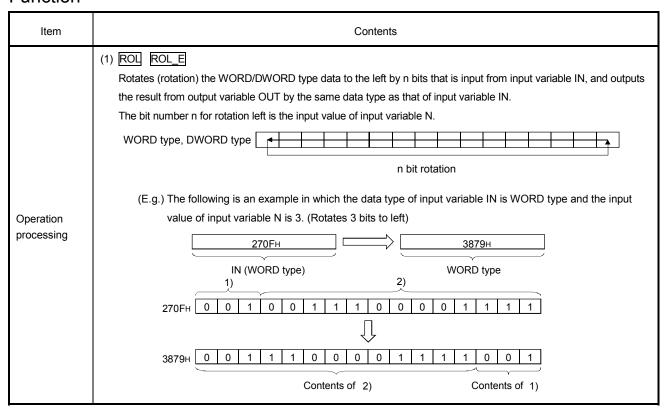
4 - 82 4 - 82

4.4.2 Rotate Left, Rotate Right (ROL (_E), ROR (_E))

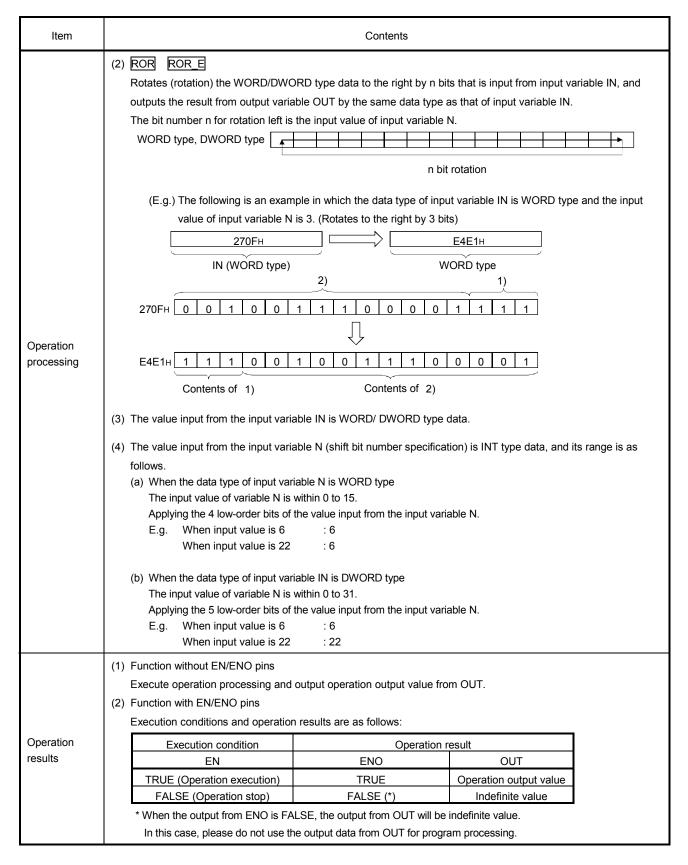
Function	FBD parts
ROL ROR ROL_E ROR_E	(With EN/ENO pins) IN OUT EN ENO IN OUT N Indicates ROL, ROR.

With EN/ENO pins	0
Overload	0
Input pin number changeable (range)	

Function overview: ROL (E) rotate the input value to the left by n bits, and then output the result.


ROR (E) rotate the input value to the right by n bits, and then output the result.

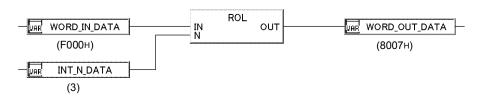
Function/ FB classification name: Bit-string function


Input and Output Pins

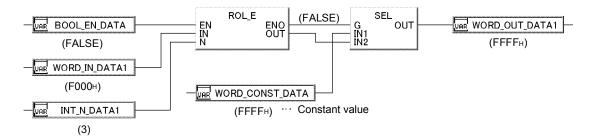
Pin	Variable name	Variable type	Data type	Contents	
EN Input variable		BOOL	Execution condition (TRUE: Execute FALSE: stop)		
Input	IN	Input variable	WORD	Input	
			DWORD		
	N	Input variable	INT	Shift bit number specification	
	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)	
Output	OUT	Output variable	WORD	Outroit	
			DWORD	Output	

Function

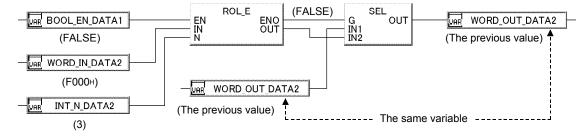
4 - 83 4 - 83

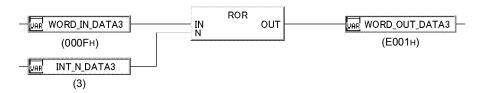


There is no operation error caused by ROL (_E), ROR (_E).

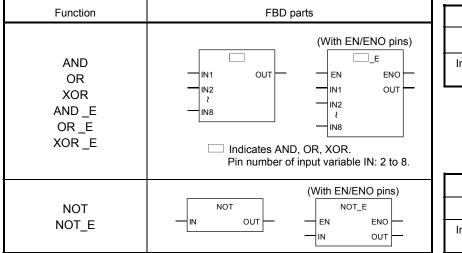

4 - 84 4 - 84

Program Example


- (1) Following is the program example in which rotate left by n nits operation (rotation) (of the WORD/DWORD type data input from input variable IN) is executed, and the result is output from the output variable OUT in the same data type with input variable IN.
 - (a) Basic program example (ROL)


(b) This is a program example in which the output is constant value when the input variable EN is FALSE. (ROL E)

(c) This is a program example in which the output is the previous value when the input variable EN is FALSE. (ROL_E)


- (2) Following is the program example in which rotate right by n bits operation (rotation) (of the WORD/DWORD type data input from input variable IN) is executed, and the result is output from the output variable OUT in the same data type with input variable IN.
 - (a) Basic program example (ROR)

4 - 85 4 - 85

4.5 Logical Operation Function

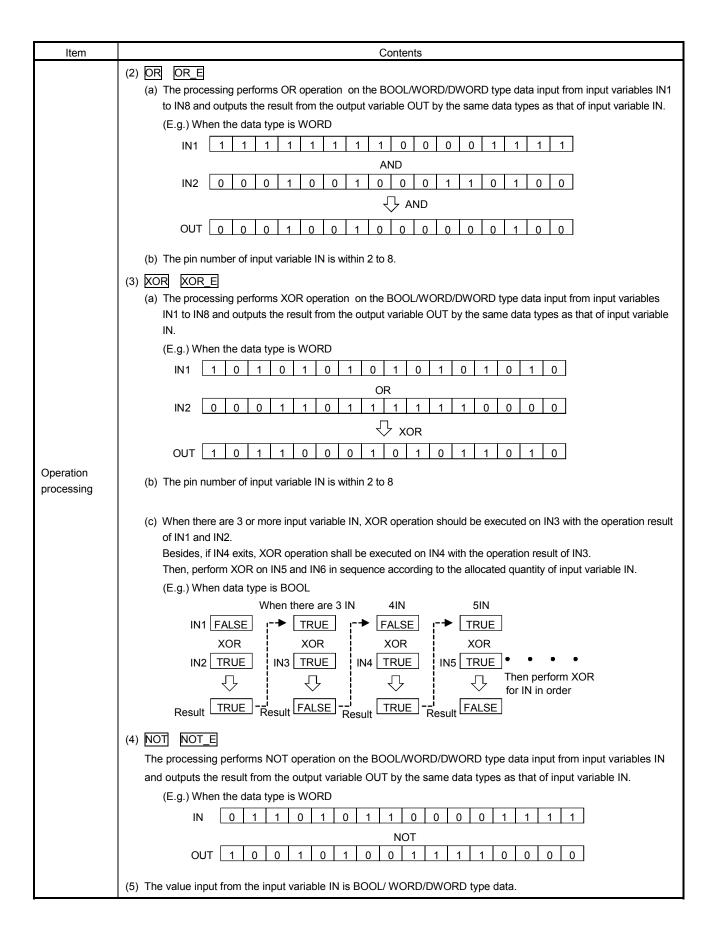
4.5.1 AND, OR, XOR and NOT (AND (_E), OR (_E), XOR (_E), NOT(_E))

With EN/ENO pins	0
Overload	0
Input pin number changeable (range)	2 to 8

With EN/ENO pins	0
Overload	0
Input pin number changeable (range)	_

Function overview : AND (_E) outputs AND of the input value.	OR (_E) outputs the OR of the input value.
XOR (_E) outputs XOR of the input value.	NOT (_E) outputs NOT of the input value.

Function/ FB classification name: Logical operation function

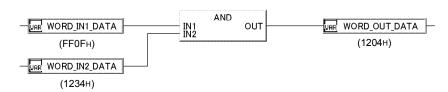

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	
	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: stop)	
Input	INI1 to INI2 (NOT (E) is		BOOL		
IIIput	t IN1 to IN8 (NOT (_E) is IN)	Input variable	WORD	Input	
			DWORD		
	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)	
Output	OUT Output variable	Output	BOOL		
		•	WORD	Output	
			DWORD		

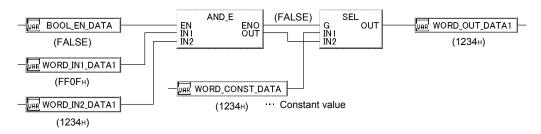
Function

Item	Contents		
	(1) AND AND (a) AND (a) AND (b) AND (c) AND (c		
Operation processing	AND IN2 0 0 0 1 0 0 1 0 0 0 1 1 0 0		
	OUT 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0		
	(b) The pin number of input variable IN is within 2 to 8.		

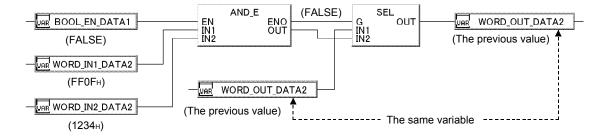
4 - 86 4 - 86


4 - 87 4 - 87

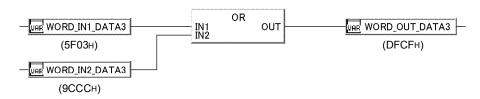
(1) Functions without EN/ENO pins	Item	Contents				
results EN ENO OUT TRUE (Operation execution) TRUE Operation output value		Execute operation processing and output operation output value from OUT. (2) Functions with EN/ENO pins				
TRUE (Operation execution) TRUE Operation output value	•					
FALSE (Operation stop) FALSE (*) Indefinite value	resuits	TRUE (Operation execution) TRUE Operation output value				


There is no operation error caused by AND (_E), OR (_E), XOR (_E), NOT (_E).

Program Example

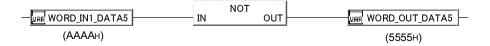

- (1) Following is the program example in which AND operation (of the BOOL/WORD/DWORD type data input from input variable IN1 to IN8) is executed, and the result is output from the output variable OUT in the same data type with input variable IN.
 - (a) Basic program example (AND)

(b) This is a program example in which the output is constant value when the input variable EN is FALSE. (AND E)



(c) This is a program example in which the output is the previous value when the input variable EN is FALSE. (AND_E)

4 - 88 4 - 88


- (2) Following is the program example in which OR operation (of the BOOL/WORD/DWORD type data input from input variable IN1 to IN8) is executed, and the result is output from the output variable OUT in the same data type with input variable IN.
 - (a) Basic program example (OR)

- (3) Following is the program example in which XOR operation (of the BOOL/WORD/DWORD type data input from input variable IN1 to IN8) is executed, and the result is output from the output variable OUT in the same data type with input variable IN.
 - (a) Basic program example (XOR)

- (4) Following is the program example in which NOT operation (of the BOOL/WORD/DWORD type data input from input variable IN) is executed, and the result is output from the output variable OUT in the same data type with input variable IN.
 - (a) Basic program example (NOT)

4 - 89 4 - 89

4.6 Selection Function

4.6.1 Input Value Selection (SEL (_E))

Function	FBD parts			
		(With EN/ENO pins)		
	SEL	SEL_E		
SEL	G OUT	- EN ENO		
SEL_E	IN1	G OUT		
	IN2	─ IN1		
		IN2		

With EN/ENO pins	0
Overload	0
Input pin number changeable (range)	

Function overview: Output the selected input value.

Function/ FB classification name: Selection function

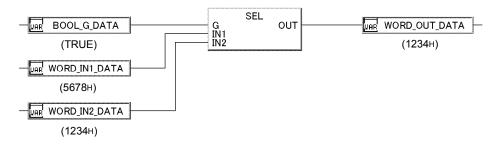
Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
	EN	Input variable	BOOL	Operation condition (TRUE: Execute FALSE: Stop)
	G	Input variable	BOOL	Output condition (TRUE: IN2 output FALSE: IN1 output)
			BOOL	
			INT	
			DINT	
Input	IN1	Input variable	WORD	
	IN1		DWORD	Input
	IINZ		REAL	
			ADR_REAL	
			STRING	
			(255)	
	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
			BOOL	
	OUT	Output variable	INT	
			DINT	
Output			WORD	
Output			DWORD	Output
			REAL	
			ADR_REAL	
			STRING	
			(255)	

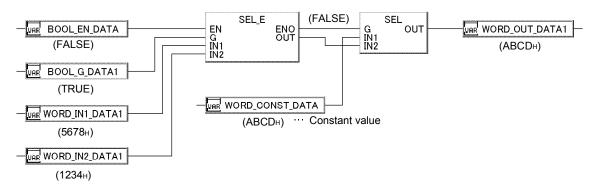
Function

Item	Contents			
Operation processing	(1) According to the value input from the input variable G, output one of the output values input from input variable IN1 or IN2 from OUT in the same data type as input variable IN. When input variable G inputs FALSE, output the input value of input variable IN1 from output variable OUT. When input variable G inputs TRUE, output the input value of input variable IN2 from output variable OUT. (E.g.) When the data type of input variable IN1 and IN2 is INT FALSE BOOL Type G OUT 1234 INT Type 1N1 INT Type 5678 INT Type			

4 - 90 4 - 90

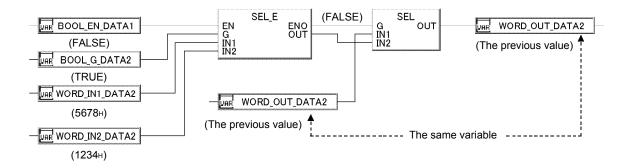

Item	Contents					
	(2) The input value from input variable G is BOOL type data.					
Operation processing	(3) The values input from input variable IN1 and IN2 are BOOL/INT/DINT/WORD/DWORD/REAL/ADR_REAL/STRING type data.					
	 (1) Functions without EN/ENO pins Execute operation processing and output operation output value from OUT. (2) Functions with EN/ENO pins Execution conditions and operation results are as follows: 					
Operation result	Execution condition Operation result EN ENO OUT					
	TRUE (Operation execution) TRUE Operation output value FALSE (Operation stop) FALSE (*) Indefinite value					
	* When the output from ENO is FALSE, the output from OUT will be indefinite value. In this case, please do not use the output data from OUT for program processing.					

There is no operation error caused by SEL (_E).


Program Example

Following is the program example in which one of the value from IN1 and IN2 which is input to input variable G, and the result is output from the output variable OUT in the same data type with input variable IN.

(1) Basic program example (SEL)



(2) This is a program example in which the output is constant value when the input variable EN is FALSE. (SEL E)

4 - 91 4 - 91

(3) This is a program example in which the output is the previous value when the input variable EN is FALSE. (SEL_E)

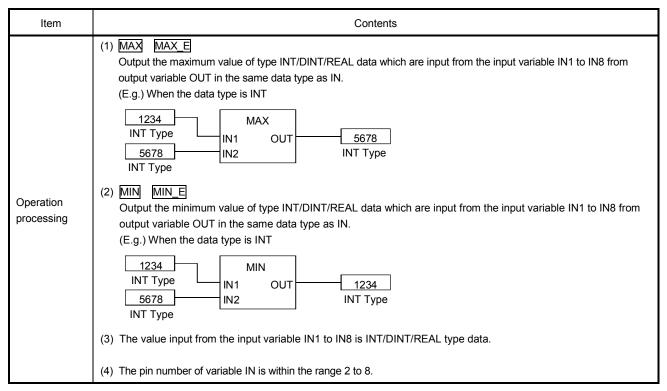
4 - 92

4.6.2 Maximum/Minimum Value Selection (MAX (_E), MIN (_E))

Function	FBD parts		
MAX MIN MAX_E MIN_E	(With EN/ENO pins) IN1 OUT EN ENO IN2 IN1 OUT IN2 IN2 IN8 IN8 Indicates MAX, MIN Pin number of input variable IN can be changed in the range of 2 to 8.		

With EN/ENO pins	0
Overload	0
Input pin number changeable (range)	2 to 8

Function overview: MAX (_E) outputs the maximum value of the input value.

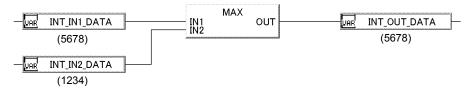

MIN (_E) outputs the minimum value of the input value.

Function/ FB classification name: Selection function

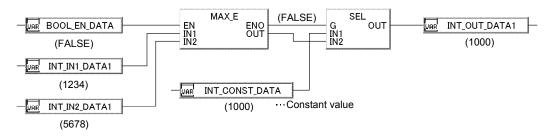
Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: stop)
Input			INT	
IIIput	IN1 to IN8	Input variable	DINT	Input
			REAL	
	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output			INT	
Output	OUT	Output variable	DINT	Output
			REAL	

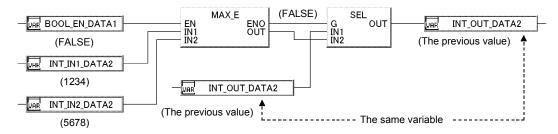
Function


4 - 93 4 - 93

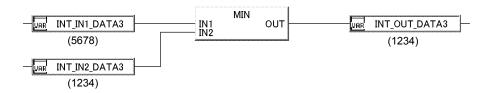
Item		Contents					
(1) Functions without EN/ENO pins							
	Execute operation processing and output operation output value from OUT.						
	(2) Func	tions with EN/ENO pins					
	Exec	ution conditions and operation results	are as follows:				
Operation		Execution condition	Ope	ration result			
results		EN ENO OUT					
		TRUE (Operation execution) TRUE Operation output value					
		FALSE (Operation stop) FALSE (*) Indefinite value					
		,	FALSE (*) e output from OUT will	Indefinite value be indefinite value.			


There is no operation error caused by MAX (E), MIN (E).

Program Example


- (1) Following is the program example in which maximum value (of the INT/DINT/REAL type data input from input variable IN1 to IN8) is output from the output variable OUT in the same data type with input variable IN.
 - (a) Basic program example (MAX)

(b) This is a program example in which the output is constant value when the input variable EN is FALSE. (MAX E)



(c) This is a program example in which the output is the previous value when the input variable EN is FALSE. (MAX E)

4 - 94 4 - 94

- (2) Following is the program example in which minimum value (of the INT/DINT/REAL type data input from input variable IN1 to IN8) is output from the output variable OUT in the same data type with input variable IN.
 - (a) Basic program example (MIN)

4 - 95

4.6.3 High/Low Limit Control (LIMIT (_E))

Function	FBD parts		
LIMIT LIMIT_E	(With EN/ENO pins) LIMIT MN OUT IN MX MX (With EN/ENO pins)) - -	

With EN/ENO pins	0
Overload	0
Input pin number	
changeable (range)	

Function overview: Output the input value through the high/low limit control.

Function/ FB classification name: Selection function

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: stop)
			INT	
	MN	Input variable	DINT	Low limit value (minimum output limit value)
		REAL		
Innut	Input IN	Input variable	INT	
mpat			DINT	The input value controlled through high/low limit control
			REAL	
		INT		
	MX	Input variable	DINT	High limit value (maximum output limit value)
			REAL	
	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	OUT Output variable	INT	
Output			DINT	Output
			REAL	

Function

Item	Contents				
	 (1) Output to output variable OUT in the same data type as the input variable according to the INT/DINT/REAL data input from the input variable MN, IN and MX. (a) When input value of IN > input value of MX, output the input value of input variable MX from output variable OUT. (b) When input value of IN < input value of MN, output the input value of input variable MN from output variable OUT. (c) When input value of MN ≤ input value of IN ≤ input value of MX, output the input value of input variable IN from output variable OUT. (E.g.) When the data type is INT 				
Operation processing	Output value Output value MX Input value INT Type INT Type MX Input value INT Type MX Input value INT Type INT Type INT Type MX Input value INT Type Input value INT Type Input value INT Type Input value INT Type Input value				

4 - 96

Item	Contents					
	(1) Functions without EN/ENO pins					
	'	The operation results is shown as follows:				
		Operation result	OUT			
		No operation error	Operation output value			
		Operation error occur	Indefinite value			
Operation results	` ′	Functions with EN/ENO pins Execution conditions and operation results are as follows: Operation result				
		EN	ENO	OUT		
		TRUE (Operation execution)	TRUE (No operation error)	Operation output value		
			FALSE (Operation error occurs)	Indefinite value		
		FALSE (Operation stop)	FALSE (Operation error occurs) (*)	Indefinite value		
	* When output from ENO is FALSE, the output from OUT will be indefinite value. In this case, please do not use the output data from OUT in program processing.					

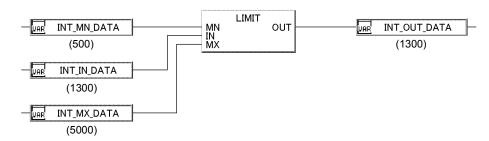
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

• When the data type is INT/DINT, and input value of MN > input value of MX. (Error code: 4100)

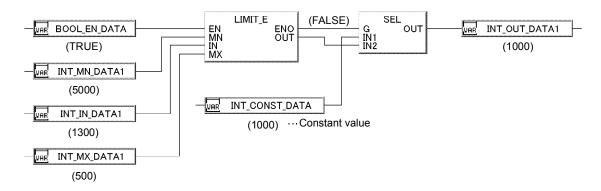
POINT

When data type is REAL, input value of MN > input value of MX, it is not an operation error.

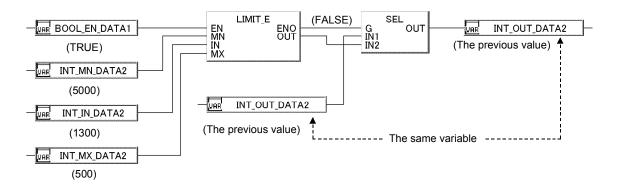
However, the operation result will be indefinite value.


Furthermore, for functions with EN/ENO, ENO will be FALSE.

4 - 97 4 - 97


Program Example

Following is the program example in which outputs the value input from input variable IN1 and IN2 to output variable OUT in the same data type with input variable IN according to the input INT/DINT/REAL type data of input variable MN, IN and MX.


(1) Basic program example (LIMIT)

- (2) This is a program example in which the output is constant value when the input variable EN is FALSE. (LIMIT E)
 - (E.g.) When operation errors occur

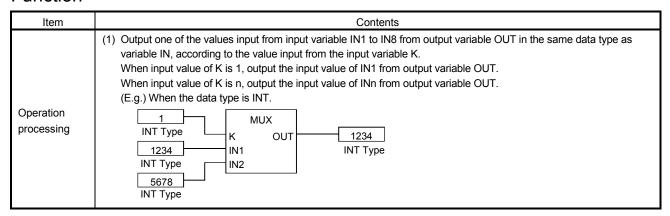
- (3) This is a program example in which the output is the previous value when the input variable EN is FALSE. (LIMIT_E)
 - (E.g.) When operation errors occur

4 - 98 4 - 98

4.6.4 Multiplexer (MUX (_E))

Function	FBD parts			
MUX MUX_E	(With EN/ENO pins) MUX K OUT IN1 IN2 IN8 Pin number of input variable IN can be changed in the range of 2 to 8.			

With EN/ENO pins	0
Overload	0
Input pin number changeable (range)	2 to 8


Function overview: Output one of the multiple input values.

Function/ FB classification name: Selection function

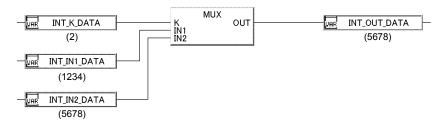
Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: stop)
	K	Input variable	INT	Select the output value
		Input variable	BOOL	
			INT	
			DINT	
			WORD	
	IN1 to IN8		DWORD	Input
			REAL	
			ADR_REAL	
			STRING	
			(255)	
-	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
	OUT	Output variable	BOOL	
			INT	
Output			DINT	
			WORD	
			DWORD	Output
			REAL	
			ADR_REAL	
			STRING	
			(255)	

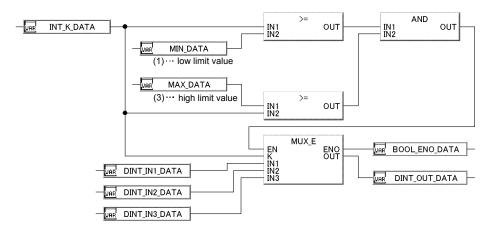
Function

4 - 99

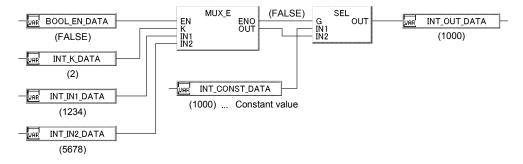
Item	Contents						
	(2) When the number of input values of the input variable K is out of range of the pins of variable IN, output indefinite value from output variable OUT.						
Operation processing	(3) The input value of input variable K is of type INT and within 1 to 8. (But it should be within the pin number range of input variable IN)						
	(4) The input value of input variable IN is of BOOL/ INT/ DINT/ WORD/ DWORD/ REAL/ ADR_REAL/ STRING type.						
	(5) The pin number of input variable IN is within the range of 2 to 8.						
	` ′	Functions without EN/ENO pi The operation results is as fol					
		Execution result	OUT				
		No operation error	Operation output value				
		Operation error occur	Indefinite value				
	` ′	Functions with EN/ENO pins Execution conditions and op	eration results are as follows:				
Operation results		Execution condition	Operation result				
resuits		EN	ENO	OUT			
		TRUE (Operation execution)	TRUE (No operation error)	Operation output value			
			FALSE (Operation error occurs) (*)	Indefinite value			
		FALSE (Operation stop)	FALSE (*)	Indefinite value			
	* When output from ENO is FALSE, the output from OUT will be indefinite value.						
		In this case, please do not use the output data from OUT in program processing.					

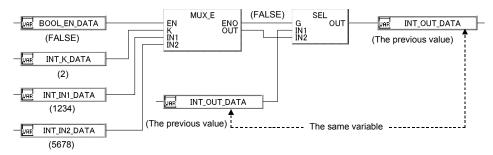

There is no operation error caused by MUX (_E).

4 - 100 4 - 100


Program Example

Following is the program example in which one of the input value from input variable IN1 to IN8 (input from input variable K) is input, and the result is output from the output variable OUT in the same data type with input variable IN.


(1) Basic program example (MUX)


(2) This is a program example that checks the input value of input variable K in advance. (MUX_E)

(3) This is a program example in which the output is constant value when the input variable EN is FALSE. (MUX_E)

(4) This is a program example in which the output is the previous value when the input variable EN is FALSE. (MUX_E)

4 - 101 4 - 101

4.7 Comparison Function

4.7.1 Comparison (> (_E), > = (_E), =(_E), < = (_E), < (_E), <> (_E))

Function	FBD parts			
> >_E >= >=_E = =_E <= <=_E < <_E	(With EN/ENO pins) IN1 OUT IN2 IN8 IN8 Indicates >,>=,=,<=,<. Pin number of input variable IN can be changed in the range of 2 to 8.			
<> <>_E	(With EN/ENO pins)			

With EN/ENO pins	0
Overload	0
Input pin number changeable (range)	2 to 8

With EN/ENO pins	0
Overload	0
Input pin number changeable	_
(range)	

Function overview: Output comparison results of the input data.

Function/ FB classification name: Comparison function

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: stop)
Input			INT	
Input IN1 to IN8	Input variable	DINT	Input	
		REAL		
Output ENO O		Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	BOOL	Output (TRUE: True value FALSE: False value)

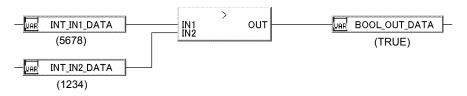
Function

Item	Contents
	 (1) This process performs comparison operation for the values input from the input variable IN, and output the results from output variable OUT in the same data type as input variable IN. (a) ☐ ☐ ☐ Compare [IN1> IN2] &[IN2> IN3]&&[IN (n-1) > IN (n)] When all IN (n-1) > IN (n), output TRUE. When any IN (n-1) ≤ IN (n), output FALSE.
Operation processing	(b) = E Compare [IN1≥ IN2] &[IN2≥IN3]& &[IN (n-1) ≥ IN (n)] • When all IN (n-1) ≥ IN (n), output TRUE. • When any IN (n-1) < IN (n), output FALSE.
	(c) E E_E Compare [IN1= IN2] &[IN2=IN3]&&[IN (n-1) = IN (n)] ■ When all IN (n-1) = IN (n), output TRUE. ■ When any IN (n-1) ≠IN (n), output FALSE.

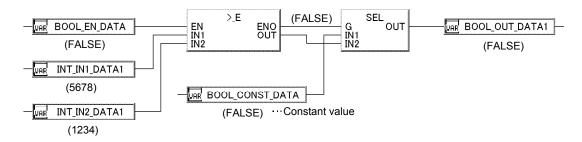
4 - 102 4 - 102

Item	Contents						
	(d) <= _E Compare [IN1 ≤ IN2] &[IN2 ≤ IN3]&&[IN (n-1) ≤ IN (n)] ■ When all IN (n-1) ≤ IN (n), output TRUE. ■ When any IN (n-1) > IN (n), output FALSE.						
Operation	(e)						
processing	(f) <> _E Compare [IN1≠ IN2] • When IN1≠ IN2, output TRUE. • When IN1= IN2, output FALSE. 2) The value input from input variable IN is INT/DINT/REAL type data.						
	(3) The pin number of input variable IN is within 2 to 8. (But the pins of the input variable IN of <> (_E) are fixed as IN1, IN2.)						
	(1) Functions without EN/ENO pins The operation results is as follows:						
	Operation result OUT						
	No operation error Operation output value						
	Operation error occur Indefinite value						
Operation	2) Functions with EN/ENO pins Execution conditions and operation results are as follows:						
results	Execution condition Operation result						
	EN ENO OUT						
	TRUE Operation output TRUE (No operation errors) value						
	(Operation execution) FALSE (Operation errors occur) (*) Indefinite value						
	FALSE (Operation stop) FALSE (*) Indefinite value						
	* When output from ENO is FALSE, the output from OUT will be indefinite value. In this case, please do not use the output data from OUT in program processing.						

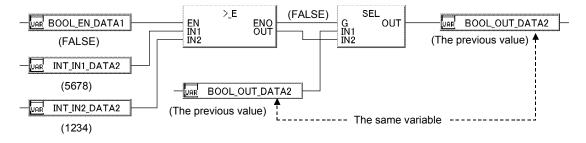
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.


• When the input value is -0. (Error code: 4100)

4 - 103 4 - 103


Program Example

Following is the program example in which comparison operation (input from input variable IN) is executed, and the result is output from the output variable OUT in the same data type with input variable IN.


(1) Basic program example (>)

- (2) This is a program example in which the output is constant value when the input variable EN is FALSE or operation errors occur. (>_E)
 - (E.g.) When the input variable EN is FALSE

- (3) This is a program example in which the output is the previous value when the input variable EN is FALSE or operation errors occur. (> E)
 - (E.g.) When the input variable EN is FALSE

4 - 104 4 - 104

4.8 Character String Function

4.8.1 String Length (LEN (_E))

Function	FBD parts				
LEN LEN_E	(With EN/ENO pins) LEN LEN_E EN ENO IN OUT				

With EN/ENO pins	0
Overload	_
Input pin number	
changeable (range)	

Function overview: Detect and output the input string length

Function/FB classification name: Character string function

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
Innut	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input IN		Input variable	STRING (255)	Input
0	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	INT	Output

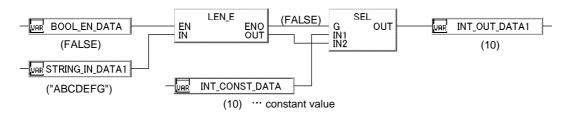
Function

Item	Contents							
	(1) Detect the string length input from the input variable IN, and output it from output variable OUT. High-order byte Low-order byte							
	:	STRING the 1st word the 2nd word		CII code of the 2nd character		ode of the 1st character		The length of character
Operation processing		the 3rd word	ASC	CII code of the 6th character ASCII code of the 5th character			string	
		the nth word		00H ASCII code of the nth character			INT type	
		(Indica	 ating the end of the strir	ng)			
	(2) The value input from input variable IN are STRING type within the range of 0 to 255 bytes.							
(1) Functions without EN/ENO pins The operation results are as follows.								
	Operation result			OUT				
	No operation error			Operation output value Undefined value				
Operation	` '	Operation error occurrence Functions with EN/ENO processing Execution conditions and	oins					
results	,	Execution condition			peration			
		EN		ENO TRUE (No operation	orror)	OUT Operation output	value	
		TRUE (Operation execution)	FALSE (Operation error occu		Undefined val		
		FALSE (Operation sto		FALSE (*)		Undefined val	ue	
* When output from ENO is FALSE, the output from OUT will be undefin In this case, please do not use the output data from OUT in program prog								

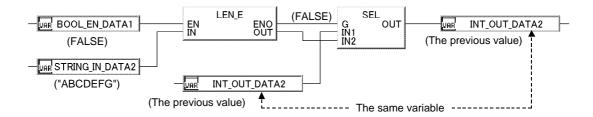
4 - 105 4 - 105

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

• "00H" is not included in the string input from input variable IN. (Error code: 4100)


Program Examples

The following are programs that will detect the string length input from the input variable IN and output from output variable OUT.


(1) Basic program example (LEN)

- (2) This is a program example in which the output is constant value when the input variable EN is FALSE or operation error occurs. (LEN_E)
 - (E.g.) When input variable EN is FALSE

- (3) This is a program example in which the output is the previous value when the input variable EN is FALSE or operation error occurs. (LEN_E)
 - (E.g.) When input variable EN is FALSE

4 - 106 4 - 106

4.8.2 Leftmost/Rightmost Characters (LEFT(_E), RIGHT(_E))

Function	FBD parts	With EN/ENO pins	0				
	(With EN/ENO pins)	Overload	_				
LEFT RIGHT LEFT_E RIGHT_E	IN OUT — ENO IN OUT L	Input pin number changeable (range)	_				
Function overview: LEFT (_E) Output specified number of characters from leftmosted RIGHT (_E) Output specified number of characters from rightmosted							
Function/FB classification name: Character string function							

Input and Output Pins

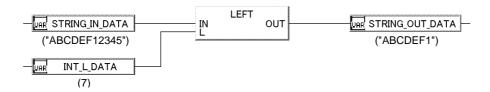
Pin	Variable name	Variable type	Data type	Content
	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input	IN	Input variable	STRING (255)	Input
	L	Input variable	INT	The specification of character number extraction
Outrout	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	STRING (255)	Output

Function

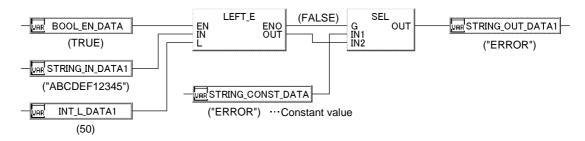
Item				Contents			
	OUT.	er number dat xtract is specif	ied by the val	the input variable IN ue input from input le L is 7	,	utput from the	e output variable
		"ABCDE	<u>F1</u> 2345"	$\qquad \Longrightarrow \qquad$	" <u>ABC</u>	DEF1"	
Operation	Hi	gh-order byte	low-order by	rte	High-order byte	low-order b	yte
processing	the 1st word	42H(B)	41н(A)		42H(B)	41H(A)	the 1st word
	the 2nd word	44H(D)	43H(C)		44H(D)	43H(C)	the 2nd word
	the 3rd word	46⊦(F)	45H(E)		46H(F)	45H(E)	the 3rd word
	the 4th word	32н(2)	31⊦(1)	 ←¬	00н	31н(1)	the 4th word
	the 5th word	34H(4)	33H(3)	l 7 characters num	nber of extracting	(1)	
	the 6th word	00H	35⊦(5)	. c.ia.actoro man		(-)	
				-			

4 - 107 4 - 107

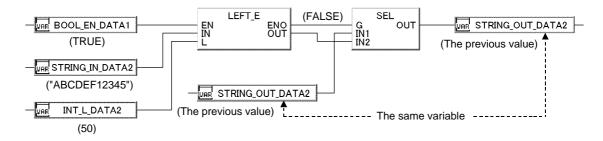
Item					Contents				
	Speci OUT. The c	characters ext	number data		ne input variable IN e input from input v e L is 5			tput from the	output variable
			"ABCDE	F <u>12345</u> "	$\qquad \Longrightarrow \qquad$		" <u>12</u>	<u>345</u> "	
Operation processing	the 2r the 3 the 4 the 5 the 6 (3) The v (4) The v	st word and word ard word bith word bith word bith word bith word calues input from	om input varia	able L is INT t	Character numbe ING type data within type within the range acter number of the	r of extr	ange of 0 to	o 255 bytes.	the 1st word the 2nd word the 3rd word
	` '	ions without E		ws.					
		Operation res			OUT				
		No operation of		Operation	n output value				
	Ор	eration error	occurs	Unde	fined value				
Operation	` '	ions with EN/	•	ion results are	e as follows.				
results		Execution co	ndition		Operation	n result			
		EN			ENO		OL	JT	
		TRUE (Operation ex			FALSE on error occurs) (*)	0	peration o	utput value e value	
	F.A	ALSE (Operat	ion stops)		FALSE (*)		Indefinit	e value	
				•	t from OUT will be t ta from OUT in pro				

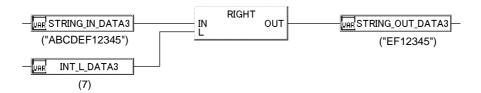

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

- When "00H" is not included in the string input from input variable IN. (Error code: 4100)
- The value input from the input variable L is beyond the range of character number of the characters input from the input variable IN. (Error code: 4100)


4 - 108 4 - 108

Program Examples


- (1) Specified character number data (input from the input variable IN) is extract and output from the output variable OUT.
 - (a) Basic program example (LEFT)


- (b) This is a program example in which the output is constant value when the input variable EN is FALSE or operation error occurs. (LEFT_E)
 - (E.g.) When operation errors occur

- (c) This is a program example in which the output is the previous value when the input variable EN is FALSE or operation error occurs. (LEFT_E)
 - (E.g.) When operation errors occur

- (2) Specified character number data (input from the input variable IN) is extract and output from the output variable OUT.
 - (a) Basic program example (RIGHT)

4 - 109 4 - 109

4.8.3 Middle Characters (MID (_E))

Function	FBD parts
MID MID_E	(With EN/ENO pins) MID

With EN/ENO pins	0
Overload	
Input pin number changeable (range)	_

Function overview: Output the specified number of characters beginning from any position of the input character string.

Function/FB classification number: Character string function

Input and Output Pins

Pin	Variable name	Variable type	Data type	Content
	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input	IN	Input variable	STRING (255)	Input
	L	Input variable	INT	The specification of character number extraction
	Р	Input variable	INT	The specification of head position extraction
	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	STRING (255)	Output

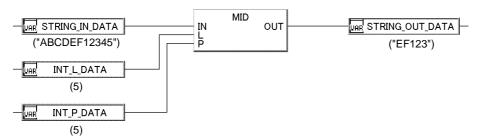
Function

Item	Contents
	(1) Specified character number data (input from the input variable IN) is extracted and output from the output variable OUT. The number of characters extracted is specified by the value input from input variable L. The head position of extracted character string is specified by the input value to the input variable P. (E.g.) When the value input from input variables L and P are both 5
Operation processing	"ABCDEF12345" High-order byte low-order byte the 1st word the 2nd word the 3rd word the 4th word the 5th word the 6th word the 1st word the 6th word the 1st word the 2nd word the 3rd word the 5th word the 6th word the 1st word the 2nd word the 2nd word the 2nd word the 3st word the 2nd word the 3rd word the 3st word the 2nd word the 3st word the 2nd word the 3st word the 2nd word the 2nd word the 2nd word the 2nd word the 3st word the 2nd word the 2nd word the 3st word the 2nd word the 3st word the 2nd word the 2nd word the 2nd word the 3st word the 2nd wor

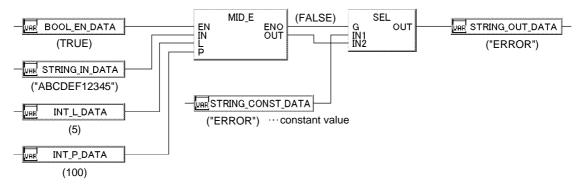
4 - 110 4 - 110

Item			Contents		
	(1) Functions without EN/ENO pins The operation results is as follows.				
		Operation results	OUT		
		No operation error	Operation output value		
		Operation error occurs	Undefined value		
Operation	(2) Functions with EN/ENO pins Execution conditions and operation results are as follows.				
results		Execution condition	Operation	result	
		EN	ENO	OUT	
		TRUE	TRUE (No operation error)	Operation output value	
		(Operation execution)	FALSE (Operation error occurs) (*)	Undefined value	
		FALSE (Operation stops)	FALSE (*)	Undefined value	
		* When output from ENO is FAL In this case, please do not use	SE, the output from OUT will be the output data from OUT in pr		

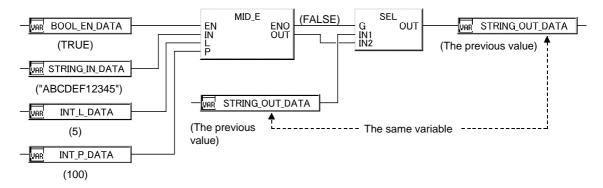
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.


- "00H"' is not included in the string input from input variable IN. (Error code: 4100)
- The input value from the input variable L is beyond the range of character number of the characters input from the input variable IN. (Error code: 4100)

4 - 111 4 - 111


Program Examples

Following are the programs that will extract specified character number data (input from the input variable IN) and output from the output variable OUT.


(1) Basic program example (MID)

- (2) This is a program example in which the output is constant value when the input variable EN is FALSE or operation error occurs. (MID_E)
 - (E.g.) When operation errors occur

- (3) This is a program example in which the output is the previous value when the input variable EN is FALSE or operation error occurs. (MID_E)
 - (E.g.) When operation errors occur

4 - 112 4 - 112

4.8.4 Concatenation (CONCAT (_E))

Function	FBD parts
CONCAT CONCAT_E	(With EN/ENO pins) CONCAT IN1 OUT IN2 (With EN/ENO pins) CONCAT_E EN ENO IN1 OUT IN2

With EN/ENO pins	0
Overload	_
Input pin number changeable (range)	

Function overview: Concatenate two characters and output the combined characters

Function/FB classification: Character string function

Input and Output Pins

Pin	Variable name	Variable type	Data type	Content
	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input	IN1	land to a dale la	OTDINO (OFF)	land
	IN2	Input variable	STRING (255)	Input
Outroot	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	STRING (255)	Output

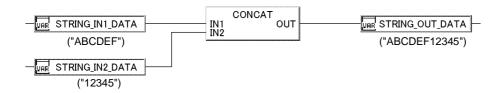
Function

Item				Contents		
	Then the conc While concate character IN2	catenated string will enating two characte is closely concatena	be output from thers, "00н" indicationated.	ne output variable OU	JT. aracters input to IN1	from input variable IN1. is ignored, the second out. "ABCDE123456"
Operation processing	the 1st word the 2nd word the 3rd word	44H(D) 43H(C) 00H 45H(E)	the 1st word the 2nd word the 3rd word the 4th word	rder byte low-order 32H(2) 31H(1) 34H(4) 33H(3) 36H(6) 35H(5) 00H	the 1st word the 2nd word the 3rd word the 4th word the 5th word the 6th word	rder byte low-order byte 42H(B) 41H(A) 44H(D) 43H(C) 31H(1) 45H(E) 33H(3) 32H(2) 35H(5) 34H(4) 00H 36H(6) 255 bytes.

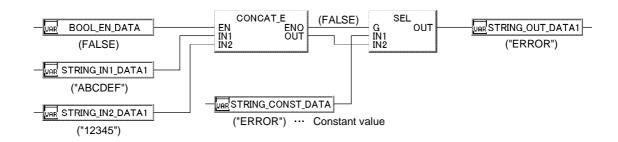
4 - 113 4 - 113

Item			Contents	
	` '	Functions without EN/ENO pins The operation results is as follow	rs.	
		Operation results	OUT	
		No operation error	Operation output value	
		Operation error occurs	Undefined value	
Operation results	` '	Functions with EN/ENO pins Execution conditions and operati Execution condition	sult	
		EN	ENO	OUT
			TRUE (No operation error)	Operation output value
		TRUE (Operation execution)	FALSE (Operation error occurs) (*)	Undefined value
		FALSE (Operation stops)	FALSE (*)	Undefined value
		·	SE, the output from OUT will be und the output data from OUT in progra	

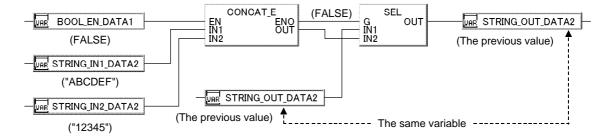
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.


• "00H" is not included in input value of input variable IN1, IN2. (Error code: 4100)

4 - 114 4 - 114


Program Example

Following are the programs that will output character string from input variable IN2 to output variable OUT concatenated it to the end of characters input from IN1.


(1) Basic program example (CONCAT)

- (2) This is the program example in which the output is constant value when the input variable EN is FALSE, or operation error occurs. (CONCAT _E)
 - (E.g.) When input variable EN is FALSE

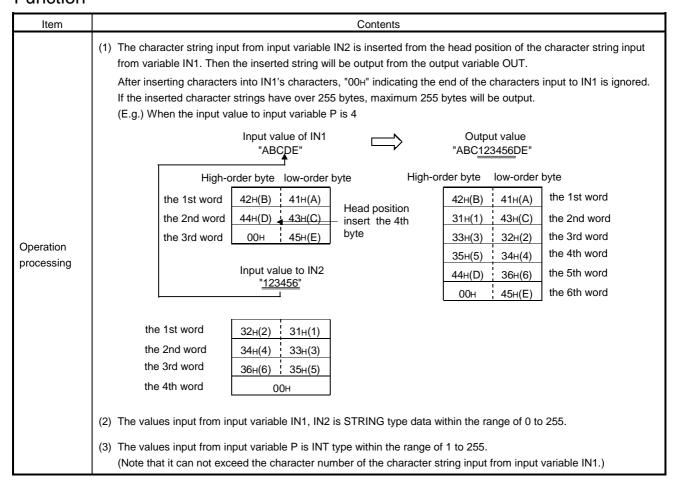
- (3) This is the program example in which the output is previous value when the input variable EN is FALSE, or operation error occurs. (CONCAT _E)
 - (E.g.) When input variable EN is FALSE

4 - 115 4 - 115

4.8.5 Inserting Characters (INSERT(_E))

Function	FBD parts			
	INSERT	(With EN/ENO pins)		
INSERT INSERT_E	IN1 OUT	— EN ENO — — — — — — — — — — — — — — — — — — —		

With EN/ENO pins	0
Overload	_
Input pin number changeable (range)	_


Function overview: Insert characters into character strings and output the finished one.

Function/FB classification name: Character string function

Input and Output Pins

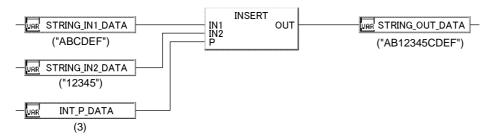
Pin	Variable name	Variable type	Data type	Content
	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input	IN1 IN2	Input variable	STRING (255)	Input
	Р	Input variable	INT	The specification of head position insert
ENO ENO		Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	STRING (255)	Output

Function

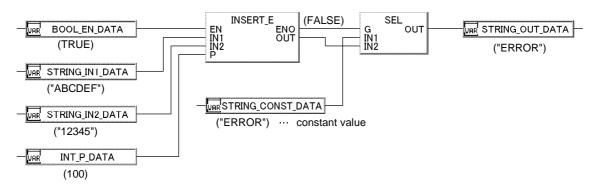
4 - 116 4 - 116

Item	Contents				
	` '	Functions without EN/ENO pins The operation results is as follow	s.		
		Operation results	OUT		
		No operation error	Operation output value		
		Operation error occurs	Undefined value		
Operation results		Execution conditions and operation Execution condition	on results are as follows. Operation re	sult	
		EN	ENO	OUT	
		TRUE	TRUE (No operation error)	Operation output value	
			(Operation execution)	FALSE (Operation error occurs) (*)	Indefinite value
		FALSE (Operation stops)	FALSE (*)	Indefinite value	
	* When output from ENO is FALSE, the output from OUT will be undefined value. In this case, please do not use the output data from OUT in program processing.				

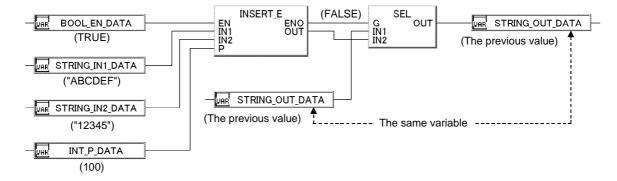
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.


- "00H" is not included in the input value from the input variable IN1, IN2. (Error code: 4100)
- The input value to input variable P exceeds the character number of the string input to IN1 +1. (Error code: 4100)

4 - 117 4 - 117


Program Example

The following are the programs that will detect the string length input from the input variable IN and output from output variable OUT.


(1) Basic program example (INSERT)

- (2) This is the program example in which the output is constant value when the input variable EN is FALSE, or operation error occurs. (INSERT _E)
 - (E.g.) When operation errors occur

- (3) This is the program example in which the output is previous value when the input variable EN is FALSE, or operation error occurs. (INSERT _E)
 - (E.g.) When operation errors occur

4 - 118 4 - 118

4.8.6 Deleting Substring (DELETE (_E))

Function	FBD parts			
DELETE DELETE_E	(With EN/ENO pins) DELETE			

With EN/ENO pins	0
Overload	l
Input pin number changeable (range)	

Function overview: Delete substring within any range and output the result.

Function/FB classification name: Character string function

Input and output pins

Pin	Variable name	Variable type	Data type	Content
EN		Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
IN IN	IN	Input variable	STRING (255)	Input
Input	L	Input variable	INT	The specification of character number of deletion
	Р	Input variable	INT	The specification of head position deletion
0	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
Output	OUT	Output variable	STRING (255)	Output

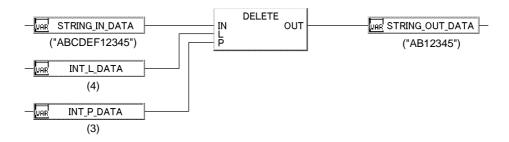
Function

Item	Contents						
	(1) Specified character number data (input from the input variable IN) is deleted and output from the output variable OUT. The deleted characters are specified by the value input from input variable L. The head position of character string to be deleted is specified by the input value to the input variable P. (E.g.) When the input value of the input variable L, P is 5 "ABCDEF12345" "ABCD45"						
Operation processing	High-order byte low-order byte the 1st word the 2nd word the 3rd word the 4th word the 5th word the 6th word the 6th word the 1st word the 6th word the 1st word the 1st word the 6th word the 1st word the 6th word						

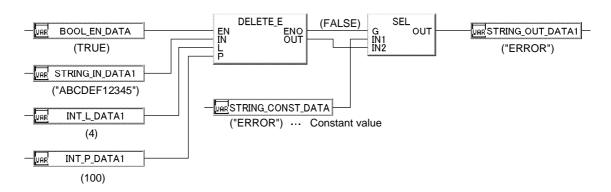
4 - 119 4 - 119

Item	Contents					
	` ′	Functions without EN/ENO pins The operation results are as follo	ows.			
		Operation results	OUT			
		No operation error	Operation output value			
		Operation error occurs	Undefined value			
Operation results	` ′	Functions with EN/ENO pins Execution conditions and operat Execution condition	ion results are as follows.	esult		
		EN	ENO	OUT		
		TRUE	TRUE (No operation error)	Operation output value		
				(Operation execution)	FALSE (Operation error occurs) (*)	Undefined value
		FALSE (Operation stops)	FALSE (*)	Undefined value		
		·	SE, the output from OUT will be un the output data from OUT in progra			

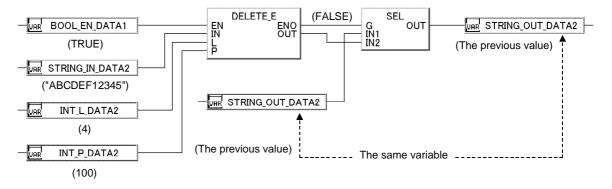
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.


- "00H" is not included in the input value from the input variable IN1, IN2. (Error code: 4100)
- The input value to input variable P exceeds the character number of the string input to IN1 +1. (Error code: 4100)

4 - 120 4 - 120


Program Example

The following are the programs that will delete the string length input from the input variable IN and output from output variable OUT.


(1) Basic program example (DELETE)

- (2) This is the program example in which the output is constant value when the input variable EN is FALSE, or operation error occurs. (DELETE _E)
 - (E.g.) When operation errors occur

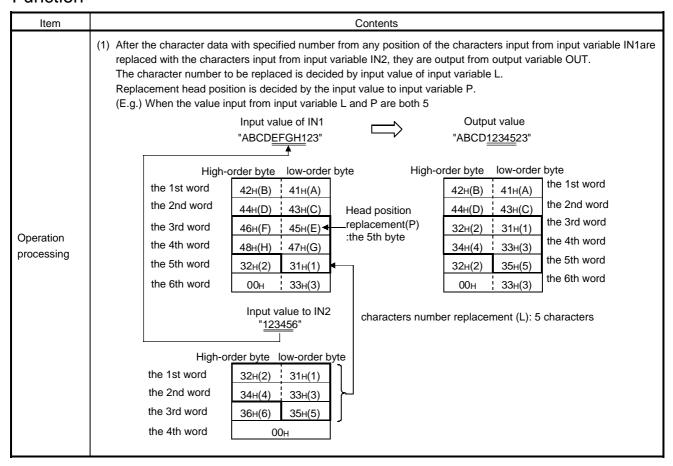
- (3) This is the program example in which the output is previous value when the input variable EN is FALSE, or operation error occurs. (DELETE _E)
 - (E.g.) When operation errors occur

4 - 121 4 - 121

4.8.7 Replacing Characters (REPLACE (_E))

Function	FBD parts			
REPLACE REPLACE_E	REPLACE IN1 OUT IN2 L P	(With EN/ENO pins) REPLACE_E EN ENO IN1 OUT IN2 L		
		Р		

With EN/ENO pins	0
Overload	
Input pin number changeable (range)	_


Function overview: Replace characters within any range and output the result.

Function/FB classification name: Character string function

Input and output pins

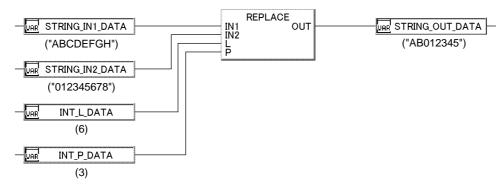
Pin	Variable name	Variable type	Data type	Content
	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input	IN1 IN2	Input variable	STRING (255)	Input
	L	Input variable	INT	The specification of character number replacement
	P Input variable INT		INT	The specification of head position replacement
Output ENO OUT		Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
		Output variable	STRING (255)	Output

Function

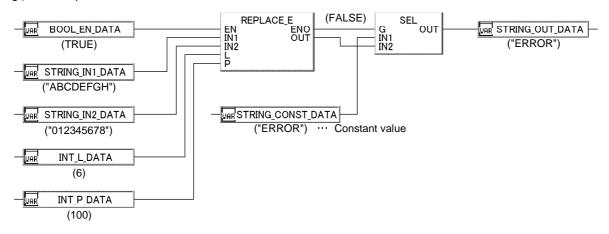
4 - 122 4 - 122

Item	Contents					
	(2) The values input from input variable IN is STRING type data within the range of 0 to 255.					
Operation processing	(3) The values input from input variable L is INT type within the range of 0 to 255. (Pay attention that it can not exceed the character number of the character string input from IN1)					
	(4) The values input from input variable P is INT type within the range of 1 to 255. (Pay attention that it can not exceed the character number of the character string input from IN1)					
	(1) Functions without EN/ENO pins The operation results is as follows.					
	Operation results OUT					
	No operation error Operation output value					
	Operation error occurs Undefined value					
Operation	(2) Functions with EN/ENO pins Execution conditions and operation results are as follows.					
results	Execution condition Operation result					
	EN ENO OUT					
	TRUE (No operation error) Operation output value					
	TRUE (Operation execution) FALSE (Operation error occurs) (*) Undefined value					
	FALSE (Operation stops) FALSE (*) Undefined value					
	* When output from ENO is FALSE, the output from OUT will be undefined value. In this case, please do not use the output data from OUT in program processing.					

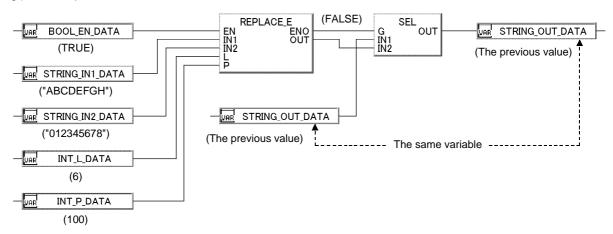
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.


- "00H" is not included in the input value from input variable IN1, IN2. (Error code: 4100)
- The input value of input variable P exceeds the character number range of the string input from input variable IN1. (Error code: 4100)

4 - 123 4 - 123


Program Example

The following are the programs that will delete the specified number of character data input from IN and output from output variable OUT.


(1) Basic program example (REPLACE)

- (2) This is the program example in which the output is constant value when the input variable EN is FALSE, or operation error occurs. (REPLACE _E)
 - (E.g.) When operation errors occur

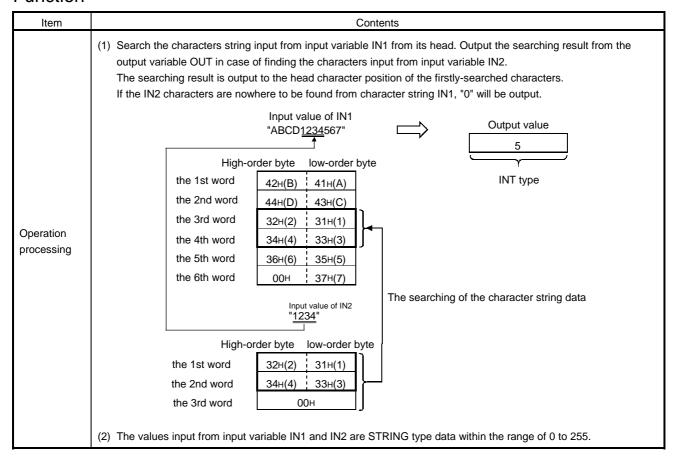
- (3) This is the program example in which the output is previous value when the input variable EN is FALSE, or operation error occurs. (REPLACE _E)
 - (E.g.) When operation errors occur

4 - 124 4 - 124

4.8.8 Finding Characters (FIND (_E))

Function	FBD parts			
FIND FIND_E	(With EN/ENO pins) FIND IN1 OUT IN2 (With EN/ENO pins) FIND_E EN ENO IN1 OUT IN2			

With EN/ENO pins	0
Overload	I
Input pin number changeable (range)	_
	•


Function overview: Search the characters and output the searching result.

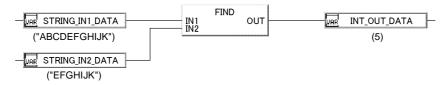
Function/FB classification name: Character string function.

Input and Output Pins

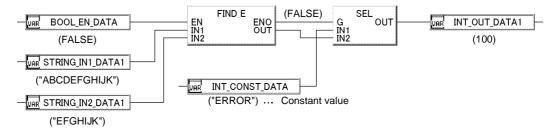
Pin	Variable name	Variable type	Data type	Contents	
	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)	
Input	IN1	la most constabile	STRING (255)		
	IN2	Input variable		Input	
0	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)	
Output	OUT	Output variable	INT	Output	

Function

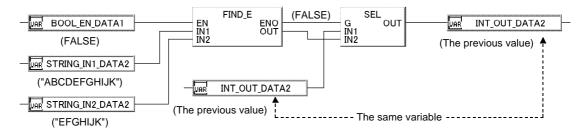
4 - 125 4 - 125


Item			Contents			
	` '	Functions without EN/ENO pins The operation results is as follow	vs:			
	(2) Functions with EN/ENO pins Execution conditions and operation results are as follows.					
Operation		Execution condition	Operation	Operation result		
results		EN	ENO	OUT		
		TRUE (Operation execution)	TRUE	Operation output value		
		FALSE (Operation stop)	FALSE (*)	Undefined value		
	* When output from ENO is FALSE, the output from OUT will be undefined value. In this case, please do not use the output data from OUT in program processing.					

There is no operation error caused by FIND (_E).


Program Example

The following are the programs that will search the string (input from IN2) from the head position of the string input from IN1 and output from output variable OUT.


(1) Basic program example (FIND)

- (2) This is the program example in which the output is constant value when the input variable EN is FALSE. (FIND E)
 - (E.g.) When input variable EN is FALSE

- (3) This is the program example in which the output is previous value when the input variable EN is FALSE. (FIND E)
 - (E.g.) When input variable EN is FALSE

4 - 126 4 - 126

4.9 Helper Function

4.9.1 WORD→16BOOL Unbinding (UNBIND(_E))

Function	FBD part	s
		(With EN/ENO pins)
	UNBIND	UNBIND_E
UNBIND UNBIND_E	N X0 —	EN ENO — IN X0 — X1 — X2 — X3 — X4 — X5 — X6 — X7 — X8 — X9 — XA — XA — XC —
	XE XF	XD XE XE

With EN/ENO pins	0
Overload	-
Input pin number changeable (range)	_

Function overview: Unbind WORD type data into 16 BOOL type data then output the result.

It is applicable in unbinding the WORD type data output from module FB (CCLINK_, CCLINK_2, CCLINK_3, CCLINK_4) to BOOL type data.

Function/FB classification name: Helper function

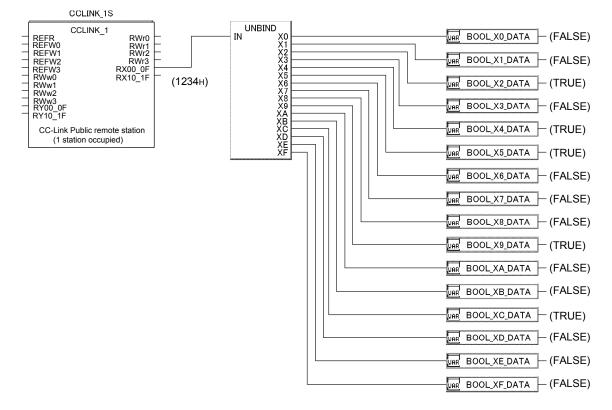
Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	
lmm. v4			Execution condition (TRUE: Execute FALSE: Stop)		
Input IN		Input variable	WORD	Input	
	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)	
Output	X0 to XF	Output variable	BOOL	Output	

Function

Item	Contents			
Operation Processing	(1) This processing performs the operation of unbinding the WORD type data input from input variable IN into 16 BOOL type data and output them from the output variable X0 to XF. WORD type Input variable IN 0 0 1 0 1 1 1 1 0 0 0 1 0 0 1			
	Output variable 0 0 1 0 1 1 1 1 1 0 1 0 0 1 0 0 1 0 0 1 XF XE XD XC XB XA X9 X8 X7 X6 X5 X4 X3 X2 X1 X0			
	BOOL BOOL BOOL BOOL BOOL BOOL BOOL BOOL			

4 - 127 4 - 127


Item	Contents					
	` '	Functions without EN/ENO pir Execute operation processing		tput value from OUT.		
	(2) Functions with EN/ENO pins					
Operation	Execution condition and operation result are as follows:					
Operation		Execution condition	Operation	result		
results		EN	ENO	X0 to XF		
		TRUE (Operation execution)	TRUE	Operation output value		
		FASLE (Operation stop)	FALSE (*)	Indefinite value		
		* When output from ENO is FA In this case, please do not us	•			

There is no operation error caused by UNBIND (E).

Program Example

Following is the program example in which the WORD type data input from input variable IN is unbinded into 16 BOOL type data, and then the result is output from output variable X0 to XF.

(1) Basic program example (UNBIND)

4 - 128 4 - 128

4.9.2 16 BOOL→WORD/DWORD (BIND(_E))

Function	FBD parts			
BIND BIND_E	BIND BIND BIND_E			

With EN/ENO pins	0
Overload	0
Input pin number changeable (range)	_

Function overview: Output the 16 BOOL type data in the data type (WORD/DWORD type) connected to output pin OUT. It is applicable in inputting DWORD type data to input pins (RY00_0F etc.) of module FB (CCLINK_1, CCLINK_2, CCLINK_3, CCLINK_4).

Function/FB classification name: Helper function

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	
Innut	Input Variable BOOL Execution condition (TRUE: Execute FALSE: Stop)		Execution condition (TRUE: Execute FALSE: Stop)		
Input		Input			
	ENO	Output variable	BOOL	Execution status (TRUE: Normal FALSE: Abnormal)	
Output	OUT	Output variable	WORD	Outrait	
			DWORD	Output	

Function

Item	Contents				
Operation Processing	(1) This processing outputs the BOOL type data input from input variable Y0 to YF in the data type (WORD/DWORD type) connected to output pin OUT. (a) When the data that is connected to output pin OUT is DWORD type Arrange the BOOL type data that is input from input variable Y0 to YF into DWORD type data (low-order word), and output them from output variable OUT. The high-order word of the DWORD type data that is output from output variable OUT is used by system. BOOLBOOLBOOLBOOLBOOLBOOLBOOLBOOLBOOLBO				

4 - 129 4 - 129

Item			Contents			
		(b) When the data type connected to the output pin OUT is WORD type. Arrange the BOOL type data input from input variable Y0 to YF into WORD type data and output them from output variable OUT.				
Operation Processing	(2)	The input value of input variable Y	0 to YF is BOOL type data value	е		
	` '	Compile error will not occur in BIN YF).	e error will not occur in BIND (_E) even if variable, as well as constant, is not connected to input pins (Y0 to			
 (1) Functions without EN/ENO pins Execute operation processing and output the operation output value from OUT. (2) Functions With EN/ENO pins Execution condition and operation result are as follows: 						
Operation		Execution condition	Operation	result		
results		EN	ENO	OUT		
		TRUE (Operation execution)	TRUE	Operation output value		
		FALSE (Operation stop)	FALSE (*)	Indefinite value		
* When output from ENO is FALSE, the output from OUT will be indefinite value. In this case, please do not use the output data from OUT in program processing.						

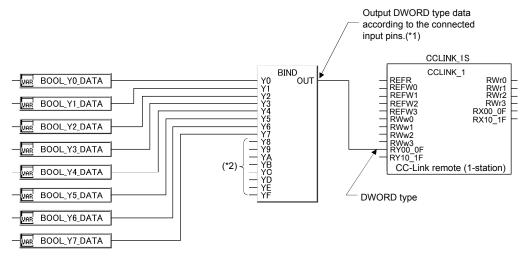
POINT

Compile error will not occur even if variable/constant is not connected to the input pins (Y0 to YF) of BIND (_E). So please connect variable with output pins (OUT). However, compile error will occur when variable is not connected to output pins (OUT).

Error

There is no operation error caused by BIND (_E).

4 - 130 4 - 130


Program Example

Following is the program example in which data is output to the remote output (RY) of module FB "CCLINK_1S".

Output from FBD program to RY00 to RY07.

Output from ladder program to RY08 to RY0F.

(1) Basic program example: (BIND)

- *1: The high-order word of DWORD type data is used by system.
- *2: Please don't connect variable to the corresponding pins (Y8~YF in the above figure) to the remote output (RY) from ladder program.

4 - 131 4 - 131

4.9.3 2WORD→DWORD (MAKE_DWORD(_E))

Function	FBD parts		
MAKE_DWORD MAKE_DWORD_E	(With EN/ENO pins) MAKE_DWORD L OUT — EN ENO L OUT — H		

With EN/ENO pins	0
Overload	_
Input pin number changeable (range)	_

Function overview: Merge 2 WORD type data into 1 DWORD type data and output the result.

Function/FB classification name: Helper function

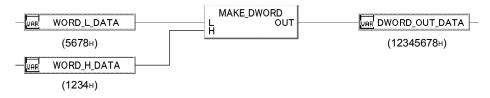
Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	
	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)	
Input L Input variable		Input variable	WORD	Input (low-order word)	
	Н	Input variable	WORD	Input (high-order word)	
0.44	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)	
Output	OUT	Output variable	DWORD	Output	

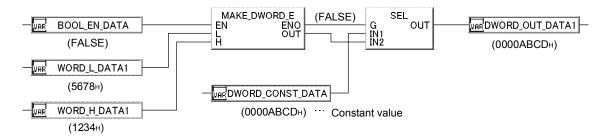
Function

Item			Contents		
		Following is the processing in wh into DWORD type data and outpoor The low-order word of output valuis the input value to input variable	uts result from output variable Cue is the input value to input var	OUT.	_
Operation Processing		The input value to The input variable H input variable			
		WORD type WORD	type DWOR	F00H	
	(2)	The input value to input variable	L, H is WORD type data value.		
	` '	Functions without EN/ENO pins Execute operation processing an	d output operation output value	from OUT.	
	` '	Functions with EN/ENO pins Execution conditions and operati	on results are as follows.		
Operation		Execution condition	Operation	result	
results		EN	ENO	OUT	
		TRUE (Operation execution)	TRUE	Operation output value	
		FALSE (Operation stop)	FALSE (*)	Indefinite value	
		* When output from ENO is FAL In this case, please do not use	SE, the output from OUT will be the output data from OUT in pro		

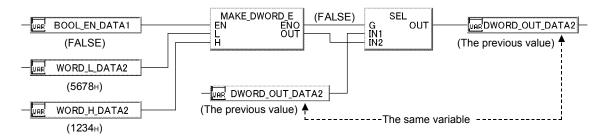
Error


There is no operation error caused by MAKE_DWORD(_E)

4 - 132 4 - 132


Program Example

The following are the programs that will merge the WORD type data and DWORD type data input from input variable L and H, and output from output variable OUT.


(1) Basic program example (MAKE_DWORD)

(2) This is the program example in which the output is constant value when the input variable EN is FALSE. (MAKE_DWORD)

(3) This is the program example in which the output is previous value when the input variable EN is FALSE. (MAKE DWORD)

4 - 133 4 - 133

4.9.4 High-order/Low-order Output of DWORD Type Data (HI_WORD(_E), LO_WORD(_E))

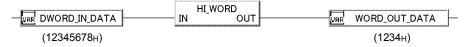
Function	FBD parts	With EN/ENO pins	0			
HI_WORD LO_WORD HI_WORD_E	(With EN/ENO pins)	Overload Input pin number changeable (range)				
LO_WORD_E	Indicates HI_WORD, LO_WORD					
Function overview: HI_WORD(_E) outputs the high-order word of DWORD type data. LO_WORD(_E) outputs the low-order word of DWORD type data.						

Input and Output Pins

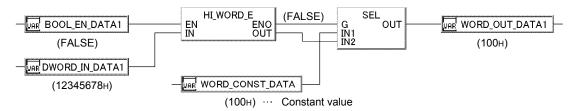
Function/FB classification name: Helper function.

Pin	Variable name	Variable type	Data type	Contents	
	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)	
Input	IN	Input variable	DWORD	Input	
0	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)	
Output	OUT	Output variable	WORD	Output	

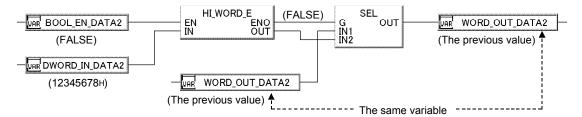
Function

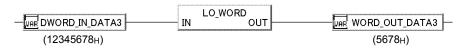

4 - 134 4 - 134

Item			Contents		
	(1) Functions without EN/ENO pins Execute operation processing and output the operation output value from OUT.				
	` ′	Functions With EN/ENO pins Execution condition and operation result are as follows:			
Operation		Execution condition EN	Operatio ENO	OUT	
results		TRUE (Operation execution)	TRUE	Operation output value	
		FASLE (Operation stop)	FALSE (*)	Indefinite value	
		* When output from ENO is FAL In this case, please do not use			


There is no operation error caused by HI_WORD (_E), LO_WORD (_E).

Program Example


- (1) Following are the program examples in which the high-order word (of DWORD type data that is input from input variable IN) is output from the output variable OUT.
 - (a) Basic program example (HI_WORD)


(b) This is the program example in which the output is constant value when the input variable EN is FALSE, or operation error occurs.(HI WORD E)

(c) This is the program example in which the output is previous value when the input variable EN is FALSE, or operation error occurs.(HI_WORD_E)

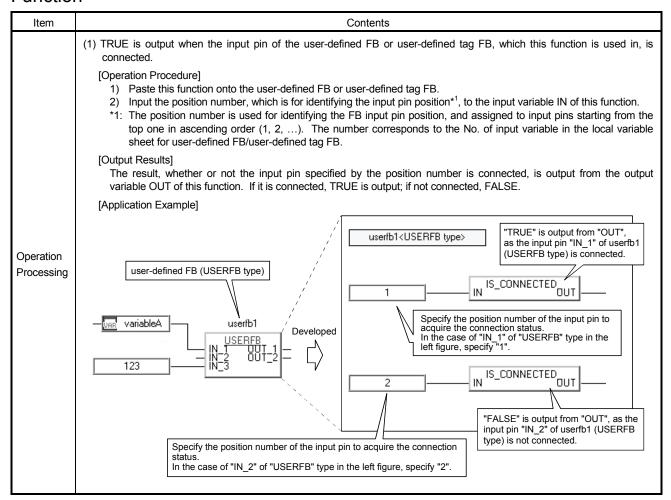
- (2) Following is the program example in which the low-order word (of DWORD type data that is input from input variable IN) is output from the output variable OUT.
 - (a) Basic program example (LO WORD)

4 - 135 4 - 135

4.9.5 Input pins connection status acquisition (IS_CONNECTED(_E)_)

Function	FBD parts
IS_CONNECTED_ IS_CONNECTED_E_	(with EN/ENO pins) IS_CONNECTED_ IN OUT - IN OU

With EN/ENO pins	0
Overload	
Input pin number changeable (range)	_


Function overview: Output the connection statuses of input pins of the user-defined FB/user-defined tag on which this function is pasted.

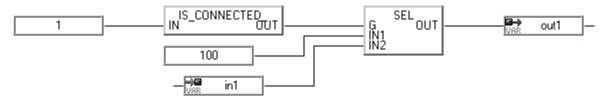
Function/FB classification name: Helper function

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
	IN	Input variable	INT	Input pin position number (1 to 64)
Output	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)
	OUT	Output variable	BOOL	Connection status (TRUE: Connected FALSE: Unconnected)

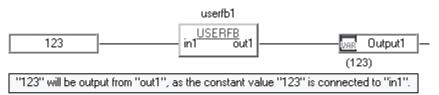
Function

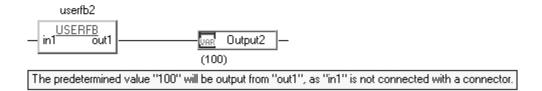
4 - 136 4 - 136


Item	Contents							
	(2) This function determines whether maximum of 64 input pins (position number 1 to 64) per user-defined FB/user-defined tag FB are connected or not. For the user-defined FB/user-defined tag FB that has 65 or more input pin the connection status of 65th or later pin cannot be determined.							
Operation Processing	(3) If the position number of the input pin that does not exit in the input variable IN is specified (Example: the number smaller than "0" or greater than "4" is input when the target has 3 input pints), an indefinite value will be output from the output OUT. (It is not regarded as an operation error. In the case of IS_CONNECTED_E_, FALSE will be output from the output variable ENO.)							
	(4) This function is applicable for the user-defined FB or user-defined tag FB only. (If this function is pasted onto a program, an indefinite value will be output from the output variable OUT. In the case of IS_CONNECTED_E_, FALSE will be output from the output variable ENO.)							
	(1) Functions without EN/ENO pins Execute operation processing and output the operation output value from OUT.							
	(2) Functions with EN/ENO pins Execution condition and operation result are as follows:							
	Execution condition	Opera	ation result					
	EN	ENO	OUT					
	TRUE (Operation execution)	TRUE	Operation output value					
	TRUE (Operation execution)	FALSE (*1)	Indefinite value(*2)					
	FALSE (Operation stop)	FALSE	indefinite value()					
	 *1: If the position number of the input pin that does not exit in the input variable IN is specified, ENO will become FALSE. *2: When output from ENO is FALSE, the output from OUT will be indefinite value. In this case, please do not use the output data from OUT in program processing. 							

There is no operation error caused by IS_CONNECTED(_E)_

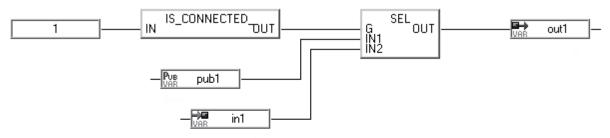
4 - 137 4 - 137


Program Example


- (1) The following provides the examples of creating and using the user-defined FB that outputs the corresponding value if the input pin is connected with a connector, and outputs the predetermined value if it is not connected.
 - 1) Example of creating the user-defined FB

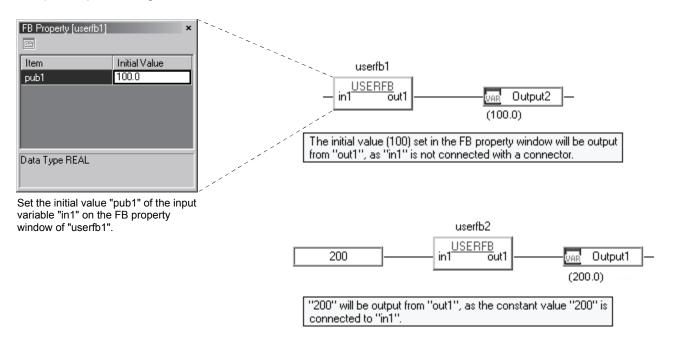
The SEL function selects the value of "in1" if the input variable "in1" is connected, and selects the predetermined value "100" if it is not connected, and then, outputs the value from the output variable "out1".

2) Example of using the above user-defined FB



4 - 138 4 - 138

(2) The following provides the examples of creating and using the user-defined FB for setting the initial value to an input variable.


(The user-defined FB outputs the initial value set in the FB property window if the input pin is not connected with a connector, outputs the corresponding value if it is connected.)

1) Example of creating the user-defined FB

The SEL function selects the value of "in1" if the input variable "in1" is connected with a connector, and selects the initial value (public variable "pub1") set in the FB property window if it is not connected, and then outputs the value from the output variable "out1".

2) Example of using the above user-defined FB

4 - 139 4 - 139

4.10 Ladder Program Control Function

4.10.1 Sub-routine Program Call (INT/REAL Type Argument) (CALL_DINT(_E), CALL_REAL(_E))

Function	FBD parts				
		(With EN/ENO pins)			
	CAL	L	CAL	L_□_E	
	— _Р	OUT_FD0	— EN	ENO	
CALL_DINT	IN_FD0	OUT_FD1	— P	OUT_FD0 —	
CALL REAL	IN_FD1	OUT_FD2	IN_FD0	OUT_FD1 —	
CALL DINT E	IN_FD2	OUT_FD3	IN_FD1	OUT_FD2	
	IN_FD3	OUT_FD4	IN_FD2	OUT_FD3 —	
CALL_REAL_E	IN_FD4		IN_FD3	OUT_FD4 —	
			IN_FD4		
		Indica	tes DINT, REAL		

With EN/ENO pins	0
Overload	_
Input pin number	_
changeable (range)	

Functions summary: CALL_DINT(_E) Subroutine program call. Input argument (DINT type) into input variable IN_FD0 to IN_FD4. (Execute the same processing as CALL instruction of sequent program).

CALL_REAL(_E)

Subroutine program call. Input argument (REAL type) into input variable

IN_FD0 to IN_FD4. (Execute the same processing as CALL instruction of sequent program).

Function/FB classification name: Ladder program control function

Input and Output Pins

(1) CALL_DINT CALL_DINT_E

Pin	Variable name	Variable type	Data type	Contents
	EN	Input variable	BOOL	Execution condition (TRUE: Execute, FALSE: Stop)
Innut	Р	Input variable	INT	The common pointer number of subroutine program
Input IN_FD0 to Inp		Input variable	DINT	Argument input of subroutine program
	ENO	Output variable	BOOL	Output status (TRUE: Normal, FALSE: Abnormal)
Output	OUT_FD0 to OUT_FD4	Output variable	DINT	Argument (return value) output of subroutine program

(2) CALL_REAL CALL_REAL_E

Pin	Variable name	Variable type	Data type	Contents
	EN	Input variable	BOOL	Execution condition (TRUE: Execute, FALSE: Stop)
1	Р	Input variable	INT	The common pointer number of subroutine program
Input	IN_FD0 to IN_FD4	Input variable	REAL	Argument input of subroutine program
	ENO	Output variable	BOOL	Output status (TRUE: Normal, FALSE: Abnormal)
Output	OUT_FD0 to OUT_FD4	Output variable	REAL	Argument (return value) output of subroutine program

4 - 140 4 - 140

Function

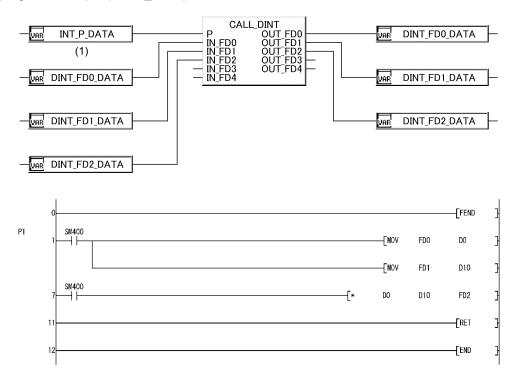
Item	Contents			
Operation Processing	(1) This processing executes the subroutine program whose pointer is specified by the input value of input variable P. (CALL_DINT (_E) and CALL_REAL (_E) can execute the subroutine program specified in the common pointer. Execute subroutine program call, and return to the next step of CALL_DINT (_E) and CALL_REAL (_E) after terminating subroutine program by RET instruction.) FBD program CALL_DINT P OUT_FD0 IN_FD0 OUT_FD1 IN_FD2 OUT_FD3 IN_FD3 OUT_FD4 IN_FD4 CALL_DINT (_E) and CALL_REAL (_E) after terminating program Subrouting program H [DMOV FD1 D10] H [D+ D0 D10 FD2] RET (2) The input value from input variable P is INT type data value whose range is 0 to 3499. (The data value beyond 3500 is used by system) The pointer of subroutine program executed in (CALL_DINT (_E) or CALL_REAL (_E) (input value to input variable P) should be within the range of the common pointer.			
•	The pointer of subroutine program executed in (CALL_DINT (_E) or CALL_REAL (_E) (input value to input variable P) should be within the range of the common pointer. (The starting number of the common pointer is set in the PLC system setting of GX Developer's PLC parameter.) (3) The input value of input variable IN of CALL_DINT (_E) is DINT type data value. The input value of input variable IN of CALL_REAL (_E) is REAL type data value. The argument is input from input variable IN_FD0 to IN_FD4 during subroutine program execution. Maximum 5 argument (IN_FD0 to IN_FD4) specified.			
	The argument is input from input variable IN_FD0 to IN_FD4 during subroutine program execution.			
	(b) The contents of function device will be transmitted to the corresponding OUT_FD0 to OUT_FD4 (return value) after executing subroutine program (c) Please use FD for function device. Assign the DINT/REAL type data value specified by input variable (IN_FD0 to IN_FD4) to FD.			

4 - 141 4 - 141

Item	Contents					
	(1) Functions without EN/ENO					
		The execution result is as for	ollows.			
		Execution result	OUT_FD0 to OUT_FD4			
		No operation error	Operation output value			
		Operation error occur	Indefinite value			
Operation results	·					
		EN	ENO	OUT_FD0 to OUT_FD4		
		TRUE	TRUE (No operation error)	Operation output value		
		(Operation executed)	FALSE (Operation error occur) (*)	Indefinite value		
		FALSE (operation stop)	FALSE (*)	Indefinite value		
	* When output from ENO is FALSE, the output from OUT_FD0 to OUT_FD4 will be indefinite value. In this case, please do not use the output data from OUT_FD0 to OUT_FD4 in program processing.					

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.


- When RET instruction is executed between CALL_DINT (_E), CALL_REAL (_E) execution and END, FEND, GOEND, STOP instruction execution. (Error code: 4211)
- When RET instruction is executed before executing CALL_DINT (_E) or CALL_REAL (_E). (Error code: 4212)
- When the 17 level nesting is executed. (Error code: 4213)
- When the subroutine program of the pointers specified by CALL_DINT (_E) or CALL_REAL (_E) does not exist. (Error code: 4210)

4 - 142 4 - 142

Program Example

Following is the program example in which the subroutine program whose pointers are specified by input value of input variable P is executed.

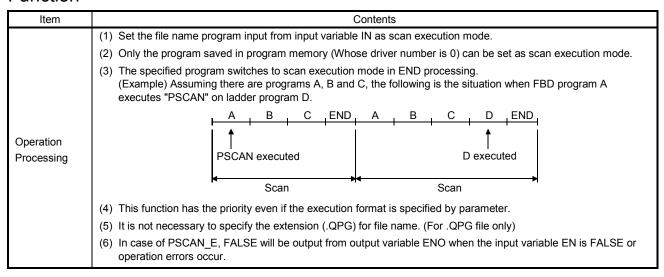
(1) Basic program example (CALL_DINT)

4 - 143 4 - 143

4.10.2 Program Scan Execution Registration (PSCAN (_E))

Function	FBD parts		
PSCAN PSCAN_E	PSCAN IN (With EN/ENO pins) PSCAN_E EN ENO IN		

_
_


Function overview: Sets a sequence program into the scan execution mode.

Function/FB classification name: Ladder program control function

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
iliput	IN	Input variable	STRING (8)	Program file name input
Output	ENO	Output variable	BOOL	Execution result (TRUE: Normal FALSE: Abnormal)

Function

Restrictions on redundant system operation and the applicable corrective action

Restrictions	Corrective action	
Executing the ladder program control function does not carry out the ladder program control if the following occurs: a Redundant CPU stop error occurs	Execute the ladder program control function in the new control system immediately after system switching, as	
and the system is switched before the END processing is executed.	necessary.	

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

When the program with specified file name does not exist. (Error code: 2410)

Program Example

Following is the program example in which the file name program input from input variable IN is set as scan execution status.

(1) Basic program example (PSCAN)

4.10.3 Program Standby Instruction (PSTOP (_E))

Function	FBD parts		
PSTOP PSTOP_E	PSTOP (With EN/ENO) pins PSTOP_E EN ENO IN		

With EN/ENO pins	0
Overload	_
Input pin number changeable (range)	_

Function overview: Sets a sequence program into standby mode.

Function/FB classification name: Ladder program control function

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
Innut	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input	IN	Input variable	STRING (8)	Program file name input
Output	ENO	Output variable	BOOL	Execution result (TRUE: Normal FALSE: Abnormal)

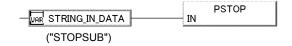
Function

Item	Contents		
	(1) Set the file name program input from input variable IN as standby mode.		
	(2) Only the program saved in program memory (Whose driver number is 0) can be set as standby mode.		
	(3) The specified program switches to standby mode in END processing.		
Operation processing	(4) This function has the priority even if the execution format is specified by parameter.		
processing	(5) It is not necessary to specify the extension (.QPG) for file name. (For .QPG file only)		
	(6) In case that PSTOP_E, FALSE will be output from output variable ENO when the input variable EN is FALSE or operation errors occur.		

Restrictions on redundant system operation and the applicable corrective action

	l l
Restrictions	Corrective action
Executing the ladder program control function does no	not carry out the ladder Execute the ladder program control function in the new
program control if the following occurs: a Redundant (CPU stop error occurs control system immediately after system switching, as
and the system is switched before the END processin	ng is executed. necessary.

Error


Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

• When the program with specified file name does not exist. (Error code: 2410)

Program Example

Following is the program example in which the file name program input from input variable IN is set as standby mode.

(1) Basic program example (PSTOP)

4 - 145 4 - 145

4.10.4 Program Output Standby Instruction (POFF(_E))

Function	FBD parts		
POFF POFF_E	POFF (With EN/ENO pins) POFF_E EN ENO IN		

With EN/ENO pins	0
Overload	_
Input pin number changeable (range)	_

Function overview: Sets a sequence program into standby mode including reset of the outputs.

Function/FB classification name: Ladder program control function.

Input and output pins

Pin	Variable name	Variable type	Data type	Contents
Innut	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
Input	IN	Input variable	STRING (8)	Program file name input
Output	ENO	Output variable	BOOL	Execution result (TRUE: Normal FALSE: Abnormal)

Function

Item	Contents			
	(1) Change the execution type of the file name program input from input variable IN.			
	Scan execution type : Reset of output (non-executed processing) in the next scanning. Switches into standby mode after the next scanning.			
Operation	Low-speed execution type: Interrupt the low-speed type execution and reset of output in next scanning. Switches into standby mode after the next scanning. (2) Under the non-executed status, only the programs saved in program memory (Whose driver number is 0) can			
Processing	set as standby mode.			
	(3) This function has the priority even if the execution type is specified by parameter.			
	(4) It is not necessary to specify the extension (.QPG) in file name. (For .QPG file only)			
	(5) In case of POFF_E, FALSE will be output from output variable ENO when the input variable EN is FALSE or operation errors occur.			

REMARK

- (1) Non-executed processing performs coil instructions through the same processing with the one whose condition setting is OFF.
- (2) The operation results of all coil instructions after non-executed processing have nothing to do with ON/OFF of condition contact.

4 - 146 4 - 146

Restrictions on redundant system operation and the applicable corrective action

Restrictions	Corrective action		
Executing the ladder program control function does not carry out the ladder	Execute the ladder program control function in the new		
program control if the following occurs: a Redundant CPU stop error occurs	control system immediately after system switching, as		
and the system is switched before the END processing is executed.	necessary.		

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

• When the program with specified file name does not exist. (Error code: 2410)

Program Example

Following are the program examples in which the execution type (of file name program input from input variable IN) is changed.

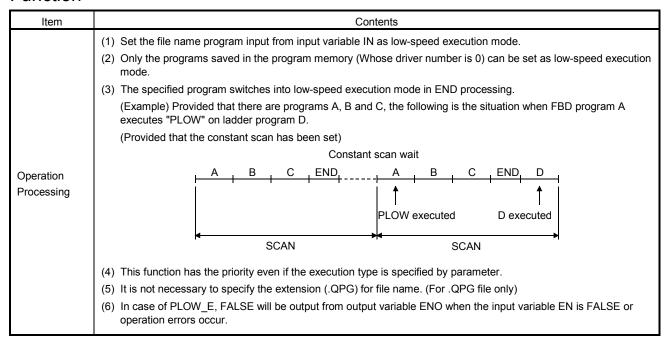
(1) Basic program example (POFF)

4 - 147 4 - 147

4.10.5 Program Low-speed Execution Registration (PLOW (_E))

Function	FBD parts		
PLOW PLOW_E	(With EN/ENO pins)		

With EN/ENO pins	0
Overload	_
Input pin number changeable (range)	_


Function overview: Sets a sequence program into the low-speed execution mode.

Function/FB classification name: Ladder program control function

Input and output pins

Pin	Variable name	Variable type	Data type	Contents
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)
iliput	IN	Input variable	STRING (8)	Program file name input
Output	ENO	Output variable	BOOL	Execution result (TRUE: Normal FALSE: Abnormal)

Function

Restrictions on redundant system operation and the applicable corrective action

Restrictions	Corrective action
This instruction is unsupported by Redundant CPU.	Do not use the PLOW(-E) for the project for which Redundant CPU
	has been set as CPU type, as this may cause a compile error.

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

- When the program with specified file name does not exist. (Error code: 2410)
- When the program with specified file name contains the CHK instruction. (Error code: 4235)

4 - 148 4 - 148

Program Example

Following is the program example in which the file name program input from input variable IN is set as low-speed execution status.

(1) Basic program example (PLOW)

4 - 149 4 - 149

5

5 GENERAL FB

General FB can be classified as follows.

Classification name	Contents	Reference	
Bistable FB	Sets the priority of set/reset and outputs the latch processing result	Section 5.1	
Edge Detection FB	Output rising/Falling edge detection	Section 5.2	
Counter FB	Output current value +1(addition) or current value -1 (subtraction).	Section 5.3	
Timer FB	Performs pulse timer processing and ON/OFF delay timer processing	Section 5.4	
Communication control FB	Sends/Receives data to/from PLC CPU of other stations	Section 5.5	

5-1 5-1

5.1 Bistable FB

5.1.1 Set-Dominant Flip-Flop (SR)

FB	FBD parts	
SR	SR S1 Q1 R	

Function overview: SR flip-flop. If the input value of input variable S1 and R are both TRUE, the set (TRUE) has the priority.

Function/FB classification name: Bistable FB

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
loout	S1	Input variable	BOOL	Set instruction
Input R		R Input variable	BOOL	Reset instruction
Output	Q1	Output variable	BOOL	Output

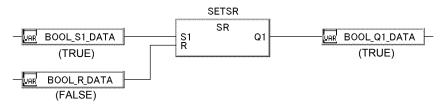
Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation processing	IR	Public variable	BOOL	Reset request TRUE: At a CPU module startup (power OFF →ON, RESET/STOP→RUN), the output value of the output variable Q1 is reset. FALSE: At a CPU module startup (power OFF → ON, RESET/STOP→RUN), the output value of the output variable Q1 is held.	TRUE, FALSE	FALSE	User

Function

Item		Contents					
	(a) If the input remains un (b) If the input remains un (c) If the input in (d)	variable S1 is TRUE il TRUE is input into variable R is TRUE, il TRUE is input into variable S1 and R a	from output variable Q1 according to two input variables S1 and R. E, the output from output variable Q1 will be TRUE. The output value (TRUE) of input variable R. It the output from output variable Q1 will be FALSE. The output value (FALSE) of input variable S1. It is both TRUE, the output from output variable Q1 will be TRUE. (Set-dominant) re both FALSE, the output from output variable Q1 will be the previous value.				
Operation	Input variable	Output variable	Set instruction (S1)				
processing	S1 R	Q1					
	TRUE FALSE	TRUE	Reset instruction (R)				
	FALSE TRUE	FALSE					
	TRUE TRUE	TRUE					
	FALSE FALSE	Previous value	Output (Q1)				
	(3) When the public	variable IR is TRU N, RESET/STOP-	I and R should be BOOL type data. (Default value: FALSE) E, the output value of the output variable Q1 is reset at a CPU module startup RUN). When the public variable IR is FALSE, the output value of the output				

5


5 GENERAL FB MELSOFT

Error

There are no operation errors caused by SR.

Program Example

(1) Basic program example

5-3 5-3

5.1.2 Reset-Dominant Flip-Flop (RS)

FB	FBD parts		
RS	RS S Q1 — R1		

Function overview: RS flip-flop. If the input value to input variable S and R1 are both TRUE, the reset (FALSE) has the priority.

Function/FB classification name: Bistable FB

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
lanut	S	Input variable	BOOL	Set instruction
Input R1		Input variable	BOOL	Reset instruction
Output	Q1	Output variable	BOOL	Output

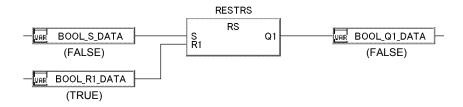
Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation processing	IR	Public variable	BOOL	Reset request TRUE: At a CPU module startup (power OFF →ON, RESET/STOP→RUN), the output value of the output variable Q1 is reset. FALSE: At a CPU module startup (power OFF → ON, RESET/STOP→RUN), the output value of the output variable Q1 is held.	TRUE, FALSE	FALSE	User

Function

Item	Contents
	 (1) This processing outputs the result from output variable Q1 according to two input variable S and R1. (a) If the input variable S is TRUE, the output from output variable Q1 will be TRUE. The output value (TRUE) remains until TRUE is input into input variable R1. (b) If the input variable R1 is TRUE, the output from output variable Q1 will be FALSE. The output value (FALSE) remains until TRUE is input into input variable S. (c) If the input variable S and R1 are both TRUE, the output from output variable Q1 will be TRUE. (Priority set) (d) If the input variable S and R1 are both FALSE, the output from output variable Q1 will be the previous value.
Operation processing	Input variable Output variable S R1 Q1 TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE Previous value Output (Q1) (2) The input value of input variable S and R1 should be BOOL type data. (Default value: FALSE) (3) When the public variable IR is TRUE, the output value of the output variable Q1 is reset at a CPU module startup (power OFF→ON, RESET/STOP→RUN). When the public variable IR is FALSE, the output value of the output variable Q1 is held.

5 - 4 5 - 4


5 GENERAL FB MELSOFT

Error

There are no operation errors caused by RS.

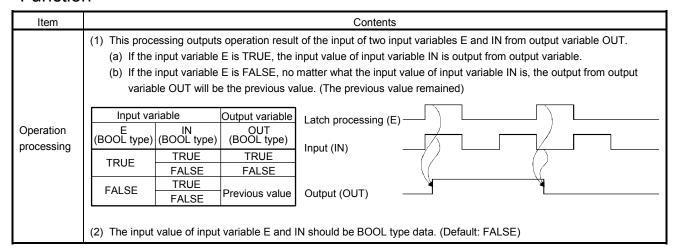
Program Example

(1) Basic program example

5-5

5.1.3 Latch FB (BOOL Type) (LATCH_BOOL)

FB	FBD parts		
LATCH_BOOL	LATCH_BOOL E OUT		

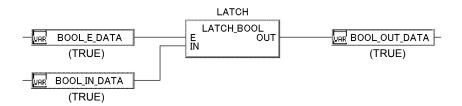

Function overview: Latch FB (BOOL type). Outputs the result of latch processing.

Function/FB classification name: Bistable FB

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
lanut	E	Input variable	BOOL	Latch processing (TRUE: No latch, FALSE: Latch)
Input	IN	Input variable	BOOL	Input
Output	OUT	Output variable	BOOL	Output

Function



Error

There are no operation errors caused by LATCH_BOOL.

Program Example

(1) Basic program example

5-6 5-6

5.1.4 Latch FB (REAL Type) (LATCH_REAL)

FB	FBD parts		
LATCH_REAL	LATCH_REAL E OUT IN		

Function overview: Latch FB (REAL type). Outputs the operation result of latch processing.

Function/FB classification name: Bistable FB

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
Input	Е	Input variable	BOOL	Latch processing (TRUE: No latch, FALSE: Latch)
Input	IN	Input variable	REAL	Input
Output	OUT	Output variable	REAL	Output

Function

Item	Contents			
Operation processing	(1) This processing outputs the result from output variable OUT according to input value of input variables E and IN. (a) If the input variable E is TRUE, the output of output variable OUT will be the input value of input variable IN. (b) If the input variable E is FALSE, no matter what the input value of input variable IN is, the output value of output variable OUT will be the previous value. (The previous value remained) Input variable Output variable E IN OUT (REAL type) (REAL type) TRUE Input value Input value FALSE Input value Previous value Output (OUT) A B (2) The input value of input variable IN should be BOOL type data. (Default value: 0.0)			
·	Input variable Output variable E IN OUT (BOOL type) (REAL type) (REAL type) TRUE Input value Input value FALSE Input value Previous value Output (OUT) Latch processing (E) Input (IN) A B C Output (OUT)			

Error

There are no operation errors caused by LATCH_REAL.

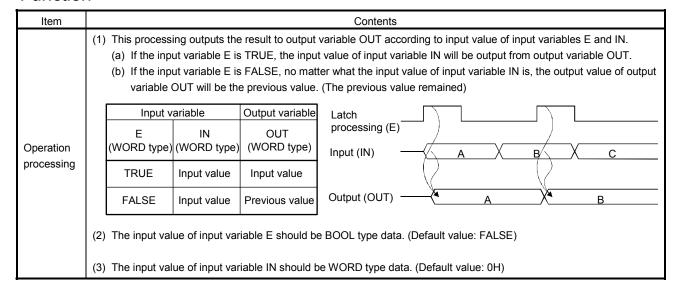
Program Example

(1) Basic program example

5-7 5-7

5.1.5 Latch FB (WORD Type) (LATCH_WORD)

FB	FBD parts	
LATCH_WORD	LATCH_WORD E OUT	

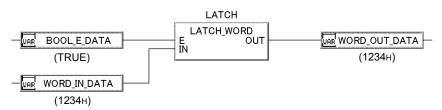

Function overview: Latch FB (WORD type). Outputs the result of latch processing.

Function/FB classification name: Bistable FB

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
lanut	E	Input variable	BOOL	Latch processing (TRUE: No latch, FALSE: Latch)
Input	IN	Input variable	WORD	Input
Output	OUT	Output variable	WORD	Output

Function



Error

There are no operation errors caused by LATCH WORD.

Program Example

(1) Basic program example

5 - 8 5 - 8

5.1.6 Latch FB (DWORD Type) (LATCH_WORD)

FB	FBD parts		
LATCH_DWORD	LATCH_DWORD E OUT		

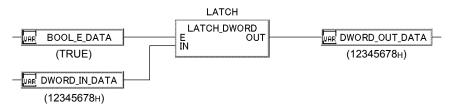
Function overview: Latch FB (DWORD type). Outputs the result of latch processing.

Function/FB classification name: Bistable FB

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
lanut	E	Input variable	BOOL	Latch processing (TRUE: No latch, FALSE: Latch)
Input	IN	Input variable	DWORD	Input
Output	OUT	Output variable	DWORD	Output

Function



Error

There are no operation errors caused by LATCH DWORD.

Program Example

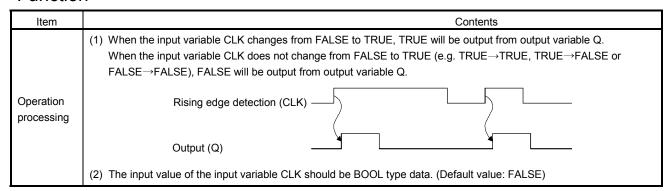
(1) Basic program example

5-9 5-9

5.2 Edge Detection FB

5.2.1 Rising Edge Detector (R_TRIG)

FB	FBD parts
R_TRIG	R_TRIG CLK Q

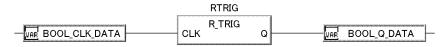

Function overview: Outputs TRUE when the rising edge is detected. (When input variable CLK changes from FALSE to TRUE)

Function/FB classification name: Edge detection FB

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
Input	CLK	Input variable	BOOL	Rising edge detection
Output	Q	Output variable	BOOL	Output

Function



Error

There are no operation errors caused by R_TRIG.

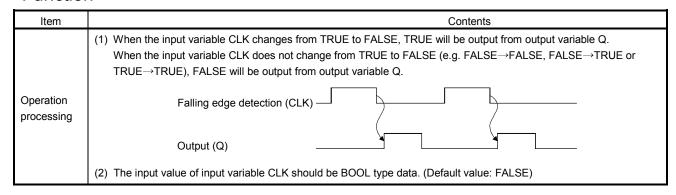
Program Example

(1) Basic program example

5 - 10 5 - 10

5.2.2 Falling Edge Detector (F_TRIG)

FB	FBD parts	
F_TRIG	F_TRIG CLK Q	

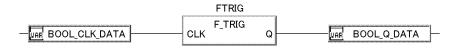

Function overview: Outputs TRUE when the Falling edge is detected. (When input variable CLK changes from TRUE to FALSE)

Function/FB classification name: Edge check FB

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
Input	CLK	Input variable	BOOL	Falling edge detection
Output	Q	Output variable	BOOL	Output

Function



Error

There are no operation errors caused by F_TRIG.

Program Example

(1) Basic program example

5 - 11 5 - 11

5.2.3 Edge Detection Input (EDGE_CHECK)

FB	FBD parts		
EDGE_CHECK	EDGE_CHECK		

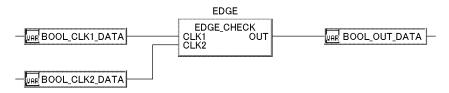
Function overview: Outputs TRUE when rising/falling edge is detected. (When the input variable CLK1 changes from TRUE to FALSE or the input variable CLK2 changes from FALSE to TRUE.)

Function/FB classification name: Edge detection FB

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
Input	CLK1	Input variable	BOOL	Rising edge detection
IIIput	CLK2	Input variable	BOOL	Falling edge detection
Output	OUT	Output variable	BOOL	Output

Function


Item	Contents
Operation processing	(1) When the input variable CLK1 changes from TRUE to FALSE or the input variable CLK2 changes from FALSE to TRUE, TRUE will be output from output variable OUT. In the following conditions, FALSE will be output from output variable OUT: When the input value of input variable CLK1 does not change from FALSE to TRUE (TRUE→TRUE, TRUE→FALSE, FALSE→FALSE) When the input value of input variable CLK2 does not change from TRUE to FALSE (FALSE→FALSE, FALSE→TRUE, TRUE→TRUE) Rising edge detection (CLK1) Falling edge detection (CLK2) Output (OUT) (2) The input value of input variables CLK1 and CLK2 should be BOOL type data value. (Default value: FALSE)

Error

There is no operation errors caused by EDGE_CHECK.

Program Example

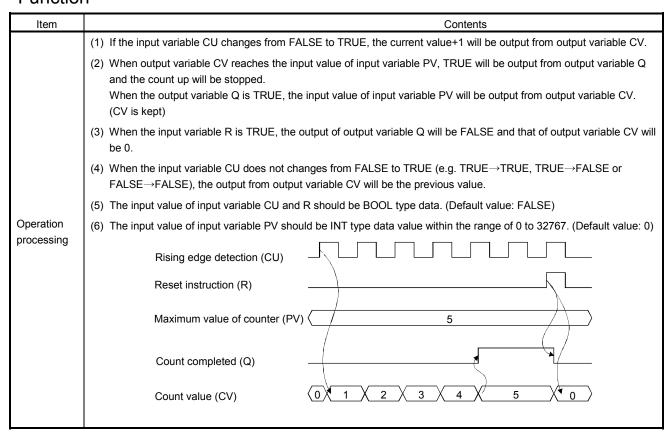
(1) Basic program example

5 - 12 5 - 12

5.3 Counter FB

5.3.1 Up-counter (CTU)

FB	FBD parts	
сти	CTU CU Q R CV PV	


Function overview: Up-counter. When the input variable CU changes from FALSE to TRUE, current value+1 (Count value) will be output.

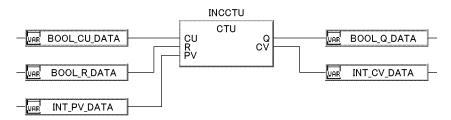
Function/FB classification name: Counter FB

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
	CU	Input variable	BOOL	Rising edge detection
Input	R	Input variable	BOOL	Reset instruction
	PV	Input variable	INT	Maximum value of counter
Output	Q	Output variable	BOOL	Count completed
	CV	Output variable	INT	Count value

Function

5 - 13 5 - 13


5 GENERAL FB MELSOFT

Error

There are no operation errors caused by CTU.

Program Example

(1) Basic program example

5 - 14 5 - 14

5.3.2 Down-counter (CTD)

FB	FBD parts		
CTD	CTD CD Q LD CV PV		

Function overview: Down-counter. When the input variable CD changes from FALSE to TRUE, current value-1 (Count value) will be output.

Function/FB classification name: Counter FB

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
	CD	Input variable	BOOL	Rising edge detection
Input	LD	Input variable	BOOL	Load instruction
	PV	Input variable	INT	Initial value of counter
Output	Q	Output variable	BOOL	Count completed
Output	CV	Output variable	INT	Count value

Function

Item	Contents				
	(1) If the input variable CD changes from FALSE to TRUE, the current value-1 (count value) will be output from output variable CV. The initial value of counter is the input value of input variable PV.				
	(2) When output variable CV becomes 0, TRUE will be output from output variable Q and the count down will be stopped. When output variable Q is TRUE, 0 will be output from output variable CV. (CV is kept)				
	(3) When the input variable LD is TRUE, the output of output variable Q will be FALSE. The initial value of counter will be output from output variable CV (input value of PV)				
	(4) When the input variable CD does not changes from FALSE to TRUE (TRUE→TRUE, TRUE→FALSE or FALSE →FALSE), the output of output variable CV will be the previous value.				
	(5) If the input value of input variable PV is changed in count, when the input variable LD is TRUE next time, the changed input value of input variable PV is valid.				
Operation	(6) The input value of input variable CD, LD should be BOOL type data. (Default value: FALSE)				
processing	(7) The input value of input variable PV should be INT type data value within the range of 0 to 32767. (Default value: 0)				
	Rising edge detection (CD)				
	Load instruction (LD)				
	Initial value of count (PV) 5 2				
	Count completed (Q)				
	Count value (CV) (5) 4 3 2 1 0 2 2				

5 - 15 5 - 15

5 GENERAL FB MELSOFT

Error

There are no operation errors caused by CTD.

Program Example

(1) Basic program example

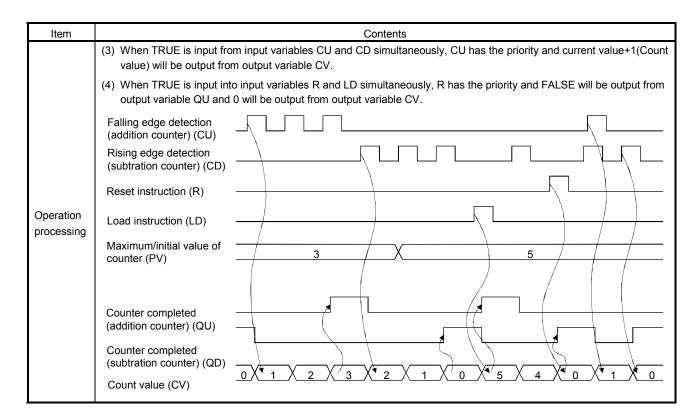
5 - 16 5 - 16

5.3.3 Up-down-counter (CTUD)

FB	FBD	parts
	СТ	OU.
	— cu	QU —
	— CD	QD —
CTUD	− R	cv —
	— LD	
	→ PV	

Function overview: Up-down-counter. When the input variable CU changes from FALSE to TRUE, current value+1 (Count value) will be output. When the input variable CD changes from FALSE to TRUE, current value-1 (Count value) will be output.

Function/FB classification name: Counter FB

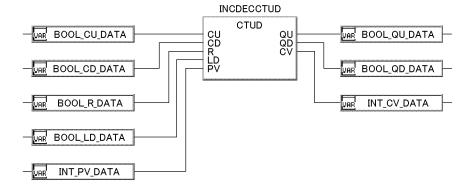

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
	CU	Input variable	BOOL	Rising edge detection (up-counter)
	CD	Input variable	BOOL	Rising edge detection (down-counter)
Input	R	Input variable	BOOL	Reset instruction
	LD	Input variable	BOOL	Load instruction
	PV	Input variable	INT	Maximum/initial value of counter
	QU	Output variable	BOOL	Count completed (up-counter)
Output	QD	Output variable	BOOL	Count completed (down-counter)
	CV	Output variable	INT	Count value

Function

Item
Operation processing

5 - 17 5 - 17



Error

There are no operation errors caused by CTUD.

Program Example

(1) Basic program example

5 - 18 5 - 18

5.4 Timer FB

5.4.1 Pulse Timer (High-speed Timer) (TP_HIGH)

FB	FBD parts		
TP_HIGH	TP_HIGH IN Q PT ET		

Function overview: Pulse timer (high-speed timer). When the input variable IN changes from FALSE to TRUE, TRUE will be output from output variable Q for the time set by input variable PT.

Function/FB classification name: Timer FB

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
Innut	IN	Input variable	BOOL	Rising edge detection
Input	PT	Input variable	INT	Pulse width setting
Outrot	Q	Output variable	BOOL	Output
Output	ET	Output variable	INT	Total measuring time

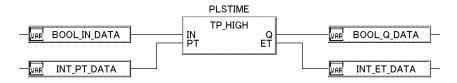
Function

Item	Contents				
	(1) When the input variable IN changes from FALSE to TRUE, TRUE will be output from output variable Q for the time set by input variable PT. Output variable Q has nothing to do with the status of input variable IN, TRUE is output for the time set by input variable PT.				
	(2) The output of output variable ET is total measuring time. (Output the time when output variable Q is TRUE) When output variable Q changes from TRUE to FALSE and FALSE is input into input variable IN, the output variable ET is reset. (Zero clear)				
	(3) The input value of input variable IN should be BOOL type data. (Default value: FALSE)				
	(4) The input value of input variable PT should be INT type data whose range is 1 to 32767. (Default value: 0) The input value of input variable PT is set as follows:				
	Pulse width time=pulse width setting(PT)×high-speed timer interval (*1)				
Operation processing	*1 high-speed timer interval can be set in unit of 0.1ms within the range of 0.1ms to 100ms. (Default value: 10ms) It is set in the following steps: GX Developer→ [PLC parameter] → [PLC system setting] → "Timer limit setting"				
processing	(E.g.) In the following sample, the pulse width is set as 10 (when high-speed timer interval is 10ms)				
	Rising edge detection (IN)				
	Pulse width setting (PT)				
	Output (Q)				
	Total measuring time (ET) $\bigcirc 0 \longrightarrow 10 \bigcirc 0 \longrightarrow 10 \bigcirc 0$				

5 - 19 5 - 19

5 GENERAL FB MELSOFT

POINT


The output variables Q and ET are output in the execution of TP_HIGH. After the pulse time, the time error when output variable Q changes to FALSE is not greater than a TP_HIGH execution cycle.

Error

There are no operation errors caused by TP_HIGH.

Program Example

(1) Basic program example

5 - 20 5 - 20

5.4.2 Pulse Timer (Low-speed Timer) (TP_LOW)

FB	FBD parts		
TP_LOW	TP_LOW IN Q PT ET		

Function overview: Pulse timer (low-speed timer). When the input variable IN changes from FALSE to TRUE, TRUE will be output from output variable Q for the time set by input variable PT.

Function/FB classification name: Timer FB

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
Input	IN	Input variable	BOOL	Rising edge detection
mput	PT	Input variable	INT	Pulse width setting
Output Q ET	Output variable	BOOL	Output	
	ET	Output variable	INT	Total measuring time

Function

Item	Contents			
	(1) When the input variable IN changes from FALSE to TRUE, TRUE will be output from output variable Q for the time set by input variable PT. Output variable Q has nothing to do with the status of input variable IN, TRUE is output for the time set by input variable PT.			
	(2) The output of output variable ET is total measuring time. (Output the time when output variable Q is TRUE) When output variable Q changes from TRUE to FALSE and FALSE is input into input variable IN, the output variable ET is reset. (Zero clear)			
	(3) The input value of input variable IN should be BOOL type data. (Default value: FALSE)			
	(4) The input value of input variable PT should be INT type data whose range is 1 to 32767. (Default value: 0) The input value of input variable PT is set as follows:			
	Pulse width time=pulse width setting (PT) \times 100ms(low-speed timer interval (*1)) *1 low-speed timer interval must be 100ms if FBD program is used.			
Operation				
processing	(E.g.) In the following sample, the pulse width is set as 10 (when low-speed timer interval is 100ms)			
	Rising edge detection (IN)			
	Pulse width setting (PT)			
	Output (Q)			
	Total measuring time (ET) \bigcirc			

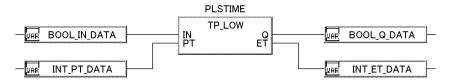
IMPORTANT

If FBD program is used, please do not change the default interval (100ms) of low-speed timer. If it is changed, it may work abnormally.

5 - 21 5 - 21

5 GENERAL FB MELSOFT

POINT


The output variables Q and ET are output in the execution of TP_LOW. After the pulse time, the time error when output variable Q changes to FALSE is not greater than a TP_LOW execution cycle.

Error

There are no operation errors caused by TP_LOW.

Program Example

(1) Basic program example

5 - 22 5 - 22

5.4.3 ON Delay Timer (High-speed Timer) (TON_HIGH)

FB	FBD parts		
TP_HIGH	TON_HIGH IN Q PT ET		

Function overview: ON delay timer (high-speed timer). It starts measurement when input variable IN changes from FALSE to TRUE.

When the measuring time reaches the time (output value of ET≧input value of PT) set by the input variable PT,

TRUE will be output from output variable Q.

Function/FB classification name: Timer FB

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
lanut	IN	Input variable	BOOL	Rising edge detection
Input PT	Input variable	INT	ON delay timer setting	
Output	Q	Output variable	BOOL	Output
	ET	Output variable	INT	Measuring current value

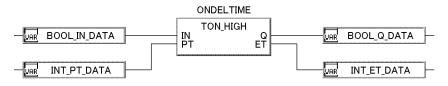
Function

Item	Contents			
	(1) It starts measurement when input variable IN changes from FALSE to TRUE. When the measuring time reaches the time (output value of ET≧input value of PT) set by the input variable PT, TRUE will be output from output variable Q. The output of output variable Q will be TRUE unless the input variable IN changes from TRUE to FALSE.			
	(2) The output of output variable ET is the current value of measuring time. The data of output variable ET does not change after output variable becomes TRUE. ET is reset (Zero clear) when input variable IN changes from TRUE to FALSE.			
	(3) The output variable ET is reset (timer stops) if input variable IN becomes FALSE before output variable Q becomes TRUE. (Illustrated in the following figure *1)			
	(4) The input value of input variable IN is BOOL type data. (Default value: FALSE)			
	(5) The input value of input variable PT is INT type data whose range is 1 to 32767. (Default value: 0) The input value of input variable PT should be set with the following value:			
	ON delay timer time = OFF delay timer setting (PT) $ imes$ high-speed timer limit (*2)			
Operation processing	*2 The high-speed timer limit can be set within the range of 0.1ms to 100ms in unit of 0.1ms. (Default value: 10ms) It should be set in the following flow: GX Developer→ [PLC parameter] → [PLC system] → "Timer limit setting"			
	(E.g.) In the following case, the ON delay timer setting is 10 (when the high-speed timer limit is 10ms)			
	Rising edge detection (IN) ON delay timer setting (PT)			
	Output (Q) Measuring present value (ET) 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			

5 - 23 5 - 23

5 GENERAL FB MELSOFT

POINT


The output variables Q and ET are output in the execution of TON_HIGH. After the pulse time, the time error when output variable Q changes to FALSE is not greater than a TP_HIGH execution cycle.

Error

There are no operation errors caused by TON_HIGH.

Program Example

(1) Basic program example

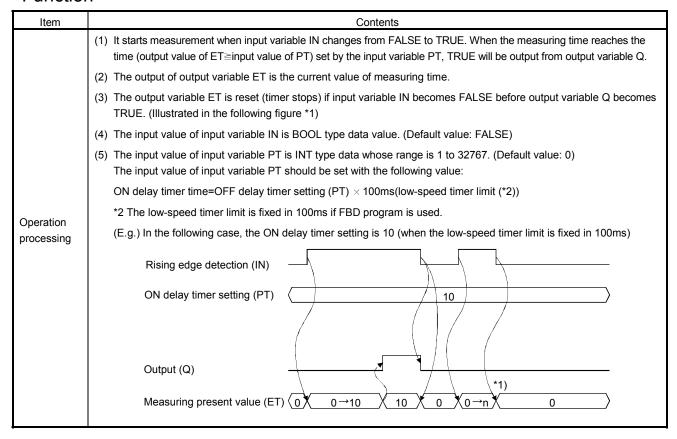
5 - 24 5 - 24

5.4.4 ON Delay Timer (Low-speed Timer) (TON_LOW)

FB	FBD parts
TON_LOW	TON_LOW IN Q PT ET

Function overview: ON delay timer (low-speed timer). It starts measurement when input variable IN changes from FALSE to TRUE.

When the measuring time reaches the time (output value of ET≧input value of PT) set by the input variable PT,


TRUE will be output from output variable Q.

Function/FB classification name: Timer FB

Input and Output Pins

Pin	Variable name Variable type		Data type	Contents
lanut	IN	Input variable	BOOL	Rising edge detection
Input PT		Input variable	INT	ON delay timer setting
O de de de de	Q	Output variable	BOOL	Output
Output	ET	Output variable	INT	Measuring current value

Function

5 - 25 5 - 25

5 GENERAL FB MELSOFT

IMPORTANT

Please do not change the default value 100ms of low-speed timer limit when using FBD program. Otherwise, it cannot work normally.

POINT

The output variables Q and ET are output in the execution of TON_LOW. After the pulse time, the time error when output variable Q changes to FALSE is not greater than a TON_LOW execution cycle.

Error

There are no operation errors caused by TON_LOW.

Program Example

(1) Basic program example

5 - 26 5 - 26

5.4.5 OFF Delay Timer (High-speed Timer) (TOF_HIGH)

FB	FBD parts		
TOF_HIGH	TOF_HIGH IN Q PT ET		

Function overview: OFF delay timer (high-speed timer). TRUE will be output from the output variable Q when the input variable IN changes from FALSE to TRUE. It starts measurement when the input variable IN changes from TRUE to FALSE, and TRUE is output from the output variable Q until the measurement time reaches the time set by the input variable PT (output value of ET ≧ input value of PT).

Function/FB classification name: Timer FB

Input and Output Pins

Pin	Variable name Variable type		Data type	Contents
lanut	IN	Input variable	BOOL	Rising edge detection
Input	PT	Input variable	INT	OFF delay timer setting
Out the safe	Q	Output variable	BOOL	Output
Output	ET	Output variable	INT	Measuring current value

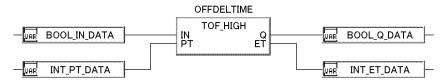
Function

Item	Contents					
	(1) TRUE will be output from the output variable Q when the input variable IN changes from FALSE to TRUE. It starts measurement when the input variable IN changes from TRUE to FALSE, and TRUE is output from the output variable Q until the measurement time reaches the time set by the input variable PT (output value of ET > input value of PT).					
	(2) Current value of measuring time will be output from output variable ET when input variable IN changes from TRUE to FALSE. Output variable ET keeps its output when output variable Q changes from TRUE to FALSE, while reset when input variable IN changes from TRUE to FALSE.					
	(3) The input value of input variable IN is BOOL type data. (Default value: FALSE)					
	(4) The input value of input variable PT is INT type data whose range is 1 to 32767. (Default value: 0) The input value of input variable PT should be set with the following value:					
	OFF delay timer time=OFF delay timer setting (PT) × high-speed timer limit (*1)					
Operation processing	*1 The high-speed timer limit can be changed within the range of 0.1ms to 100ms in unit of 0.1ms. (Default value: 10ms) It should be set in the following flow: GX Developer→ [PLC parameter] → [PLC system] → "Timer limit setting"					
	(E.g.) In the following case, the OFF delay timer setting is 10 (when the high-speed timer limit is 10ms)					
	Rising edge detection (IN)					
	OFF delay timer setting (PT)					
	Output (Q)					
	Measuring present value (ET) ? \(\) 0 \(\) \(\) 10					

5 - 27 5 - 27

5 GENERAL FB MELSOFT

POINT


The output variables Q and ET are output in the execution of TOF_HIGH. After the OFF delay time, the time error when output variable Q changes to TRUE is not greater than a TOF_HIGH execution cycle.

Error

There are no operation errors caused by TOF_HIGH.

Program Example

(1) Basic program example

5 - 28 5 - 28

5.4.6 OFF Delay Timer (Low-speed Timer) (TOF_LOW)

FB	FBD parts		
TOF_LOW	TOF_LOW IN Q PT ET		

Function overview: OFF delay timer (low-speed timer). TRUE will be output from output variable Q when input variable IN changes from FALSE to TRUE. Measuring of output variable Q starts when input variable IN changes from TRUE to FALSE. Before the measuring time reaches the time (output value of ET≧input value of PT) set by input variable PT, TRUE will be output from output variable Q.

Function/FB classification name: Timer FB

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
Innut	IN	Input variable	BOOL	Rising edge detector
Input	PT	Input variable	INT	OFF delay timer setting
Outrot	Q	Output variable	BOOL	Output
Output	ET	Output variable	INT	Measuring current value

Function

Item	Contents				
	(1) TRUE will be output from output variable Q when input variable IN changes form FALSE to TRUE. The measurement of output variable starts from the time when input variable IN changes from TRUE to FALSE. when the measuring time reaches the time (value of ET≧input value of PT) set by input variable PT, TRUE will be output from output variable				
	(2) Current value of measuring time will be output from output variable ET when input variable IN changes from TRUE to FALSE. Output variable ET keeps its output when output variable Q changes from TRUE to FALSE, while reset when input variable IN changes from TRUE to FALSE.				
	(3) The input value of input variable IN is BOOL type data. (Default value: FALSE)				
	(4) The input value of input variable PT is INT type data whose range is 1 to 32767. (Default value: 0) The input value of input variable PT should be set with the following value:				
	OFF delay timer time=OFF delay timer setting (PT) × 100ms (low-speed timer limit (*1))				
Operation	*1 The low-speed timer limit is fixed in 100ms if FBD program is used.				
processing	(E.g.) In the following case, the OFF delay timer setting is 10 (when the low-speed timer limit is fixed in100ms)				
	Rising edge detection (IN)				
	OFF delay timer setting (PT) 10				
	Output (Q) Measuring present value (ET)				

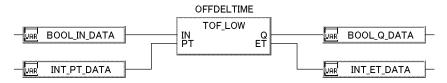
5 - 29 5 - 29

5 GENERAL FB MELSOFT

IMPORTANT

Please do not change the default value 100ms of low-speed timer limit when using FBD program. Otherwise, it cannot work normally.

POINT


The output variables Q and ET are output in the execution of TOF_LOW. After the ON delay time, the time error when output variable Q changes to FALSE is not greater than a TOF_LOW execution cycle.

Error

There are no operation errors caused by TOF_LOW.

Program Example

(1) Basic program example

5 - 30 5 - 30

5 GENERAL FB

MELSOFT

5.5 Communication Control FB

5.5.1 Sending Data to PLC CPUs of Other Stations(SEND)

SEND SD COMP	FB	FBD parts
SEND		SEND SD COMP HNWNO ERR HCH STATUS ONWNO OSTNO OCH DW1

Function overview: Send data to PLC CPUs of other stations. (Performs the same processing as JP.SEND instruction of PLC)

Function/FB classification name: Communication control FB

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
	SD	Input variable	BOOL	Sending instructions
	HNWNO	Input variable	INT	Network No. of host station 1 to 239 : network No. 254 : network specified by valid module during other station access
	НСН	Input variable	INT	Channel used by host station 1 to 8: Channel
ONWI	ONWNO	Input variable	INT	Network No. of object station 1 to 239 : network No. 254 : network specified by valid module during other station access
Input	OSTNO	Input variable	INT	Object station number 1 to 64: station number of object station 81H to 89H: all stations of this group number (When the execution type of public variable EXETYPE is "0: No arrival confirmation" it is settable.) FFH: all stations (broadcasting) of object network No (host station excluded) (When the execution type of public variable EXETYPE is "0: No arrival confirmation" it is settable.)
	ОСН	Input variable	INT	Object station storage channel 1 to 8: Channel
	DW1 to DW8	Input variable	DWORD	Transmitting data Set transmitting data DW1 to DW8.
	COMP	Output variable	BOOL	Transmission completed TRUE: Completed FALSE: uncompleted
Output	ERR	Output variable	BOOL	Transmission completed status TRUE: Completed abnormally FALSE: completed normally
	STATUS	Output variable	WORD	Completion status 0н: normal other than 0н: abnormal (error code)

5 - 31 5 - 31

Public Variable

Variable name	Data type	Contents	Range	Storage
EXETYPE	WORD	Execution (abnormal completion type) b15	0000н 0001н 0080н 0081н	User
RETRY	INT	 [Re-transmission (retry) times] It is valid when the execution type of public variable EXETYPE is "1: With arrival confirmation". (1) When instruction is under execution: 0 to 15 (times) To set the re-transmission times when transmission is not completed in the time specified by public variable ARRTIME. (2) When instruction is completed: 0 to 15 (times) To store the re-transmission times. 	0 to 15	User system

5 - 32 5 - 32

Variable name	Data type	Contents	Range	Storage
ARRTIME	INT	[Arrival WDT Time] It is valid when the execution type of public EXETYPE is "1: With arrival confirmation". If it is uncompleted in the Arrival WDT time, it will be re-transmitted in times specified by public variable RETRY. (1) Set the WDT time till the instruction is completed via MELSECNET/H or MELSECNET/10 network system. 0 : 10 seconds 1 to 32767: 1 to 32767 seconds	0 to 32767	User
		 (2) Set the WDT time above TCP retry timer value till the instruction is completed via Ethernet interface module. 0 to TCP transmission retry timer value: WDT time is equivalent to TCP transmission retry timer value. (TCP transmission retry timer value+1) to 16383: WDT time (unit: second) 	1 to 16383 0 to transmission retry time value	
CLOCKSET	INT	[Clock set flag] To store the valid/invalid status of public variable CLOCKDATA1 to ERRST data. 0: invalid 1:valid	_	System (*1)
CLOCKDATA1	WORD	[Clock data (only when errors occur)] High-order 8 bit: month (01н to 12н), low-order 8 bit: year (00н to 99н) Rightmost two digits.	_	System (*1)
CLOCKDATA2	WORD	[Clock data (only when errors occur)] High-order 8 bit: hour (00н to 23н), low-order 8 bit: day (01н to 31н)	_	System (*1)
CLOCKDATA3	WORD	[Clock data (only when errors occur)] High-order 8 bit: second (00н to 59н), low-order 8 bit: minute (00н to 59н)	_	System (*1)
CLOCKDATA4	WORD	[Clock data (only when errors occur)] High-order 8 bit: year (00н to 99н) leftmost 2 digits, low-order 8 bit: Week (00н(Sunday) to 06н(Saturday))	_	System (*1)
ERRNW	INT	[Station No. where the error was detected] To store the network No. of detected abnormal station. However, if the completion status of output variable STATUS is "Channel in use (F7C1H or C085H)", it will not be stored. 1 to 239 (network No.)	_	System (*1)
ERRST	INT	[Station No. where the error was detected.] To store the station No. of detected abnormal station. However, if the completion status of output variable STATUS is "Channel in use (F7C1H or C085H)", it will not be stored. 1 to 64 (station No.)	_	System (*1)
CHGSYS	BOOL	It turns TRUE in the new control system immediately after system switching, and then returns FALSE at the first FB execution, in redundant system. (It turns TRUE/FALSE for each execution.)	TRUE, FALSE	System (*1)

^{*1} Please execute reading and writing by program.
It will not be displayed in FB property window of PX Developer.

Restrictions on redundant system operation and the applicable corrective action

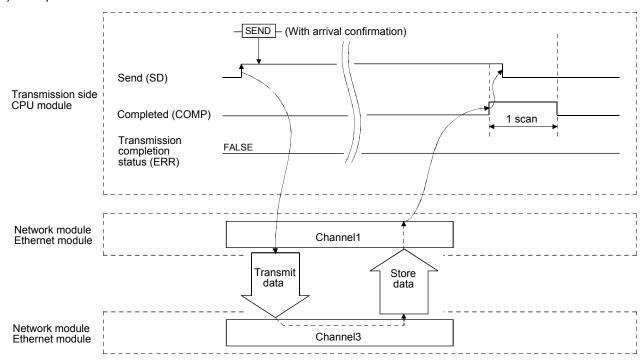
Restrictions	Corrective action
If tracking of signal flow has not been executed, data transmission will not be executed even when the SEND instruction SD is turned from FALSE to TRUE at the first FB execution in the new control system immediately after system switching.	Input "FALSE → TRUE" in the SEND instruction SD and execute data transmission in the new control system immediately after system switching,
If the system is switched before TRUE is output to the transmission completion COMP when "FALSE → TRUE" has been input in the SEND instruction SD and executed, the data transmission may not be executed. In addition, the COMP may not turn TRUE in the new control system.	as necessary. (Whether system switching has been performed or not can be found by using the public variable CHGSYS.)
This FB cannot be used for an Ethernet module mounted to a redundant type extension base unit of Redundant CPU.	Mount an Ethernet module to a main base unit for execution of the FB.

5 - 33 5 - 33

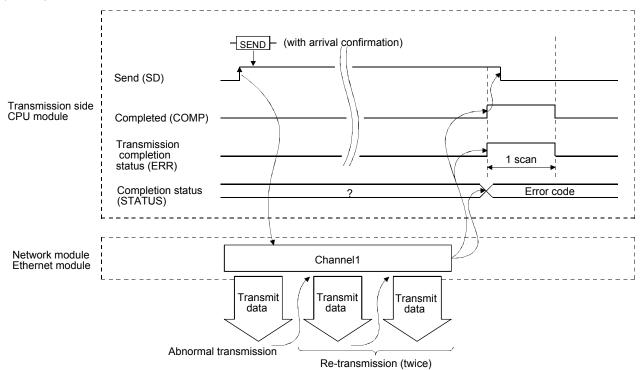
5 GENERAL FB

Function

Item	Contents						
	(1) Transmit the input data of input variable DW1 to DW8 to the MELSECNET/H or MELSECNET/10 network module or Ethernet interface module specified by the input value of input variable ONWNO and OSTNO when the input variable SD changes from FALSE to TRUE.						
	[Local station] Network module CPU module Ethernet module QCPU Ethernet module						
	DW1 Channel1 DW1 Channel1 DWn SEND HCH Channeln DWn Channeln OCH						
	DW8 Channel8 DW8 Channel8						
	MELSECNET/H, MELSECNET/10, Ethernet						
	(a) When input variable SD changes from FALSE to TRUE, the transmission processing is performed only once.(b) The transmission data input into input variable DW1 to DW8 are stored in the channel specified by input variable HCH and transmitted.						
	(c) The transmission data is stored in the channel specified by input variable OCH.						
Operation	(d) Read information data from object station with RECV instruction.						
processing	(2) The information data can be transmitted not only to the connected stations of host station but also to the connected stations specified by MELSECNET/H or MELSECNET/10 or Ethernet.						
	(3) To a single channel, communication control FB cannot be performed in more than two places simultaneously. If execution conditions in more than two places are satisfied simultaneously, the later instructions have to wait for the availability of channel as automatic handshakes are carried out in the channel.						
	(4) The status of SEND instruction such as under execution, normal/abnormal completion can be identified by the output value of output variable.						
	(a) SEND instruction completed. (Output variable COMP) TRUE will be output when SEND instruction is completed and FALSE will be output when SEND instruction is executed next time.						
	(b) Status display when SEND instruction is completed (output variable ERR) TRUE/FALSE will be output to indicate the status when SEND instruction is completed. In normal completion : output FALSE. In abnormal completion : output TRUE and FALSE will be output when SEND instruction is executed next time.						
	When SEND instruction is completed abnormally, TRUE will be output from output variable ERR and error code will be output from output variable STATUS. Please refer to the following manuals for error codes for confirmation/disposal of errors. <error code=""></error>						
	Lower than 4FFFH : < <qcpu (hardware="" and="" design="" inspection)="" maintenance="" manual="" user's="">></qcpu>						
	C000н to : < <q (basic="" corresponding="" edition)="" ethernet="" interface="" manual="" module="" user's="">> F000н to : <<q (plc="" corresponding="" h="" manual="" melsecnet="" network="" network)="" plc="" reference="" system="" to="">></q></q>						


POINT

When the input variable SD becomes TRUE, the SEND type FB executes the JP. SEND instruction, which is a rise instruction, in the FB. Hence, send processing is not performed if the online change of the SEND type FB is executed with the input variable SD in a TRUE status. To perform send processing, change the input variable SD from FALSE to TRUE.


5 - 34 5 - 34

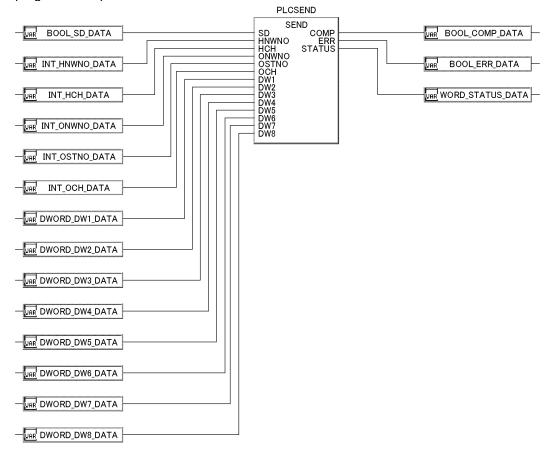
Instruction Execution Timing

(1) Completion

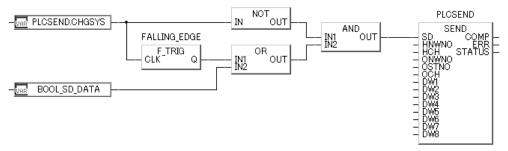
(2) Completion with errors

5 - 35 5 - 35

5 GENERAL FB ______MELSOFT


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.


- When the input value of input variable HNWNO, HCH, ONWNO, OSTNO or OCH is out of range. (Error code: 4100)
- Object station is not connected with the host station. (Error code: 4102)

Program Example

(1) Basic program example

(2) The following shows an example of a program that re-executes the SEND type FB in redundant system by turning the input variable SD from FALSE to TRUE at system switching.

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB for setting initial value of communication control FB pasted on user-defined FB/Tag FB and reading/writing them in program.

5 - 36 5 - 36

5.5.2 Receiving Data from PLC CPUs of Other Stations (RECV)

FB	FBD parts				
RECV	RECV RD COMP HNWNO ERR HCH STATUS DW1 DW1 DW8				

Function overview: Receive data from other PLC CPUs. (To execute the equivalent processing with JP.RECV instruction of PLC program.)

Function/FB classification name: Communication control FB

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents
	RD	Input variable	BOOL	RECV instruction execution requesting flag
Input	HNWNO	Input variable	INT	Network No. of host station 1 to 239: network No. 254 : network specified in valid unit in accessing other stations
	НСН	Input variable	INT	Host station storage channel 1 to 8: Channel
	COMP	Output variable	BOOL	Reception completed. TRUE: Completed FALSE: uncompleted.
	ERR	Output variable	BOOL	Reception completed status TRUE: abnormal completion FALSE: normal completion.
Output	STATUS	Output variable	BOOL	Completion status 0н: normal Other than 0н: abnormal (error code)
	DW1 to DW8	Output variable	DWORD	Receiving data Output the received data DW1 to DW8 from corresponding channels.

Public Variable

Variable name	Data type	Contents	Range	Storage
EXETYPE	WORD	[Abnormal completion type] b15 ~ b8 b7 b6 ~ b0 0 ~ 0 (1) 0 ~ 0 (1) Abnormal completion type (the 7th bit) To set whether timer data is stored in the public variable CLOCKSET to ERRST when an error occurs. 0: not set timer data 1: set timer data	0000н 0080н	User
осн	INT	[Channel used for object station] To store the channels used in transmission station. 1 to 8 (channel)	1 to 8	System (*1)
ONWNO	INT	[Network No. of object station] To store the network No. of transmission station. 1 to 239: network No.	1 to 239	System (*1)
OSTNO	INT	[Station No. of object station] To store the station No. of transmission stations. 1-64: station No. (receive from station with station No.) FFH: all stations (receive according to broadcasting)	1 to 64 FFн	System (*1)

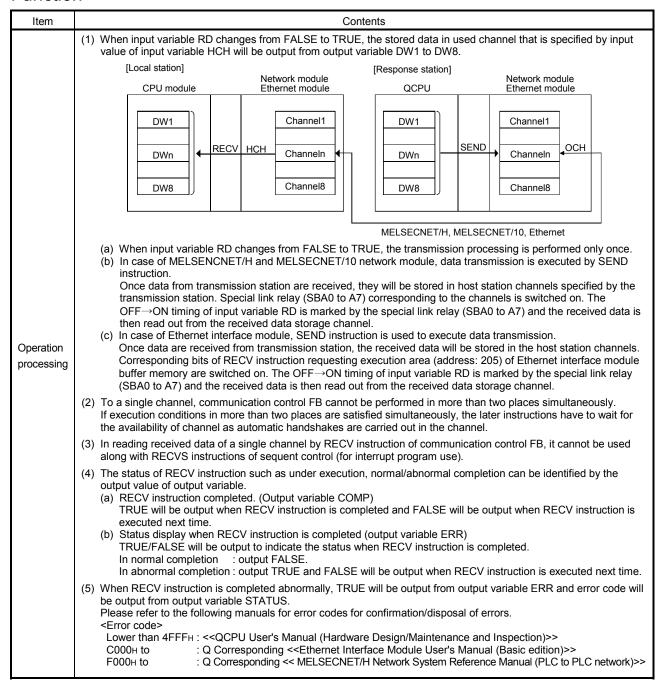
5 - 37 5 - 37

Variable name	Data type	Contents	Range	Storage
ARRTIME	INT	[Arrival WTD time] (1) Set WDT time till the instruction is completed via MELSECNET/H or MELSECNET/10 network system. If the instruction is not completed within the WDT time, it will be regarded as abnormal completion. 1 : 10 seconds 1 to 32767: 1 to 32767 seconds (2) Set the WDT time above TCP retry timer value till the instruction is completed via Ethernet interface module. If the instruction is not completed within the WDT time, it will be regarded as abnormal completion. 0 to TCP transmission retry timer value: monitor time is equivalent to TCP transmission retry timer value. (TCP transmission retry timer value+1) to 16383: WDT time (unit: second)		User
LENGTH	INT	[Length of received data] To store the received data that has been stored in DW1 to DW8. However, if the received data is more than the stored data of DW1 to DW8, the excess data will be lost in reading. 0 : no received data 1 to 480 : bit number of received data		System (*1)
CLOCKSET	INT	[Clock set flag] To store the valid/invalid status of public variable CLOCKDATA1 to ERRST data. 0: invalid 1:valid	_	System (*1)
CLOCKDATA1	WORD	Clock data (only when errors occur)] High-order bit 8 bit: month (01 _H to 12 _H), low-order bit 8 bit: year (00 _H to 99 _H) Rightmost two digits.		System (*1)
CLOCKDATA2	WORD	[Clock data (only when errors occur)] High-order bit 8 bit: hour (00 _H to 23 _H), low-order bit 8 bit: day (01 _H to 31 _H)	_	System (*1)
CLOCKDATA3	WORD	[Clock data (only when errors occur)] High-order bit 8 bit: second (00 _H to 59 _H), low-order bit 8 bit: minute (00 _H to 59 _H)	_	System (*1)
CLOCKDATA4	WORD	[Clock data (only when errors occur)] High-order bit 8 bit: year (00H to 99H) leftmost 2 digits, low-order bit 8 bit: Week (00H(Sunday) to 06H(Saturday))	_	System (*1)
ERRNW	INT	[Detected abnormal network No.] To store the network No. of detected abnormal station. However, if the completion status of output variable STATUS is "Channel in use (F7C1H or C085H)", it will not be stored. 1 to 239 (network No.)	_	System (*1)
ERRST	INT	[Detected abnormal station No.] To store the station No. of detected abnormal station. However, if the completion status of output variable STATUS is "Channel in use (F7C1H or C085H)", it will not be stored. 1 to 64 (station No.)		System (*1)
CHGSYS	BOOL	It turns TRUE in the new control system immediately after system switching, and then returns FALSE at the first FB execution, in redundant system. (It turns TRUE/FALSE for each execution.)	TRUE, FALSE	System (*1)

^{*1} Please execute reading/writing via program.

It will not be displayed on the FB property window of PX Developer.

POINT

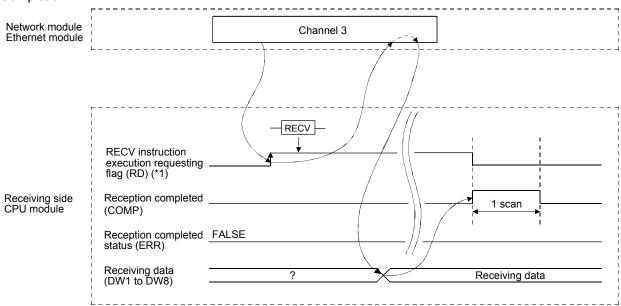

If the received data number exceeds the storage data number (maximum 16 words) of output variable DW1 to DW8, the excess data will be lost.

5 - 38 5 - 38

Restrictions on redundant system operation and the applicable corrective action

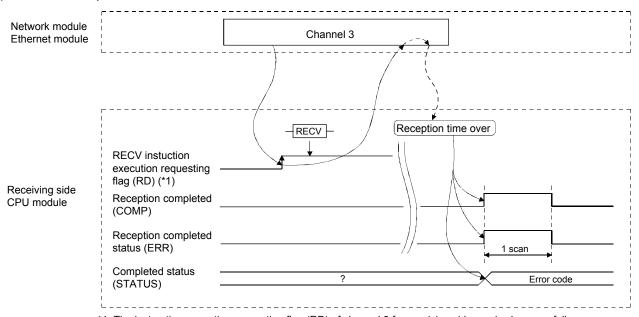
Restrictions	Corrective action
If tracking of signal flow has not been executed, data reception will not be executed even when the RECV instruction RD is turned from FALSE to TRUE at the first FB execution in the new control system immediately after system switching.	Input "FALSE → TRUE" in the RECV instruction RD and execute data reception in the new control system immediately after system switching, as
If the system is switched before TRUE is output to the receiving completion COMP when "FALSE \rightarrow TRUE" has been input in the RECV instruction RD and executed, the data reception may not be executed. In addition, the COMP may not turn TRUE in the new control system.	necessary. (Whether system switching has been performed or not can be found by using the public variable CHGSYS.)
This FB cannot be used for an Ethernet module mounted to a redundant type extension base unit of Redundant CPU.	Mount an Ethernet module to a main base unit for execution of the FB.

Function


5 - 39 5 - 39

POINT

When the input variable RD becomes TRUE, the RECV type FB executes the JP. RECV instruction, which is a rise instruction, in the FB. Hence, send processing is not performed if the online change of the RECV type FB is executed with the input variable RD in a TRUE status. To perform send processing, change the input variable RD from FALSE to TRUE.


Instruction Execution Timing

(1) Completion

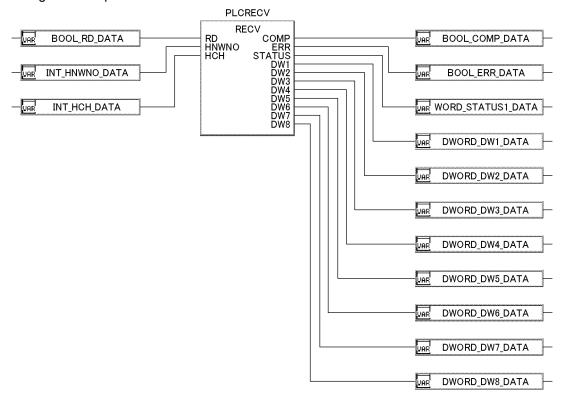
^{*1} The instruction execution requesting flag (RD) of channel 3 for receiving side use is shown as follows: In case of network module: SB2 of special link relay In case of Ethernet module: RECV instruction execution request area bit 2 of buffer memory(address: 205)

(2) Abnormal completion

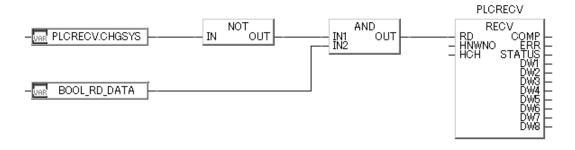
^{*1:} The instruction execution requesting flag (RD) of channel 3 for receiving side use is shown as follows: In case of network module: SB2 of special link relay. In case of Ethernet module: RECV instruction execution requesting area bit 2 of buffer memory (address: 205).

5 - 40 5 - 40

5 GENERAL FB MELSOFT


Error

Error may occur in the following cases, the error codes will be displayed in FBD program diagnostics screen of PX Developer programming tool.


- When the input value of input variables HNWNO and HCH is out of the range. (Error code: 4100)
- When the object station network is not connected with host station. (Error code: 4102)

Program Example

(1) Base Program example

(2) The following shows an example of a program that re-executes the RECV type FB in redundant system by turning the input variable RD from FALSE to TRUE at system switching when the RECV instruction execution requesting flag (BOOL RD DATA) is TRUE.

POINT

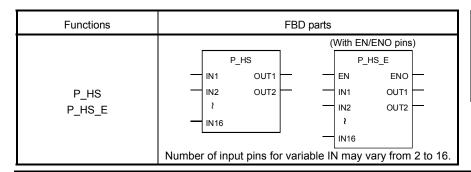
It is necessary to refer to public variable on user-defined FB/tag FB for setting initial value (of communication control FB public variable that is pasted on user-defined FB/tag FB) on the FB property window and reading/writing programs.

5 - 41 5 - 41

6 PROCESS FUNCTION

Process functions are classified as follows.

Classification name Content		Reference
Analogue value selection &	Output the maximum, minimum, intermediate, average, and	Section 6.1
Average function	absolute values of the input values.	

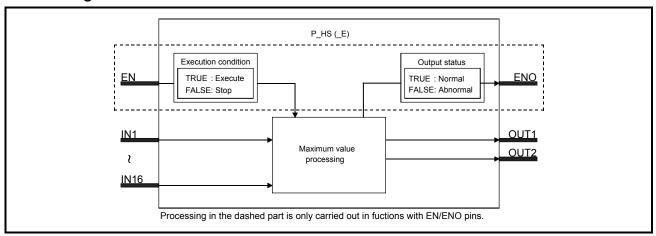

6

6-1 6-1

6

6.1 Analog Value Selection and Average Value Function

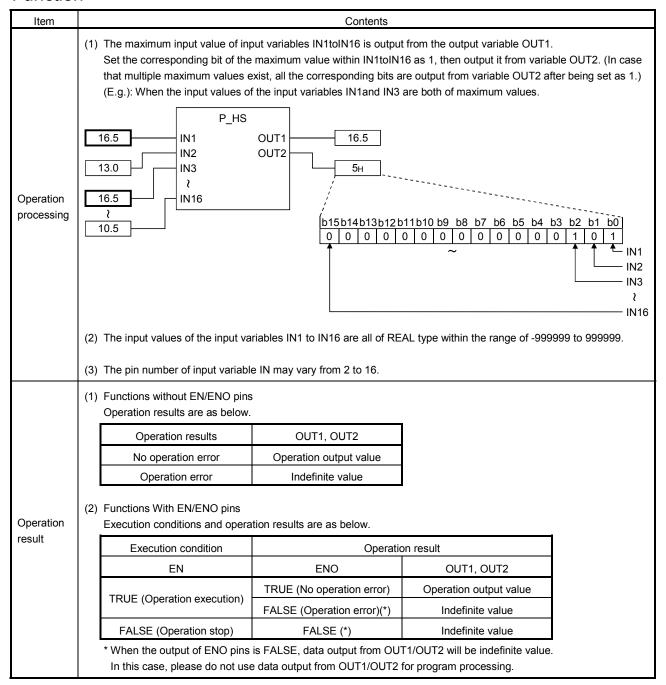
6.1.1 High Selector (P_HS (_E))



With EN/ENO pins	0
Overload	
Input pin number changeable (range)	2 to 16

Function overview: Output the maximum of the input values

Function/FB classification name: Analogue value selection & average value function

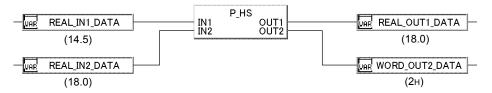

Block Diagram

Input and Output Pins

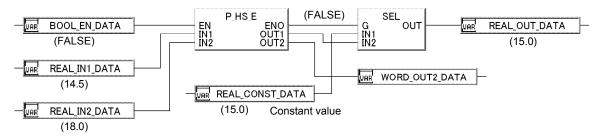
Pin	Variable name	Variable type	Data type	Contents	Range
Input	EN	Input variable	BOOL Execution condition (TRUE: Execution, FALSE: Stop)		TRUE, FALSE
	IN1 to IN16	Input variable	REAL	Input	-999999 to 999999
	ENO	Output variable	BOOL Output status (TRUE: Normal, FALSE: Abnormal)		TRUE, FALSE
Output	OUT1	Output variable	REAL	Output	-999999 to 999999
	OUT2	Output variable	e WORD Output selection 0н		0н to FFFFн

Function

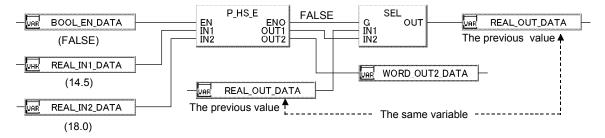
Error


Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

When overflow occurs during operation (Error code: 4100)


Program Example

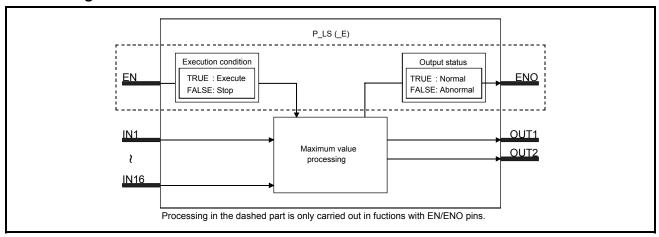
The following are the programs in which the maximum input value of input variables IN1 to IN16 is output.


(1) Basic program examples (P HS).

- (2) This is a program example in which a constant value is output when the input variable EN is FALSE, or operation errors occur. (P_HS_E).
 - (E.g.): When the input variable EN is FALSE

- (3) This is a program example in which the previous value is output when the input variable EN is FALSE, or operation errors occur. (P_HS _E).
 - (E.g.): When the input variable EN is FALSE

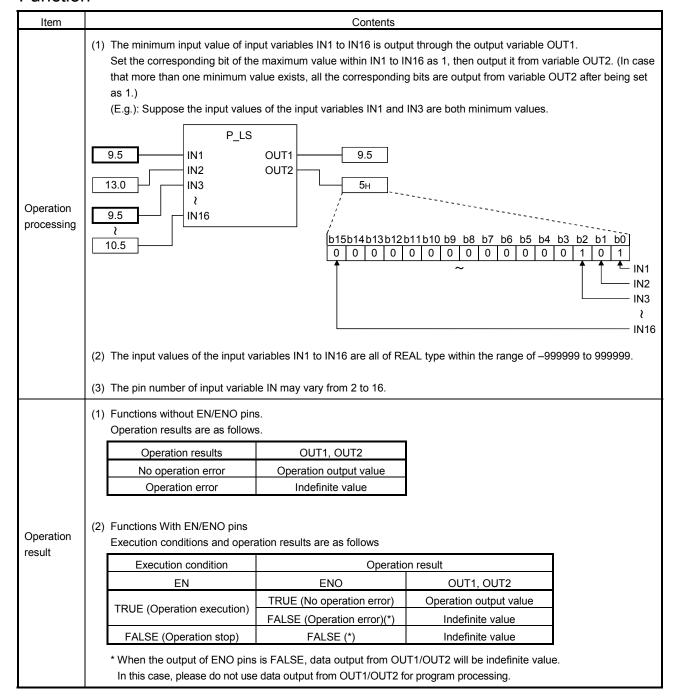
6.1.2 Low Selector (P_LS (_E))


Functions	FBD parts					
			()	With EN/E	ENO pins)
	P_I	HS		P_H	S_E	
	IN1	OUT1	_	EN	ENO	_
P_LS	IN2	OUT2		IN1	OUT1	_
P_LS_E	₹			IN2	OUT2	_
	- IN16			₹		
			_	IN16		
	Number of inpu	it pins for vari	able II	N may v	ary from	2 to 16.

With EN/ENO pins	0
Overload	1
Input pin number changeable (range)	2 to 16

Function overview: Output the minimum input value

Function/FB classification name: Analogue value selection & average function

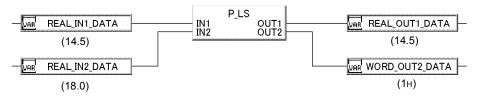

Block Diagram

Input and Output Pins

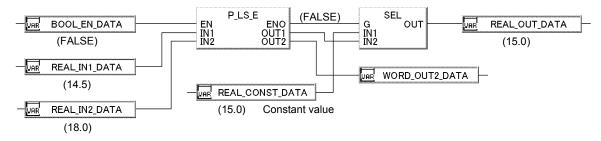
Pin	Variable name	Variable type	Data type	Contents	Range
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)	TRUE, FALSE
	IN1 to IN16	Input variable	REAL	Input	-999999 to 999999
Output	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)	TRUE, FALSE
	OUT1	Output variable	REAL	Output	-999999 to 999999
	OUT2	Output variable	WORD	Output selection	0н to FFFFн

Function

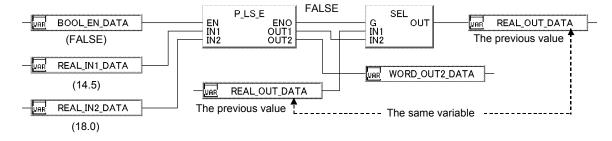
Error


Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

When overflow occurs during operation. (Error code: 4100)


Program Example

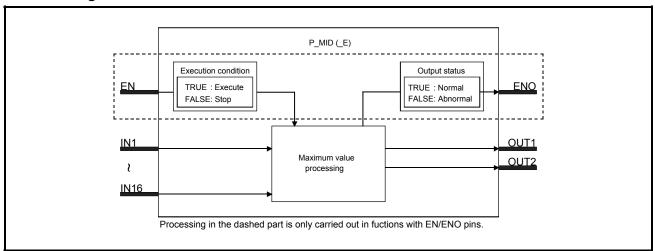
The following are the programs in which the minimum input value of input variables IN1 to IN16 is output.


(1) Basic program examples (P_LS)

- (2) This is a program example in which a constant value is output when the input variable EN is FALSE, or operation errors occur. (P_LS _E)
 - (E.g.): When the input variable EN is FALSE

- (3) This is a program example in which the previous value is output when the input variable EN is FALSE, or operation errors occur. (P_LS _E)
 - (E.g.): When the input variable EN is FALSE

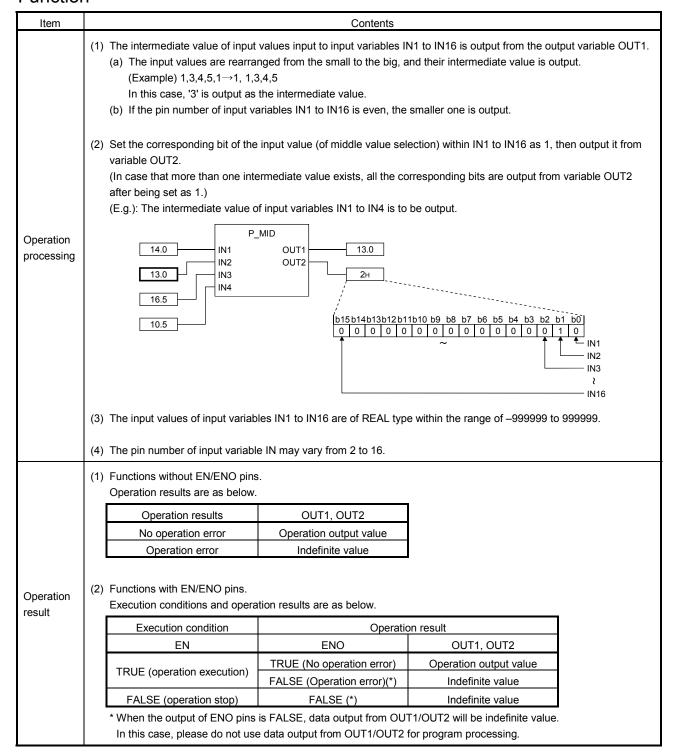
6.1.3 Middle Value Selection (P_MID (_E))


Functions	FBD parts			
	(With EN/ENO pins) P_MID_E			
5 .45	IN1 OUT1 EN ENO IN1 OUT1 OUT1			
P_MID P MID E	IN2 OUT2 IN1 OUT1 IN2 OUT2			
	N16			
	Number of input pins for variable IN may vary from 2 to 16.			

With EN/ENO pins	0
Overload	_
Input pin number changeable (range)	2 to 16

Function overview: Output the intermediate value of the input values.

Function/FB classification name: Analogue value selection & average function

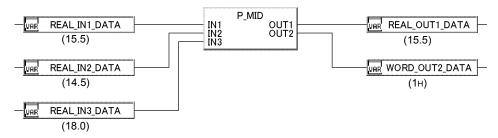

Block Diagram

Input and Output Pins

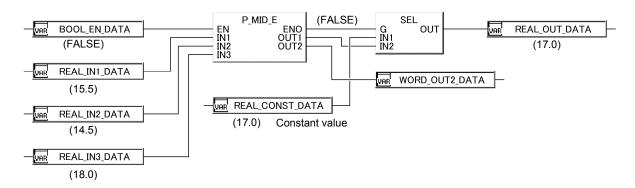
Pin	Variable name	Variable type	Data type	Contents	Range
Input	EN	Input variable	BOOL	Execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE
	IN1 to IN16	Input variable	REAL	Input	-999999 to 999999
Output	ENO	Output variable	BOOL	Output status (TRUE: Normal, FALSE: Abnormal)	TRUE, FALSE
	OUT1	Output variable	REAL	Output	-999999 to 999999
	OUT2	Output variable	WORD	Output selection	0н to FFFFн

Function

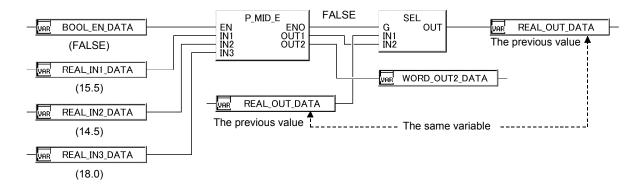
Error


Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

When overflow occurs during operation. (Error code: 4100)


Program Example

The following are the programs in which the intermediate value of the input values input from the input variables IN1 to IN16 is output.

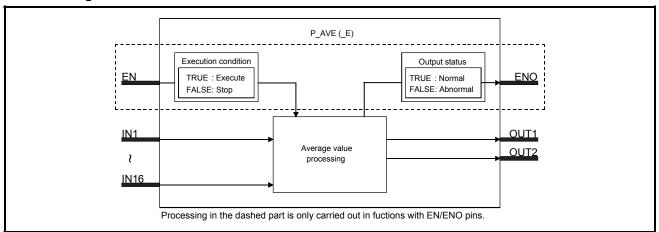

(1) Basic program examples (P MID).

- (2) This is a program example in which a constant value is output when the input variable EN is FALSE, or operation errors occur. (P_MID _E).
 - (E.g.): When the input variable EN is FALSE

- (3) This is a program example in which the previous value is output when the input variable EN is FALSE, or operation errors occur. (P_MID _E).
 - (E.g.): When the input variable EN is FALSE

6 - 10 6 - 10

6.1.4 Average Value (P_AVE (_E))


Functions	FBD parts			
P_AVE P_AVE_E	(With EN/ENO pins) P_AVE			

With EN/ENO pins	0
Overload	
Input pin number changeable (range)	2 to 16

Function overview: Output the average of the input values.

Function/FB classification name: Analogue value selection & average value function

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input EN		Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)	TRUE, FALSE
	IN1 to IN16	Input variable	REAL	Input	-999999 to 999999
Output	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)	TRUE, FALSE
	OUT1	Output variable	REAL	Output	-999999 to 999999
	OUT2	Output variable	WORD	Output selection	0н to FFFFн

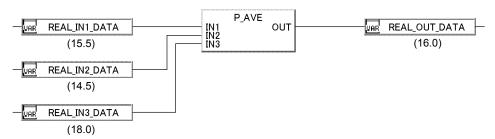
Function

Item	Content
Operation processing	 (1) The average of the values input to the input variables IN1 to IN16 is output through the output variable OUT OUT = (IN1+IN2+IN3+······IN16) ÷ N IN1 to IN16: Input values, OUT: Output value, N: Input pin number. (2) The input values of input variables IN1 to IN16 are REAL type within the range of -999999 to 999999. (3) The pin number of input variables may vary from 2 to 16.

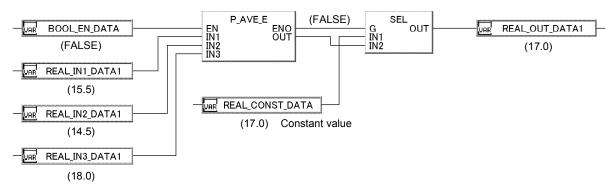
6 - 11 6 - 11

Item		Content					
	` '	Functions without EN/ENO pins. Operation results are as below.					
		Operation results	OUT1, OUT2				
		No operation error	Operation output value				
		Operation error	Indefinite value				
Operation result	` '	Functions with EN/ENO pins. Execution conditions and operat Execution condition	ion results are as below.	on result			
		EN	ENO	OUT			
		TDUE (Operation execution)	TRUE (No operation error)	Operation output value			
		TRUE (Operation execution)	FALSE (Operation error) (*)	Indefinite value			
	FALSE (Operation stop)		FALSE (*)	Indefinite value			
	* When the output of ENO pins is FALSE, data output from OUT1/OUT2 will be indefinite value. In this case, please do not use data output from OUT1/OUT2 for program processing.						

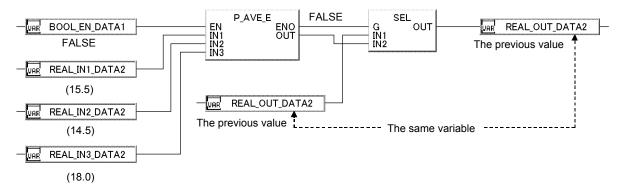
Error


Error may occur in the following cases, error codes will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

• When overflow occurs during operation. (Error code: 4100)


Program Example

The following are the programs in which the average of the values input from the input variables IN1 to IN16 is output.

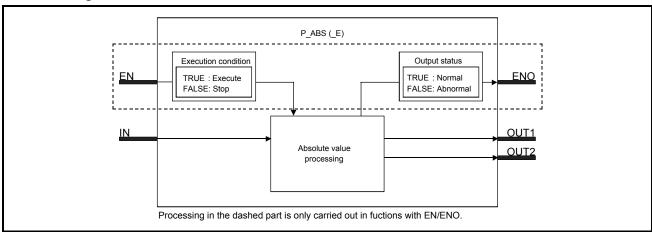

(1) Basic program examples (P_AVE).

- (2) This is a program example in which a constant value is output when the input variable EN is FALSE, or operation errors occur. (P_ AVE _E).
 - (E.g.): When input variable EN is FALSE

- (3) This is a program example in which the previous value is output when the input variable EN is FALSE, or operation errors occur. (P_ AVE _E).
 - (E.g.): When input variable EN is FALSE

6 - 13 6 - 13

6.1.5 Absolute Value (P_ABS (_E))

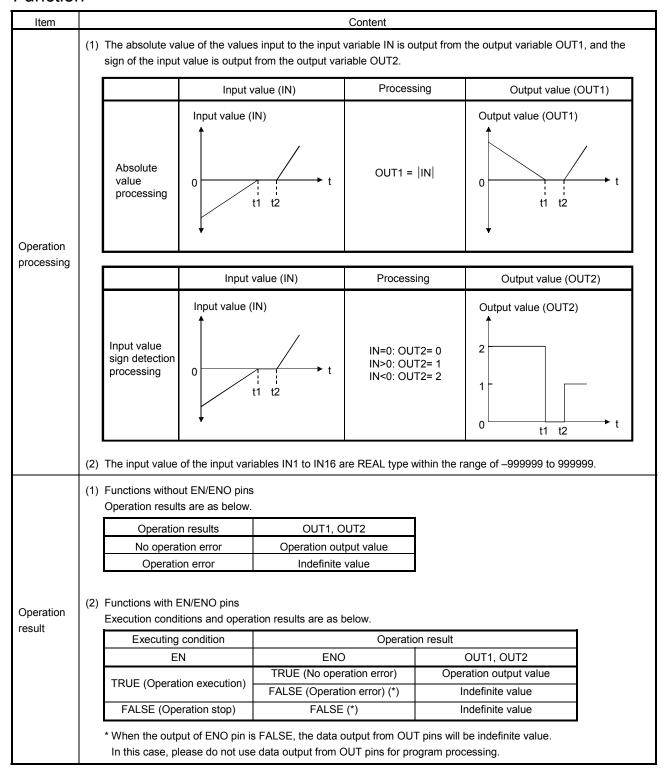

Functions	FBD parts			
P_ABS P_ABS_E	(With EN/ENO pins) P_ABS IN OUT1 OUT2 OUT2 (With EN/ENO pins) P_ABS_E EN ENO IN OUT1 OUT2			

With EN/ENO pins	0
Overload	_
Input pin number changeable (range)	_

Function overview: Output the absolute value of the input value.

Function/FB classification name: Analogue value selection & average function

Block Diagram



Input and Output Pins

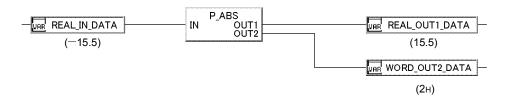
Pin	Variable name	Variable type	Data type	Contents	Range
Input EN		Input variable	BOOL	Execution condition (TRUE: Execute FALSE: Stop)	TRUE, FALSE
	IN	Input variable	REAL	Input	-999999 to 999999
	ENO	Output variable	BOOL	Output status (TRUE: Normal FALSE: Abnormal)	TRUE, FALSE
Output	OUT1	Output variable	REAL	Output	-999999 to 999999
	OUT2	Output variable	WORD	Input value sign detection (IN=0: 0н IN>0: 1н IN<0: 2н)	0н to 2н

6 - 14 6 - 14

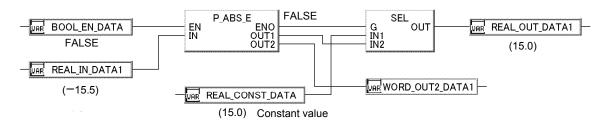
Function

Error

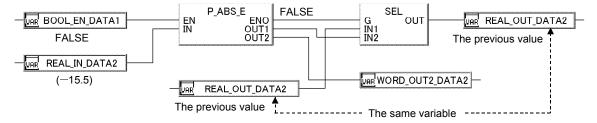
Error may occur in the following cases, error codes will be displayed on the FBD program diagnostics screen of PX Developer programming tool.


When overflow occurs during operation. (Error code: 4100)

6 - 15 6 - 15


Program Example

The following are programs in which the absolute value (of value input from the input variable IN) from output variable OUT1 and the input symbol detection outcome are output through output variable OUT2.


(1) Basic program examples (P_ABS).

- (2) This is a program example in which a constant value is output when the input variable EN is FALSE, or operation errors occur. (P_ ABS _E).
 - (E.g.): When input variable EN is FALSE

- (3) This is a program example in which the previous value is output when the input variable EN is FALSE, or operation errors occur. (P_ ABS _E).
 - (E.g.): When input variable EN is FALSE

7 PROCESS FB

Process FB is the instructions used for process control. It can be classified into following types.

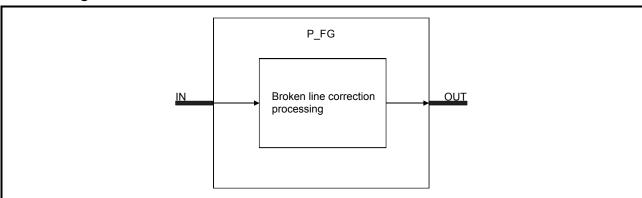
Classification Name		Contents	Reference	
General process FB	Correction operation FB	Operate broken line correction, standard filter, engineering value conversion, temperature/pressure correction, and integration, etc.	Section 7.1	
	Arithmetic operation FB	Operate addition/subtraction, multiplication, division and square root, etc.	Section 7.2	
	Comparison operation FB	Operate comparison operation (\geq , >, =, <, \leq).	Section 7.3	
	Control operation FB	Control operation of lead-lag, integral, derivative, high limit limiter, variation rate limiter, dead band, bumpless transfer and analogue memory, etc.	Section 7.4	
Tag access FB	I/O control FB	Control FB Execute analogue input and output, etc.		
	Loop control operation FB	Ratio control, various PID control, 2-position ON/OFF, 3-position ON/OFF, pulse integration, batch counter, program setter and loop selector, etc.	Section 7.6	
	Special FB	Change control mode.	Section 7.7	
Tag FB	Loop tag FB	Ratio control, PID control, 2-position ON/OFF, 3-position ON/OFF, program setter and loop selector, etc.	Section 7.8	
	Status tag FB	Reversible and irreversible operation, ON/OFF operation, timer and counter, etc.	Section 7.9	
	Alarm tag FB	Execute alarm notification.	Section 7.10	
	Massage tag FB	Execute massage notification.	Section 7.11	

7

7-1 7-1

7

7.1 General Process FB_Correction Operation FB

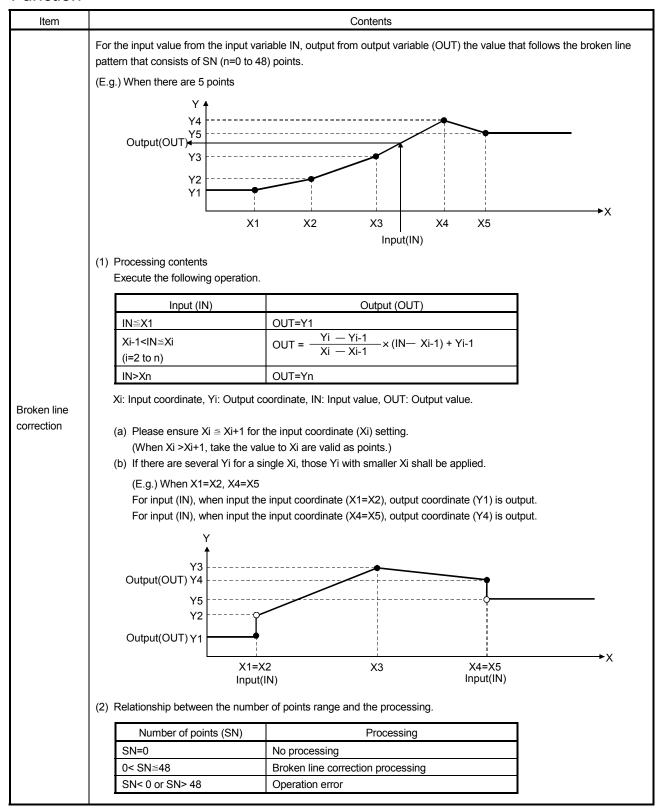

7.1.1 Function Generator (P_FG)

FB	FBD parts	
P_FG	P_FG N OUT	

Function overview: Output (OUT) the value from the input (IN) that follows the broken line pattern that consists of SN points.

Function/FB division name: General process FB_Correction operation FB

Block Diagram


Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range	
Input	IN	Input variable	REAL	Input	-999999 to 999999	
Output	OUT	Output variable	REAL	Output	-999999 to 999999	

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation processing	SN	Public variable	INT	Number of points	0 to 48	0	User
	X1 to X48	Public variable	REAL	Input coordinates (X Coordinates)	-999999 to 999999	0.0	User
	Y1 to Y48	Public variable	REAL	Output coordinates (Y Coordinates)	-999999 to 999999	0.0	User

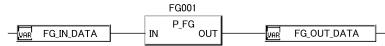
Function

7 - 3 7 - 3

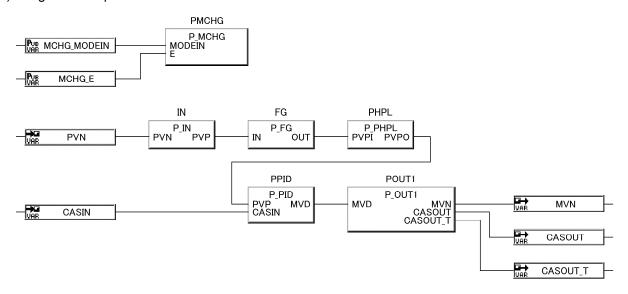
Initial value setting using FB property page

The Initial value concerning function generator (P_FG) can be easily set in the FB property page of PX Developer programming tool. The following shows the setting details.

Group	Item	Variable name	Content
	Number of points	SN	Set the number of points used in the broken line correction processing.
On a seller at a	Broken points coordinate	Xn	Set the Input coordinates of the broken line correction processing.
Coordinate	Broken points coordinate	Yn	Set the output coordinates of the broken line correction processing.


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.


- When overflow occurs during operation (Error code: 4100)
- The number of points (SN): When SN< 0 or SN> 48 (Error code: 4100)

Program Example

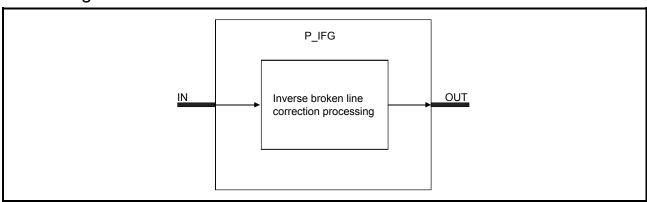
(1) Program example 1

(2) Program example 2

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 4 7 - 4


7.1.2 Inverse Function Generator (P_IFG)

FB	FBD parts		
P_IFG	P_IFG 		

Function overview: Output (OUT) the value from the input (IN) that follows the broken line pattern that consists of SN points.

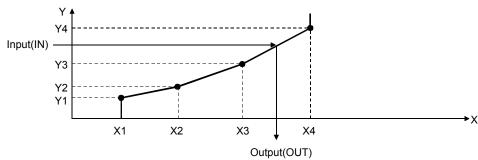
Function/FB division name: General process FB_Correction operation FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	IN	Input variable	REAL	Input	-99999 to 999999
Output	OUT	Output variable	REAL	Output	-99999 to 999999

Public Variable (Operation constant)


	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	SN	Public variable	INT	Number of points	0 to 48	0	User
Operation processing	X1 to X48	Public variable	REAL	Output coordinate (X coordinate)	-999999 to 999999	0.0	User
processing	Y1 to Y48	Public variable	REAL	Input coordinate (Y coordinate)	-999999 to 999999	0.0	User

7-5

Item Contents

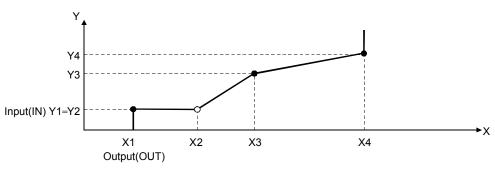
For the input value from the input variable IN, output from output variable (OUT) the value that follows the broken line pattern that consists of SN (n=0 to 48) points.

(E.g.) When there are 4 points

(1) Processing contents

Execute the following operation.

Input (IN)	Output (OUT)
IN≦Y1	OUT=X1
Yi-1< IN ≦Yi (i=2 to n)	OUT = $\frac{Y_i - Y_{i-1}}{X_i - X_{i-1}} \times (IN - X_{i-1}) + Y_{i-1}$
IN> Yn	OUT=Xn


Broken line correction

Xi: Output coordinate, Yi: Input coordinate, IN: Input value, OUT: Output value.

- (a) Please ensure Yi \leq Yi+1 for the input coordinate (Yi) setting. (When Yi >Yi+1, the values to Yi are valid as points.)
- (b) If there are several Xi for a single Yi, those Xi with smaller Yi shall be applied.

(E.g.) When Y1=Y2

For input (IN), when input the input coordinate (Y1=Y2), output coordinate (X1) is output.

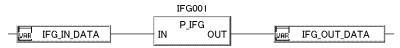
(2) Relationship between number of points range and the processing.

Number of points (SN)	Process
SN=0	No processing
0< SN≦48	Broken line correction processing
SN< 0 or SN> 48	Operation error

7 - 6 7 - 6

Initial value setting using FB property page

The Initial value concerning inverse function generator (P_IFG) can be easily set in the FB property page of PX Developer programming tool. The following shows the setting details.


Group	Item	Variable name	Content
	Number of points	SN	Set the number of points used in the broken line correction processing.
On andimate	Broken points coordinate	Xn	Set the output coordinates of the broken line correction processing.
Coordinate	Broken points coordinate	Yn	Set the input coordinates of the broken line correction processing.

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

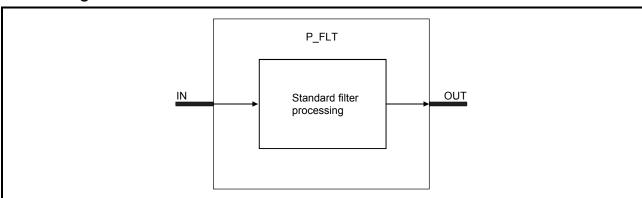
- When overflow occurs during operation (Error code: 4100)
- The number of points (SN): When SN< 0 or SN> 48 (Error code: 4100)

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7-7 7-7


7.1.3 Standard Filter (Moving Average)(P_FLT)

FB	FBD parts
P_FLT	P_FLT OUT

Function overview: Output (OUT) the average value of 'SN' pieces of input (IN) data that are sampling collected at data collection interval.

Function/FB classification name: General process FB_Correction operation FB

Block Diagram

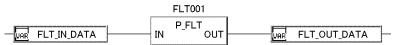
Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	IN	Input variable	REAL	Input	-999999 to 999999
Output	OUT	Output variable	REAL	Output	-999999 to 999999

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	ST	Public variable	REAL	Data collection interval (unit: s)	0 to 999	1.0	User
processing	SN	Public variable	INT	Sampling number	0 to 48	0	User

7-8


Item	Contents					
	Output (OUT) the average value of 'SN (1) Processing contents Execute the following operation.	I' pieces of input (IN) data that are collected at data collected	ction interval.			
	OUT = IN1 + IN2 + IN3 + · · · + INSN SN					
	SN: Sampling number, IN1 to INsn: Input value, OUT: Output value					
Standard	(a) Data updating period is set as	$\frac{ST}{\triangle T}$ ($\triangle T$: Execution cycle). (The data after the decimal	point will be rounded			
filter	off)					
process	(b) Before input (IN) reaches the sampling (SN) number, output the average value of sampling input (IN) that is collected so far.					
	(c) Please set data collection interval (ST) as ST=n \times \triangle T. (n is integer).					
	(2) Relationship between range of sar	npling number (SN) and the processing.				
	Sampling number (SN)	Processing				
	0< SN ≦ 48	Standard filter processing				
	SN=0	Output (OUT)=0				
	SN< 0 or SN> 48	Operation error				

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

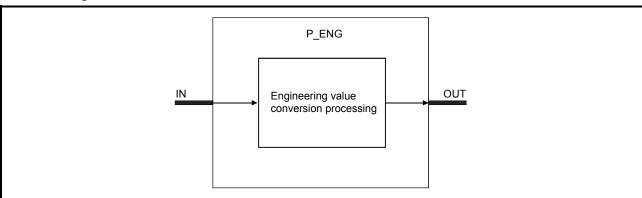
- When overflow occurs during operation. (Error code: 4100)
- The number of sampling number (SN): When SN< 0 or SN> 48. (Error code: 4100)

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7-9 7-9

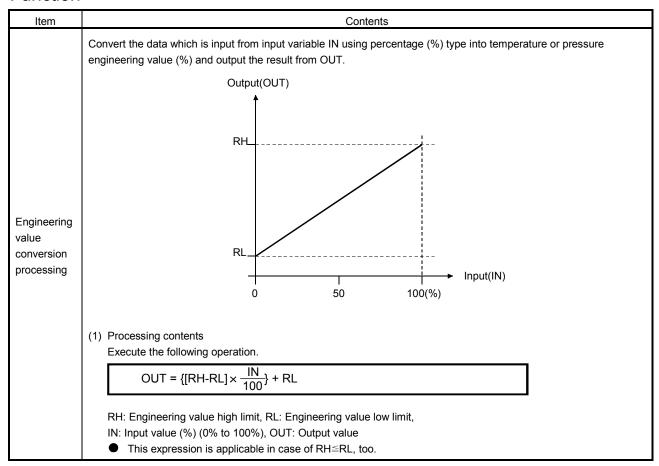

7.1.4 Engineering Value Conversion (P_ENG)

FB	FBD parts
P_ENG	P_ENG IN OUT

Function overview: Convert the input data (%) into temperature or pressure engineering value and output (OUT).

Function/FB division name: General process FB_Correction operation FB

Block Diagram

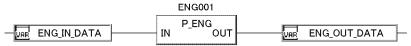

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	IN	Input variable	REAL	Input	-999999 to 999999
Output	OUT	Output variable	REAL	Output	-999999 to 999999

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	RH	Public variable	REAL	Engineering value high limit	-999999 to 999999	100.0	User
processing	RL	Public variable	REAL	Engineering value low limit	-999999 to 999999	0.0	User

7 - 10 7 - 10



Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

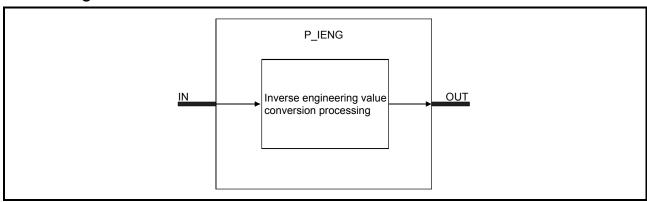
When overflow occurs during operation. (Error code: 4100)

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 11 7 - 11

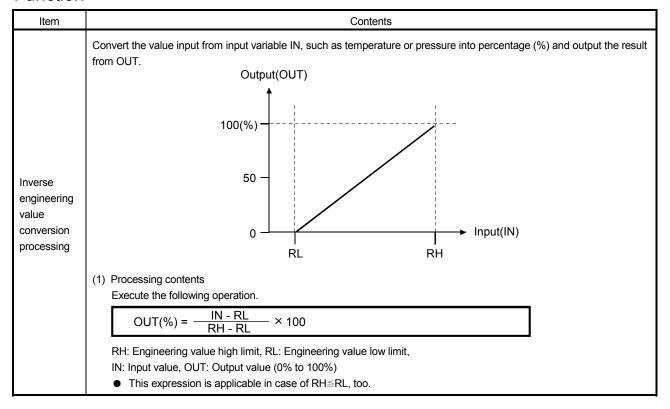

7.1.5 Inverse Engineering Value Conversion (P_IENG)

FB	FBD parts		
P_IENG	P_IENG IN OUT		

Function overview: Convert the input engineering value such as temperature and pressure into percentage (%) and output the result from OUT.

Function/FB division name: General process FB_Correction operation FB

Block Diagram

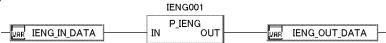

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	IN	Input variable	REAL	Input	-99999 to 999999
Output	OUT	Output variable	REAL	Output	-999999 to 999999

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	RH	Public variable	REAL	Engineering value high limit	-999999 to 999999	100.0	User
processing	RL	Public variable	REAL	Engineering value low limit	-999999 to 999999	0.0	User

7 - 12 7 - 12



Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

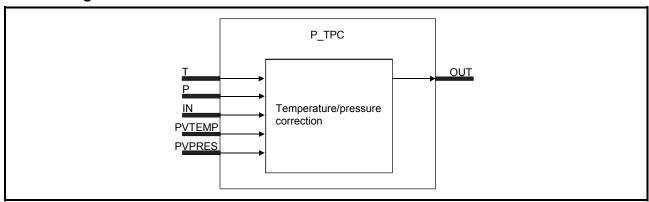
• When overflow occurs during operation. (Error code: 4100)

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 13 7 - 13


7.1.6 Temperature/Pressure Correction (P_TPC)

FB	FBD parts		
P_TPC	P_TPC T OUT P IN PVTEMP PVPRES		

Function overview: For the differential pressure input (IN), execute temperature/pressure correction (temperature correction or pressure correction) operation and output the result from OUT.

Function/FB division name: General process FB_Correction operation FB

Block Diagram

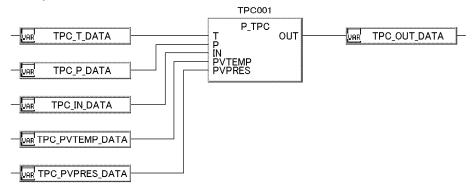
Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	Т	Input variable	BOOL	Temperature correction selection (TRUE: Used, FALSE: Not used)	TRUE, FALSE
	Р	Input variable	BOOL	Pressure correction selection (TRUE: Used, FALSE: Not used)	TRUE, FALSE
	IN	Input variable	REAL	Differential pressure input (%)	0 to 100
	PVTEMP	Input variable	REAL	Measured temperature (engineering value)	-999999 to 999999
	PVPRES	Input variable	REAL	Measured pressure (engineering value)	-999999 to 999999
Output	OUT	Output variable	REAL	Output (%)	0 to 100

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	TEMP	Public variable	REAL	Design temperature T' (engineering value)	-999999 to 999999	0.0	User
	B1	Public variable	REAL	Bias temperature (engineering value)	-999999 to 999999	273.15	User
processing	PRES	Public variable	REAL	Design pressure P' (engineering value)	-999999 to 999999	0.0	User
	B2	Public variable	REAL	Bias pressure (engineering value)	-999999 to 999999	10332.0	User

7 - 14 7 - 14


Item		Contents												
	For the differential pressure input (IN), execute temperature/pressure correction (temperature correction or pressure correction) operation and output the result from OUT. (1) Processing contents Operate following items.													
		Temperature correction	•	A1	A2	Output (OUT)								
		Temperature correction (T)	Pressure correction (P)	Al	72	Output (OO1)								
Temperature/ pressure correction		TRUE	TRUE	TEMP + B1 PVTEMP + B1	PVPRES + B2 PRES + B2									
processing				FALSE	TRUE	1.0	PVPRES + B2 PRES + B2	OUT=IN×A1×A2						
											-		TRUE	FALSE
		T: Temperature correction selection, P: Pressure correction selection, IN: Differential pressure input (%), PVTEMP: Measured temperature (engineering value), PVPRES: Measured pressure (engineering value), TEMP: Design temperature T' (engineering value), PRES: Design pressure P' (engineering value), B1: Bias temperature (engineering value), B2: Bias pressure (engineering value), OUT: Output (%)												

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

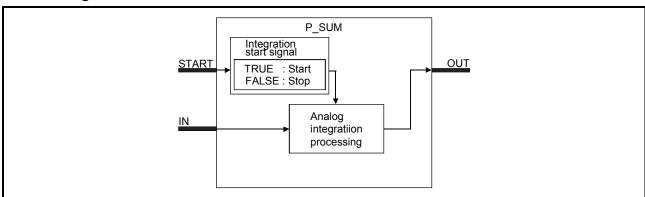
• When overflow occurs during operation. (Error code: 4100)

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 15 7 - 15


7.1.7 Summation (P_SUM)

FB	FBD parts					
P_SUM	P_SUM — START OUT — IN					

Function overview: When integration start signal (START) is TRUE, execute integration operation on the input (IN) and outputs (OUT) the result.

Function/FB division name: General process FB_Correction operation FB

Block Diagram

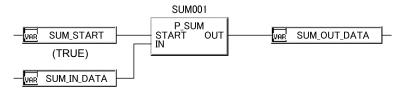
Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	START	Input variable	BOOL	Integration start signal (TRUE: Start, FALSE: Stop)	TRUE, FALSE
	IN	Input variable	REAL	Input	-99999 to 999999
Output	OUT	Output variable	REAL	Output	-99999 to 999999

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	ILC	Public variable	REAL	Input low cut-off value	-999999 to 999999	0.0	User
	Α	Public variable	REAL	Initial value	-999999 to 999999	0.0	User
processing				Input range 1:/s			
processing	RANGE	Public variable	INT	2:/min	1 to 3	1	User
				3:/hour			

7 - 16 7 - 16


Item	Contents							
	When integration start signal (START) is TRUE, accumulates the input value that comes from input variable IN, and outputs the result from variable OUT. (1) Processing contents Execute the following operation.							
	Integration start signal (START)	I Input (IN) I Output (OUT)						
Analogue	FALSE: Stop	Optional	OUT=Initial value (A)					
Analogue integration		IN≦ILC	OUT=Previous value					
processing	TRUE: Start	TRUE: Start OUT = $(IN \times \frac{\triangle T}{T})$ + previous value						
	△T: Execution cycle, ILC: Input low cut-off value, A: Initial value. T: When RANGE=1, T=1(s), RANGE=2, T=60(s), RANGE=3, T=3600(s), (E.g.) When input 0 to 5m³/min, the setting should be RANGE=2 due to input range"/min". Besides, multiplying factor is ×1 m³.							
Integration start signal	•	al (START) is FALSE: Stop integration al (START) is TRUE: Start integration						

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

- When overflow occurs during operation. (Error code: 4100)
- When input range (RANGE) is not within 1 to 3. (Error code: 4100)

Program Example

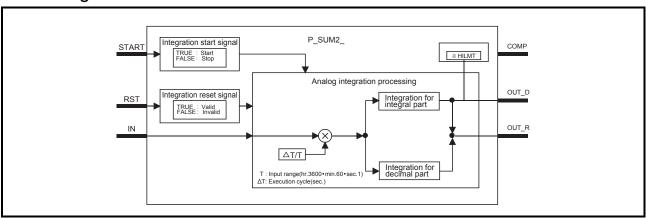
POINT

- (1) It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.
- (2) Use P_SUM2_ to reduce the influence of information loss in the single-precision floating-point operation. P_SUM is used to keep the compatibility with existing programs.

For the information loss, refer to Section 2.4.

7 - 17 7 - 17

7.1.8 Summation (Internal Integer Integration) (P_SUM2_)


FB	FBD parts		
P_SUM2_	P_SUM2_ START COMP RST OUT_D IN OUT_R		

Function overview: When integration start signal (START) is TRUE, execute integration operation on the input (IN) and outputs the result.

Internal integration for the integral part is executed by signed 32-bit integer.

Function/FB division name: General process FB_Correction operation FB

Block Diagram

Input and Output Pins

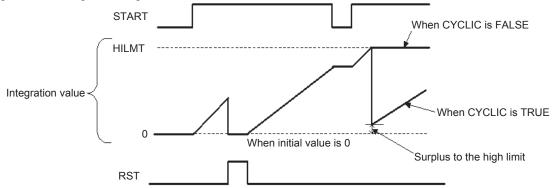
Pin	Variable name	Variable type	Data type	Contents	Range
	START	Input variable	BOOL	Integration start signal (TRUE: Start, FALSE: Stop)	TRUE, FALSE
Input	RST	Input variable	BOOL	Integration reset signal (TRUE: Valid, FALSE: Invalid)	TRUE, FALSE
	IN	Input variable	REAL	Input	-999999 to 999999
Output	СОМР	Output variable	BOOL	Integration complete signal (TRUE: Complete, FALSE: Unreached)	TRUE, FALSE
	OUT_D	Output variable	DINT	Integration value output (integral part)	-2147483648 to 2147483647
	OUT_R	Output variable	REAL	Integration value real number output	-2147483648 to 2147483647

7 - 18 7 - 18

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	ILC	Public variable	REAL	Input low cut-off value	-999999 to 999999	0.0	User
	А	Public variable	REAL	Initial value	-999999 to 999999	0.0	User
	RANGE	Public variable	INT	Input range 1:/s 2:/min 3:/hour	1 to 3	1	User
Operation	HILMT	Public variable	DINT	Integration high limit	1 to 2147483647	1000000	User
processing	CYCLIC	Public variable	BOOL	TRUE: Returns to 0 when CYCLIC is more than the integration high limit *1 FALSE: Keeps the high limit value when CYCLIC is more than the integration high limit.	TRUE, FALSE	TRUE	User

^{*1} Integration value (OUT_R) will be the value to which a surplus to the integration high limit is added. (Example) Integration value will be 10 for the following condition: HILMT=1000, Last integration value=990, Current value (IN×ΔT/T) =20.

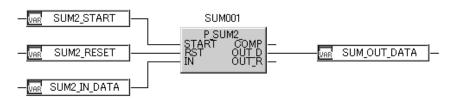

POINT

REAL type output value (OUT_R output variable) is processed by 32-bit single-precision floating-point, so that the number of significant digits is six to seven digits. Consequently, a rounding error occurs when the integral value exceeds the number of significant digits range, and the integral part may not match with DINT type output value (OUT_D output variable).

7 - 19 7 - 19

Item	Contents					
	When integration start signal (START) is TRUE and integration reset signal (RST) is FALSE, accumulates value that comes from input variable IN, and outputs the result from variable. (1) Processing contents Execute the following operation.	he input				
	Integration start signal (START) signal (RST) Input (IN) Output (OUT)					
	FALSE: Invalid Optional OUT= Previous value					
A = = = = = = =	FALSE: Stop TRUE: Valid Optional OUT=Initial value (A)					
Analogue integration	IN≦ILC OUT=Previous value					
processing	TRUE: Start FALSE: Invalid IN>ILC OUT = (IN $\times \frac{\triangle T}{T}$) + previous value					
	TRUE: Valid Optional OUT=Initial value (A)]				
	△T: Execution cycle, ILC: Input low cut-off value, A: Initial value. T: When RANGE=1, T=1(s), RANGE=2, T=60(s), RANGE=3, T=3600(s), (E.g.) When input 0 to 5m³/min, the setting should be RANGE=2 due to input range"/min". Besides, multiplying factor is ×1 m³.					
Integration start signal	When integration start signal (START) is FALSE: Stop integration When integration start signal (START) is TRUE: Start integration					
Integration reset signal	When integration reset signal (RST) is FALSE: No integration value reset (initial value) When integration reset signal (RST) is TRUE: Reset the integration value and output the initial value					
Integration	When integration value output (integral part)(OUT_D) ≧ Integration high limit(HILMT): Integration complete signal is TRUE ^{*1}					
complete signal	When integration value output (integral part)(OUT_D) < Integration high limit(HILMT): Integration complete FALSE	signal is				
	*1 When CYCLIC is TRUE, TRUE is output for one cycle only.					

The following shows the timing chart for the integration start signal (START), integration value, integration reset signal, and integration high limit.


7 - 20 7 - 20

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

• When overflow occurs during operation. (Error code: 4100)

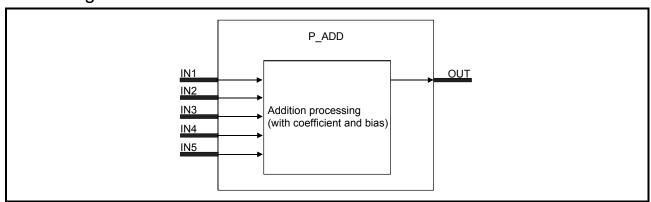
Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 21 7 - 21

7.2 General Process FB_Arithmetic Operation FB

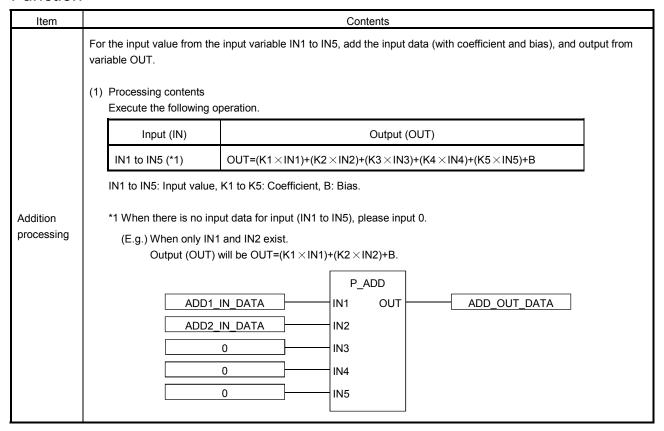

7.2.1 Addition (With Coefficient) (P_ADD)

FB	FBD parts
	P_ADD
	─ IN1 OUT ├─
5 455	IN2
P_ADD	IN3
	IN4
	IN5

Function overview: For the input (IN1 to IN5), add the input data with coefficient and bias, and outputs (OUT) the result.

Function/FB division name: General process FB_Arithmetic operation FB

Block Diagram

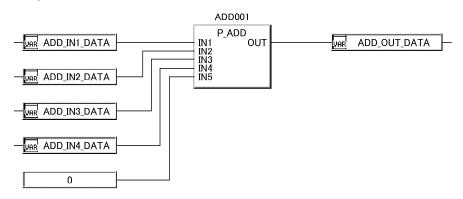

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	IN1	Input variable	REAL	Input1	-999999 to 999999
	IN2	Input variable	REAL	Input2	-999999 to 999999
Input	IN3	Input variable	REAL	Input3	-999999 to 999999
	IN4	Input variable	REAL	Input4	-999999 to 999999
	IN5	Input variable	REAL	Input5	-999999 to 999999
Output	OUT	Output variable	REAL	Output	-999999 to 999999

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	K1 to K5	Public variable	REAL	Coefficient 1: Coefficient of IN1 data to Coefficient 5: Coefficient of IN5 data	-999999 to 999999	1.0	User
processing	В	Public variable	REAL	Bias	-999999 to 999999	0.0	User

7 - 22 7 - 22



Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

• When overflow occurs during operation. (Error code: 4100)

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 23 7 - 23

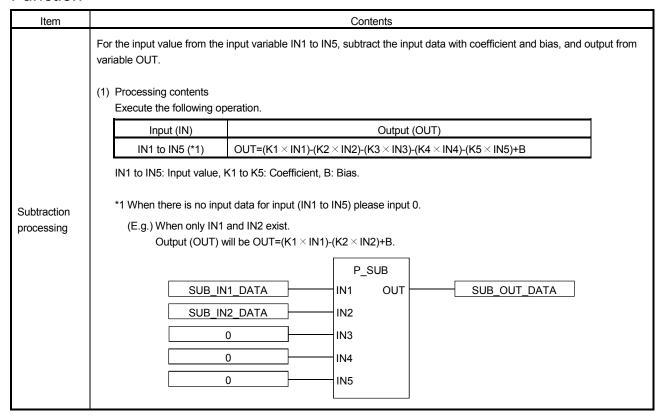
7.2.2 Subtraction (With Coefficient) (P_SUB)

FB	FBD parts
P_SUB	P_SUB IN1 OUT IN2 IN3 IN4 IN5

Function overview: For the input (IN1 to IN5), subtract the data (with coefficient and bias), and outputs (OUT) the result.

Function/FB division name: General process FB_Arithmetic operation FB

Block Diagram

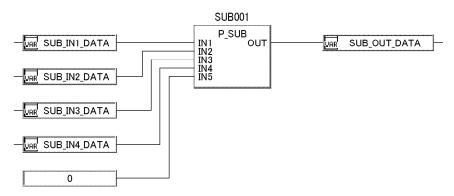

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	IN1	Input variable	REAL	Input1	-99999 to 999999
	IN2	Input variable	REAL	Input2	-99999 to 999999
Input	IN3	Input variable	REAL	Input3	-99999 to 999999
	IN4	Input variable	REAL	Input4	-99999 to 999999
	IN5	Input variable	REAL	Input5	-999999 to 999999
Output	OUT	Output variable	REAL	Output	-999999 to 999999

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	K1 to K5	Public variable	REAL	Coefficient 1: Coefficient of IN1 data to Coefficient 5: Coefficient of IN5 data	-999999 to 999999	1.0	User
processing	В	Public variable	REAL	Bias	-999999 to 999999	0.0	User

7 - 24 7 - 24



Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

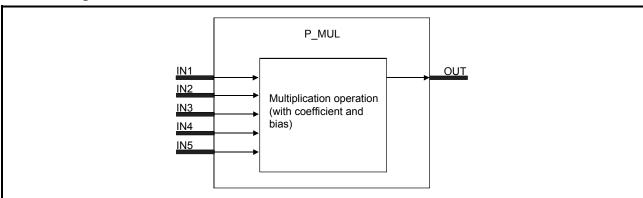
• When overflow occurs during operation. (Error code: 4100)

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 25 7 - 25


7.2.3 Multiplication (With Coefficient) (P_MUL)

FB	FBD parts
P_MUL	P_MUL IN1 OUT IN2 IN3 IN4 IN5

Function overview: For the input (IN1 to IN5), multiply the input data with coefficient and bias, and output (OUT) the result.

Function/FB division name: General process FB_Arithmetic operation FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	IN1	Input variable	REAL	Input1	-999999 to 999999
	IN2	Input variable	REAL	Input2	-999999 to 999999
Input	IN3	Input variable	REAL	Input3	-999999 to 999999
	IN4	Input variable	REAL	Input4	-999999 to 999999
	IN5	Input variable	REAL	Input5	-999999 to 999999
Output	OUT	Output variable	REAL	Output	-999999 to 999999

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	K1 to K5	Public variable	REAL	Coefficient 1: Coefficient of IN1 data to Coefficient 5: Coefficient of IN5 data	-999999 to 999999	1.0	User
processing	В	Public variable	REAL	Bias	-999999 to 999999	0.0	User

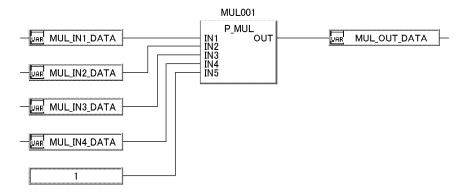
7 - 26

Item	Contents							
	For the input value from the input variable IN1 to IN5, multiply the input data with coefficient and bias, and output the result from variable OUT.							
	(1) Processing contents Execute the following operation.							
	Input (IN) Output (OUT)							
	IN1 to IN5 (*1) OUT=(K1 \times IN1) \times (K2 \times IN2) \times (K3 \times IN3) \times (K4 \times IN4) \times (K5 \times IN5)+B							
Multiplication processing	IN1 to IN5: Input value, K1 to K5: coefficient, B: Bias. *1 When there is no input data for input (IN1 to IN5), please input 1 for input and coefficient. (When either input or coefficient is set to 0, bias (B) will be output from OUT.) (E.g.) When only IN1 and IN2 exist. Output (OUT) will be OUT=(K1 × IN1) × (K2 × IN2)+B. P_MUL IN1 OUT MUL_IN1_DATA IN2 IN3 IN4 IN5							

POINT

When there is no input data in input (IN1 to IN5), please input 1 to both input and coefficient.

When either input or coefficient is set to 0, bias (B) will be output from $\mbox{OUT}.$


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

• When overflow occurs during operation. (Error code: 4100)

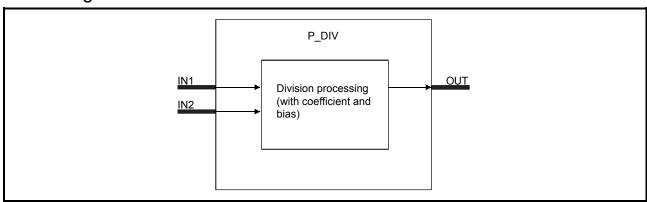
7 - 27 7 - 27

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 28 7 - 28


7.2.4 Division (With Coefficient) (P_DIV)

FB	FBD parts
P_DIV	P_DIV IN1 OUT

Function overview: For the input (IN1, IN2), divide the input data with coefficient and bias, and output (OUT) the result.

Function/FB division name: General process FB_Arithmetic operation FB

Block Diagram

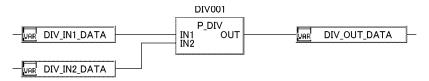
Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
lam. d	IN1	Input variable	REAL	Input1	-999999 to 999999
Input IN2	IN2	Input variable	REAL	Input2	-999999 to 999999
Output	OUT	Output variable	REAL	Output	-999999 to 999999

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	Α	Public variable	REAL	Coefficient	-999999 to 999999	1.0	User
	K1	Public variable	REAL	Coefficient 1: Coefficient of IN1 data	-999999 to 999999	1.0	User
Operation	K2	Public variable	REAL	Coefficient 2: Coefficient of IN2 data	-999999 to 999999	1.0	User
processing	B1	Public variable	REAL	IN1 data bias	-999999 to 999999	0.0	User
	B2	Public variable	REAL	IN2 data bias	-999999 to 999999	0.0	User
	В3	Public variable	REAL	Bias	-999999 to 999999	0.0	User

7 - 29 7 - 29


Item		Contents							
	vari	the input value from the input variable IN1 and IN2, diable OUT. Processing contents Execute the following operation.	divide the input data with coefficient and bias, and	output from					
Division processing		Input (IN2), coefficient (K2), bias (B2): Denominator	Output (OUT)						
		If K2×IN2+B2 is not 0 (denominator≠0)	$OUT = A \times \frac{K1 \times IN1 + B1}{K2 \times IN2 + B2} + B3$						
		If K2×IN2+B2 is 0 (denominator=0)	OUT=B3						
		IN1 to IN2: Input value, A and K1 to K5: Coefficien	t, B1 to B3: Bias.						

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

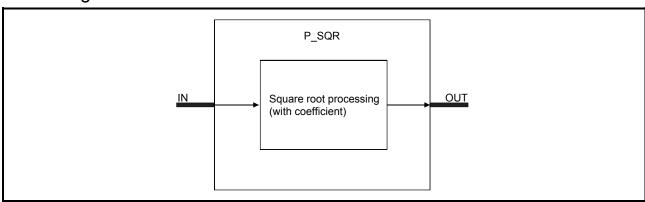
• When overflow occurs during operation. (Error code: 4100)

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 30 7 - 30

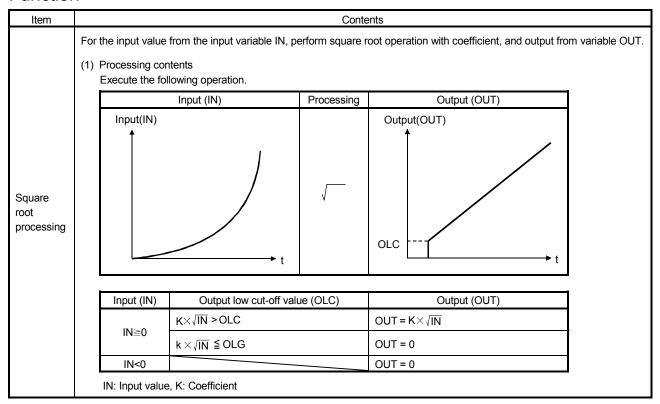

7.2.5 Square Root (With Coefficient) (P_SQR)

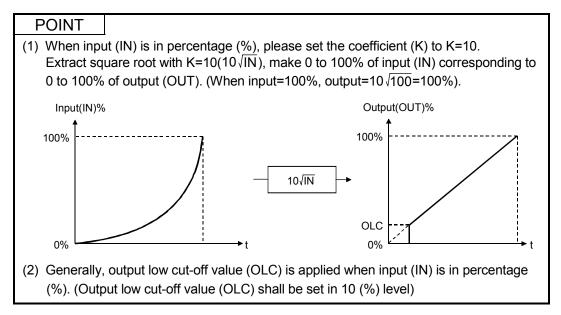
FB	FBD parts
P_SQR	P_SQR IN OUT

Function overview: Execute square root operation for the input (IN) with coefficient, and output (OUT) the result.

Function/FB division name: General process FB_Arithmetic operation FB

Block Diagram

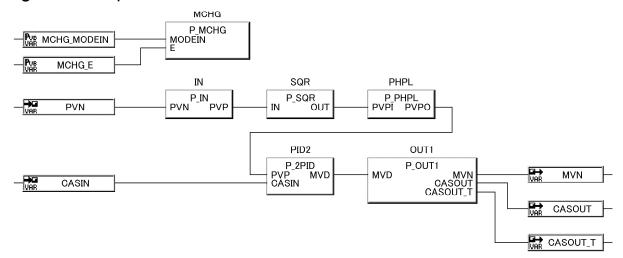

Input and Output Pins


Pin	Variable name	Variable type	Data type	Contents	Range
Input	IN	Input variable	REAL	Input	-99999 to 999999
Output	OUT	Output variable	REAL	Output	-99999 to 999999

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	OLC	Public variable	REAL	Output low cut-off value	0 to 999999	0.0	User
processing	K	Public variable	REAL	Coefficient	0 to 999999	10.0	User

7 - 31 7 - 31


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

• When overflow occurs during operation. (Error code: 4100)

7 - 32 7 - 32

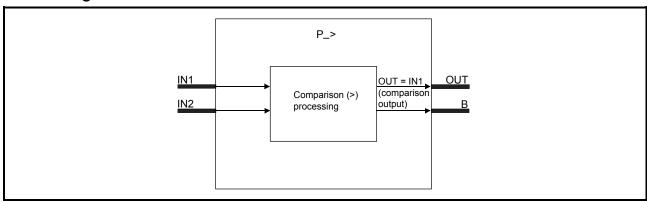
Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 33 7 - 33

7.3 General Process FB_ Comparison Operation FB

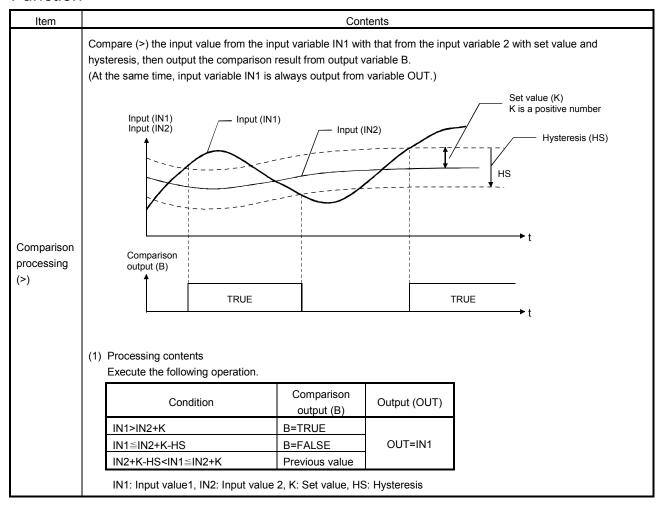

7.3.1 Compare Greater Than (With Set Value) (P_>)

FB	FBD parts			
P_>	P_> IN1 OUT IN2 B			

Function overview: Compare (>) input1 (IN1) with input2 (IN2) using set value and hysteresis, and output result from comparison output (B). Additionally, the input1 (IN1) is always output from OUT.

Function/FB division name: General process FB_Comparison operation FB

Block Diagram

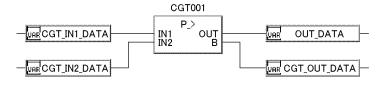

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
loout	IN1	Input variable	REAL	Input1	-999999 to 999999
Input	IN2	Input variable	REAL	Input1	-999999 to 999999
Output	OUT	Output variable	REAL	Output	-999999 to 999999
Output	В	Output variable	BOOL	Comparison Output	TRUE, FALSE

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	K	Public variable	REAL	Set value	-999999 to 999999	0.0	User
processing	HS	Public variable	REAL	Hysteresis	0 to 999999	0.0	User

7 - 34 7 - 34



Error

Error may occur in the following case, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

- When overflow occurs during operation. (Error code: 4100)
- When hysteresis (HS)<0. (Error code: 4100)

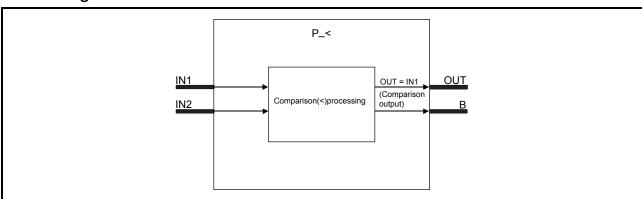
Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 35 7 - 35

7.3.2 Compare Less Than (With Set Value) (P_ <)

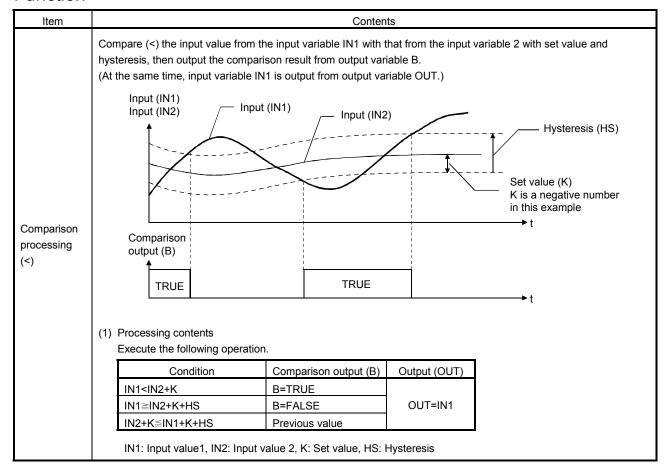

FB	FBD parts					
P_<	P_< IN1 OUT IN2 B					

Function overview: Compare input1 (IN1) with input2 (IN2) using set value and hysteresis (<), and output from comparison output (B).

Additionally, the input1 (IN1) is always output from OUT.

Function/FB division name: General process FB_Comparison operation FB

Block Diagram


Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	IN1	Input variable	REAL	Input1	-999999 to 999999
Input	IN2	Input variable	REAL	Input1	-999999 to 999999
Output	OUT	Output variable	REAL	Output	-999999 to 999999
	В	Output variable	BOOL	Comparison Output	TRUE, FALSE

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	K	Public variable	REAL	Set value	-999999 to 999999	0.0	User
processing	HS	Public variable	REAL	Hysteresis	0 to 999999	0.0	User

7 - 36 7 - 36

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

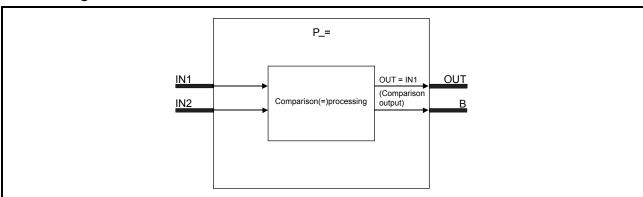
- When overflow occurs during operation. (Error code: 4100)
- When hysteresis (HS)<0 (Error code: 4100)

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 37 7 - 37

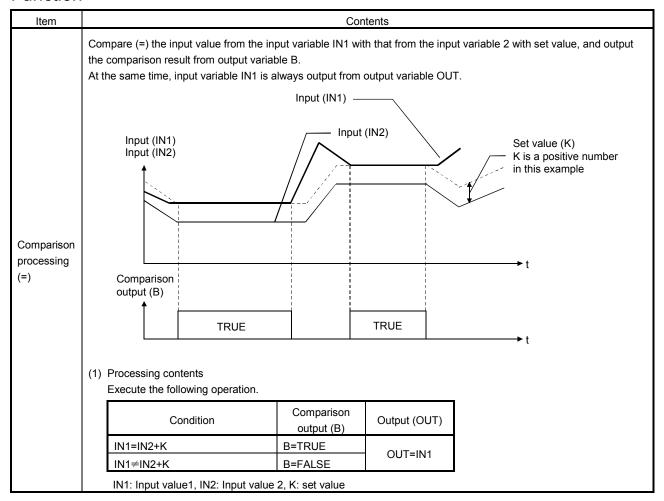

7.3.3 Compare Equal Than (With Set Value) (P_=)

FB	FBD parts					
P_=	P_= IN1 OUT IN2 B					

Function overview: Compare (=) input1 (IN1) with input2 (IN2) using set value and hysteresis, and output result from comparison output (B). Additionally, input1 (IN1) is output from OUT.

Function/FB division name: General process FB_Comparison operation FB

Block Diagram

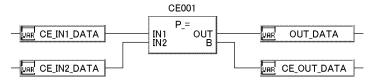

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	IN1	Input variable	REAL	Input1	-999999 to 999999
Input	IN2	Input variable	REAL	Input2	-999999 to 999999
Output	OUT	Output variable	REAL	Output	-999999 to 999999
	В	Output variable	BOOL	Comparison Output	TRUE, FALSE

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation processing	К	Public variable	REAL	Set value	-999999 to 999999	0.0	User

7 - 38 7 - 38



Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

• When overflow occurs during operation. (Error code: 4100)

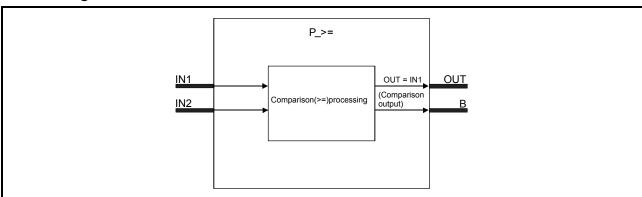
Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 39 7 - 39

7.3.4 Compare Greater Or Equal (With Set Value) (P_>=)

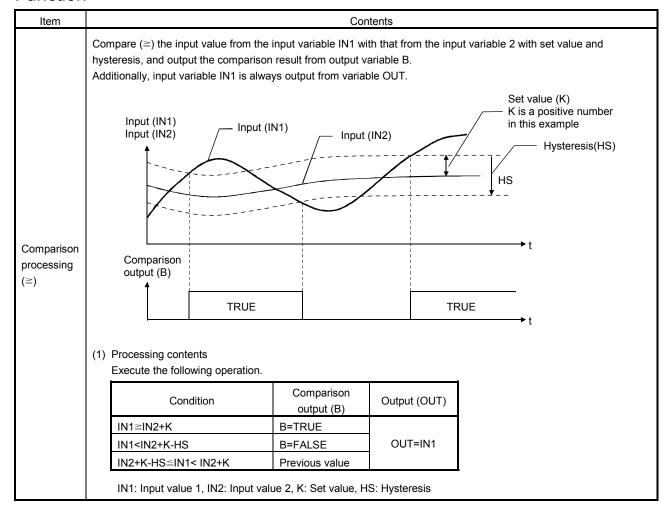

FB	FBD parts		
P_>=	P_>=		

Function overview: Compare (≧) input1 (IN1) with input2 (IN2) using set value and hysteresis, and output from comparison output (B).

Additionally, input1 (IN1) is output from output (OUT).

Function/FB division name: General process FB_Comparison operation FB

Block Diagram

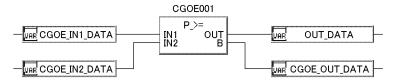

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	IN1	Input variable	REAL	Input1	-999999 to 999999
input	IN2	Input variable	REAL	Input1	-999999 to 999999
Outract	OUT	Output variable	REAL	Output	-999999 to 999999
Output	В	Output variable	BOOL	Comparison Output	TRUE, FALSE

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	K	Public variable	REAL	Set value	-999999 to 999999	0.0	User
processing	HS	Public variable	REAL	Hysteresis	0 to 999999	0.0	User

7 - 40 7 - 40



Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

- When overflow occurs during operation. (Error code: 4100)
- When hysteresis (HS)<0 (Error code: 4100)

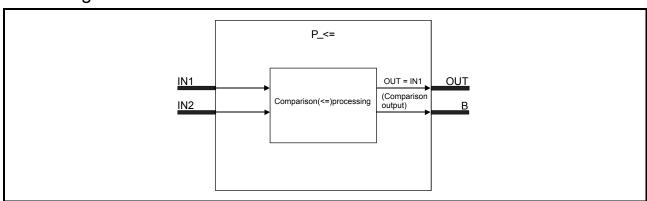
Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 41 7 - 41

7.3.5 Compare Less Or Equal (With Set Value) (P_<=)

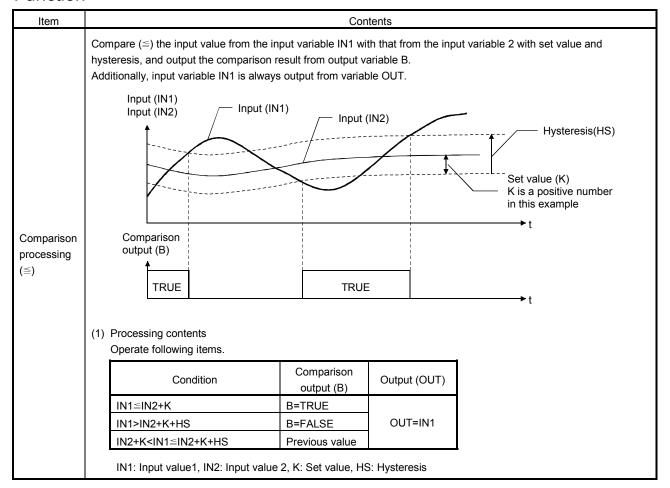

FB	FBD parts		
P_<=	P_<= IN1 OUT IN2 B		

Function overview: Compare (≦) input1 (IN1) with input2 (IN2) using set value and hysteresis, and output from comparison output (B).

Additionally, input1 (IN1) is always output from output (OUT).

Function/FB division name: General process FB_Comparison operation FB

Block Diagram

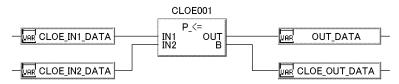

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Innut	IN1	Input variable	REAL	Input1	-99999 to 999999
Input	IN2	Input variable	REAL	Input1	-999999 to 999999
0.44	OUT	Output variable	REAL	Output	-999999 to 999999
Output	В	Output variable	BOOL	Comparison Output	TRUE, FALSE

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	K	Public variable	REAL	Set value	-999999 to 999999	0.0	User
processing	HS	Public variable	REAL	Hysteresis	0 to 999999	0.0	User

7 - 42 7 - 42



Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

- When overflow occurs during operation. (Error code: 4100)
- When hysteresis (HS)<0. (Error code: 4100)

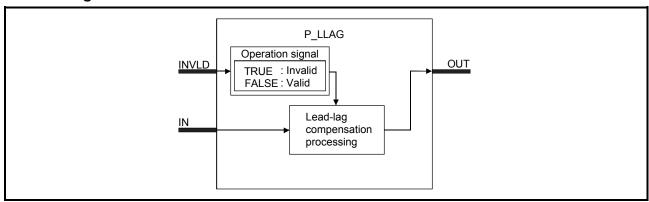
Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 43 7 - 43

7.4 General Process FB_Control Operation FB


7.4.1 Lead-Lag (P_LLAG)

FB	FBD parts
P_LLAG	P_LLAG INVLD OUT

Function overview: When operation signal (INVLD) is FALSE, perform lead-lag compensation for input (IN), and output (OUT) the result.

Function/FB division name: General process FB_ Control operation FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	INVLD	Input variable	BOOL	Operation signal (TRUE: Invalid, FALSE: valid)	TRUE, FALSE
	IN	Input variable	REAL	Input	-999999 to 999999
Output	OUT	Output variable	REAL	Output	-999999 to 999999

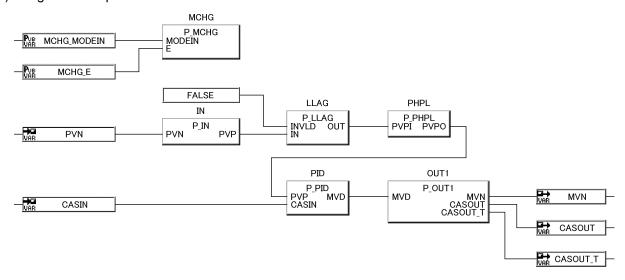
Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	T1	Public variable	REAL	Lag time (lag time constant) (unit: s)	0 to 999999	1.0	User
processing	T2	Public variable	REAL	Lead time (lead time constant) (unit: s)	0 to 999999	1.0	User

7 - 44 7 - 44

Item			Contents							
	When operation signal (INVLD) is FALSE, perform lead-lag compensation for the value from input variable (IN), and output from variable OUT. (1) Processing contents Execute the following operation.									
	Execute the following operation. Condition									
	Operation signal (INVLD)	Lag time (T1) lead time (T2)	Input (IN)	Lead-lag compensation	Output (OUT)					
	E4105	T1>T2	Input (IN)	1 + T2 · S 1 + T1 · S	Output(OUT)					
Lead-lag compensation	FALSE	T1 <t2< td=""><td>Input(IN) to</td><td>1 + T2 · S 1 + T1 · S</td><td>Output(OUT) to</td></t2<>	Input(IN) to	1 + T2 · S 1 + T1 · S	Output(OUT) to					
	TRUE	T1>T2 T1 <t2< td=""><td>Input(IN) to</td><td>None</td><td>Output value = Input value Output(OUT) to</td></t2<>	Input(IN) to	None	Output value = Input value Output(OUT) to					
	Operation	signal (INVLD)		Output (OUT						
	FALSE (vali	d)	OUT = $\frac{1}{\text{T1} + \triangle \text{T}}$ {[T2 × (IN - INn-1)] + (T1 × OUTn-1) + ($\triangle \text{T} \times \text{IN}$)} • When T1+ $\triangle \text{T}$ =0,OUT=0 • When lead time (lead time constant) T2=0, it will be a first-order lag							
	TRUE (inva	lid)	OUT=IN							
	IN: Input value, OUT: Output value, INn+1: Previous input value, OUTn+1: Previous output value T1: Lag time (lag time constant)(s), T2: Lead time (lead-time constant)(s), △T: Execution cycle(s), S: Laplace operator									
Operation signal) is FALSE: Lead-lag compensation) is TRUE: Lead-lag compensation							

7 - 45


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

• When overflow occurs during operation. (Error code: 4100)

Program Example

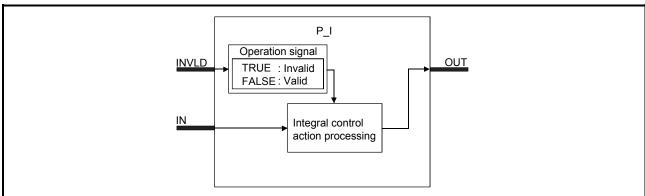
(1) Program Example 1

(2) Program Example 2

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 46 7 - 46

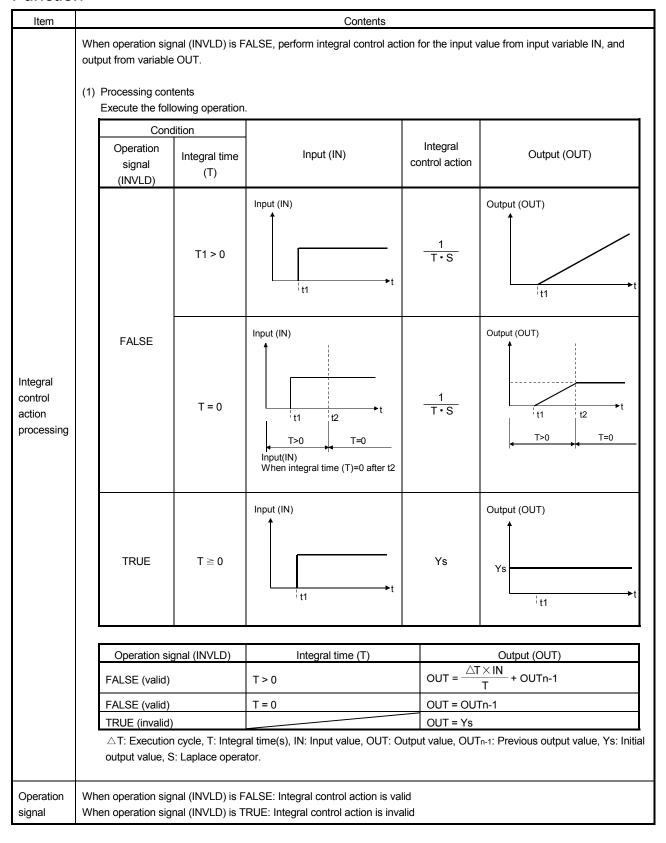

7.4.2 Integral (P_I)

FB	FBD parts		
P_I	P_I INVLD OUT		

Function overview: When operation signal (INVLD) is FALSE, perform integral control action for input (IN), and output (OUT) the result.

Function/FB division name: General process FB_Control operation FB

Block Diagram

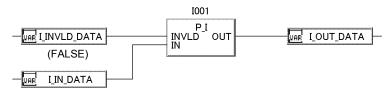

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
lanut.	INVLD	Input variable	BOOL	Operation signal (TRUE: Invalid, FALSE: valid)	TRUE, FALSE
Input	IN	Input variable	REAL	Input	-999999 to 999999
Output	OUT	Output variable	REAL	Output	-999999 to 999999

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	Т	Public variable	REAL	Integral time (unit: s)	0 to 999999	1.0	User
processing	Ys	Public variable	REAL	Initial output value	-999999 to 999999	0.0	User

7 - 47


7 - 48 7 - 48

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

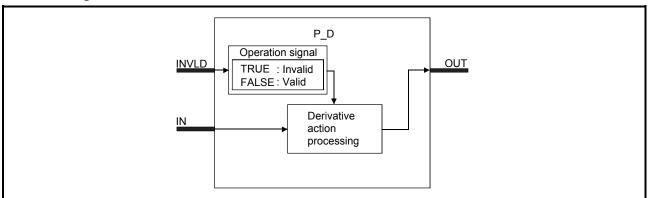
• When overflow occurs during operation. (Error code: 4100)

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 49 7 - 49

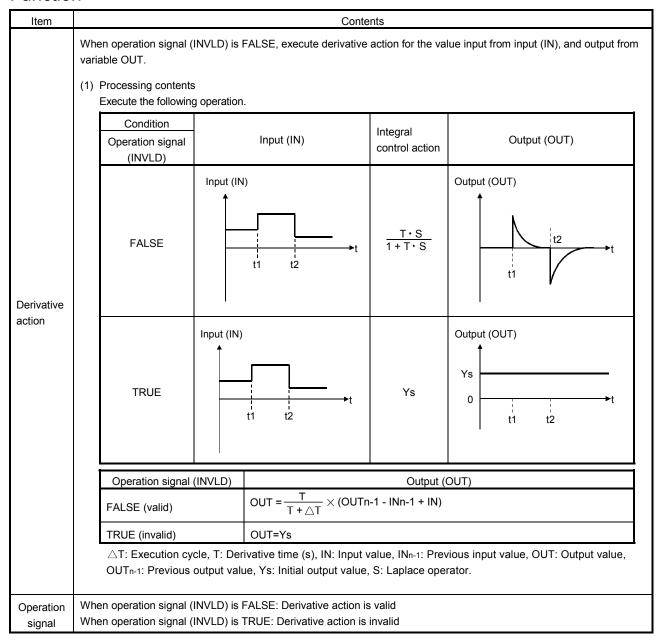

7.4.3 Derivative (P_D)

FB	FBD parts
P_D	P_D INVLD OUT IN

Function overview: When operation signal (INVLD) is FALSE, perform derivative action for input (IN), and output (OUT) the result.

Function/FB division name: General process FB_Control operation FB

Block Diagram

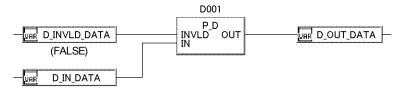

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
lanut.	INVLD	Input variable	BOOL	Operation signal (TRUE: Invalid, FALSE: valid)	TRUE, FALSE
Input	IN	Input variable	REAL	Input	-999999 to 999999
Output	OUT	Output variable	REAL	Output	-999999 to 999999

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	Т	Public variable	REAL	Derivative time (unit: s)	0 to 999999	1.0	User
processing	Ys	Public variable	REAL	Initial output value	-999999 to 999999	0.0	User

7 - 50 7 - 50


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

• When overflow occurs during operation. (Error code: 4100)

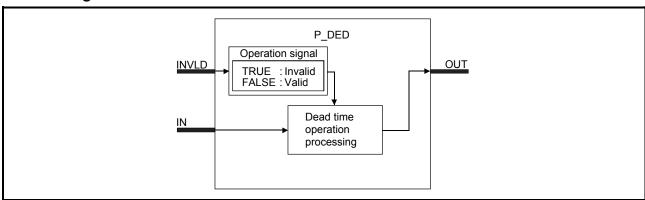
7 - 51 7 - 51

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 52 7 - 52

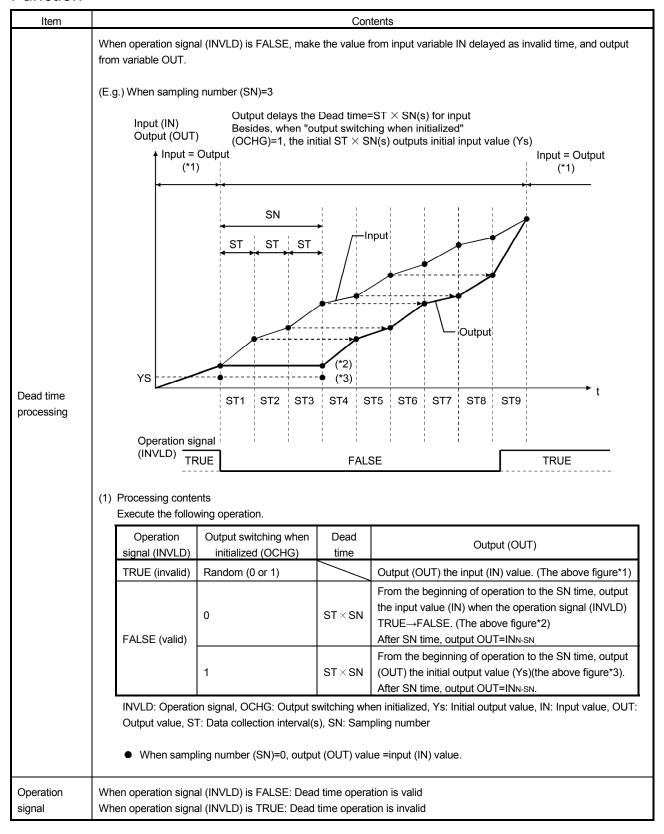

7.4.4 Dead Time (P_DED)

FB	FBD parts		
P_DED	P_DED INVLD OUT IN		

Function overview: When operation signal (INVLD) is FALSE, execute invalid time operation for input (IN), and output (OUT).

Function/FB division name: General process FB_Control operation FB

Block Diagram

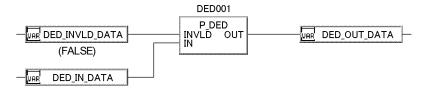

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Innut	INVLD	Input variable	BOOL	Operation signal (TRUE: Invalid, FALSE: valid)	TRUE, FALSE
Input	IN Input REAL		REAL	Input	-999999 to 999999
Output	OUT	Output variable	REAL	Output	-999999 to 999999

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	ST	Public variable	REAL	Data collection interval (unit: s)	0 to 9999	1.0	User
Operation	SN	Public variable	INT	Sampling number	0 to 48	0	User
processing	Ys	Public variable	REAL	Initial output value	-999999 to 999999	0.0	User
	OCHG	Public variable	INT	Output switching when initialized	0,1	0	User

7 - 53 7 - 53


7 - 54 7 - 54

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

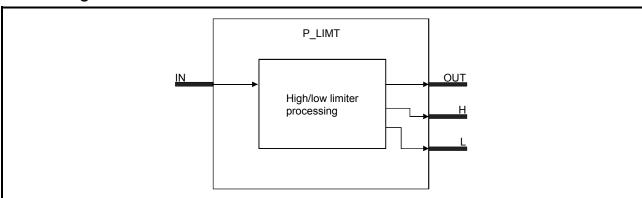
- When overflow occurs during operation. (Error code: 4100)
- When sampling number (SN): SN< 0 or SN> 48. (Error code: 4100)

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 55 7 - 55

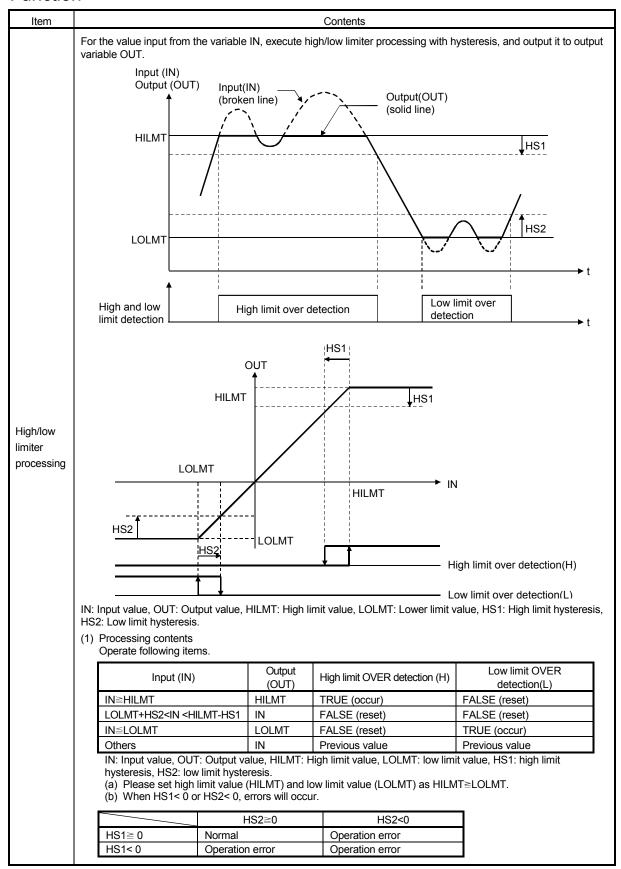

7.4.5 High/Low Limiter (P_LIMT)

FB	FBD parts
P_LIMT	P_LIMT IN OUT H L

Function overview: For the input (IN), execute high/low limiter processing with hysteresis, and output (OUT) it.

Function/FB division name: General process FB_Control operation FB

Block Diagram

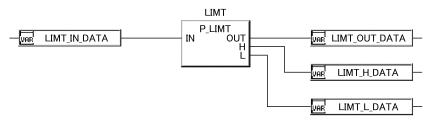

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	IN	Input variable	REAL	Input	-99999 to 999999
πραι	OUT	Input variable	REAL	Output	-999999 to 999999
Output	Н	Output variable	BOOL	High limit over detection (TRUE: Occur, FALSE: Reset)	TRUE, FALSE
Output	L	Output variable	BOOL	Low limit over detection (TRUE: Occur, FALSE: Reset)	TRUE, FALSE

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	HILMT	Public variable	REAL	High limit value	-999999 to 999999	100.0	User
Operation	LOLMT	Public variable	REAL	Low limit value	-999999 to 999999	0.0	User
processing	HS1	Public variable	REAL	High limit hysteresis	0 to 999999	0.0	User
	HS2	Public variable	REAL	Low limit hysteresis	0 to 999999	0.0	User

7 - 56


7 - 57 7 - 57

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

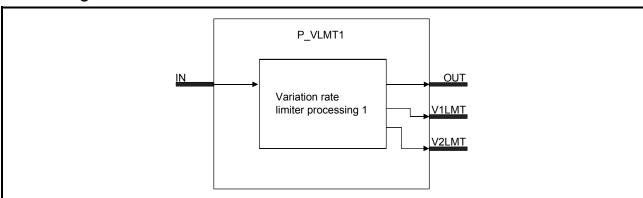
- When overflow occurs during operation. (Error code: 4100)
- When high limit hysteresis (HS1)<0, or lower limit hysteresis (HS2)<0. (Error code: 4100)

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 58 7 - 58

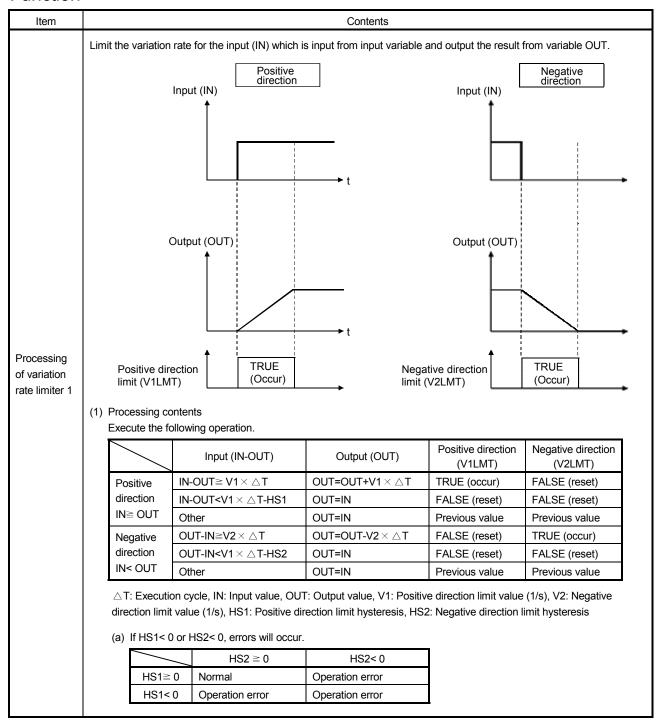

7.4.6 Variation Rate Limiter1 (P_VLMT1)

FB	FBD parts			
P_VLMT1	P_VLMT1 IN OUT V1LMT V2LMT			

Function overview: Limit variation rate for input (IN) and outputs (OUT) the result.

Function/FB division name: General process FB_Control operation FB

Block Diagram

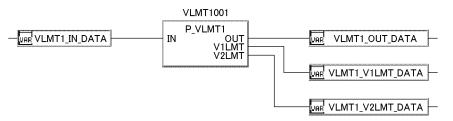

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	IN	Input variable	REAL	Input	-999999 to 999999
	OUT	Output variable	REAL	Output	-999999 to 999999
Output	V1LMT	Output variable	BOOL	Positive direction limit (TRUE: Occur, FALSE: Reset)	TRUE, FALSE
	V2LMT	Output variable	BOOL	Negative direction limit (TRUE: Occur, FALSE: Reset)	TRUE, FALSE

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	V1	Public variable	REAL	Positive direction limit value	0 to 999999	100.0	User
Operation	V2	Public variable	REAL	Negative direction limit value	0 to 999999	100.0	User
processing	HS1	Public variable	REAL	Positive direction hysteresis	0 to 999999	0.0	User
	HS2	Public variable	REAL	Negative direction hysteresis	0 to 999999	0.0	User

7 - 59 7 - 59


7 - 60 7 - 60

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

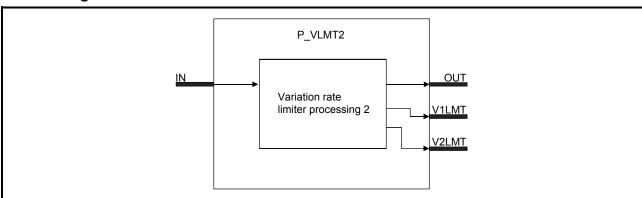
- When overflow occurs during operation. (Error code: 4100)
- When positive direction hysteresis (HS1)<0, or negative direction hysteresis (HS2)<0. (Error code: 4100)

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 61 7 - 61

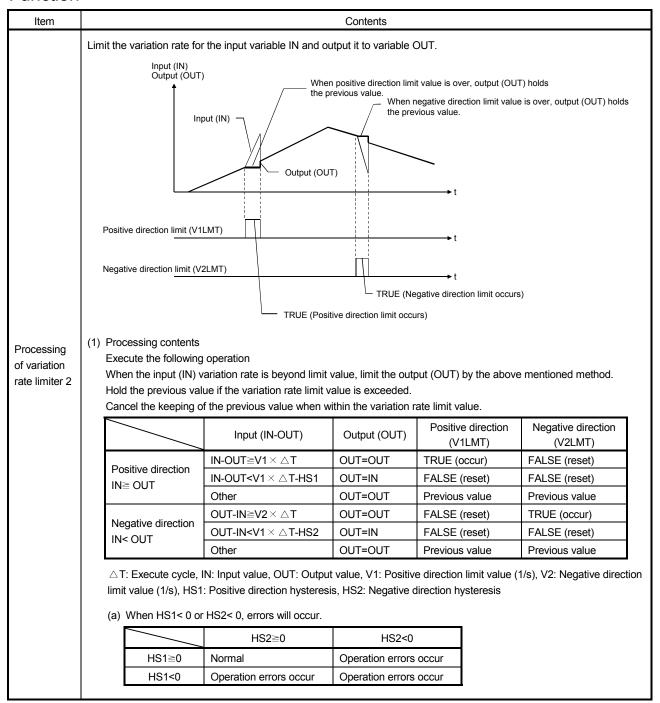

7.4.7 Variation Rate Limiter2 (P_VLMT2)

FB	FBD parts			
P_VLMT2	P_VLMT2 IN OUT V1LMT V2LMT			

Function overview: Limit variation rate for input (IN) and output (OUT) it.

Function/FB division name: General process FB_Control operation FB

Block Diagram

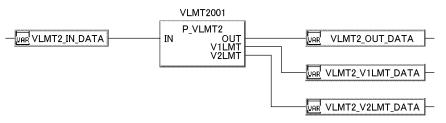

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	IN	Input variable	REAL	Input	-999999 to 999999
	OUT	Output variable	REAL	Output	-999999 to 999999
Output	V1LMT	Output variable	BOOL	Positive direction limit (TRUE: Occur, FALSE: Reset)	TRUE, FALSE
·	V2LMT	Output variable	BOOL	Negative direction limit (TRUE: Occur, FALSE: Reset)	TRUE, FALSE

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	V1	Public variable	REAL	Positive direction limit value	0 to 999999	100.0	User
Operation	V2	Public variable	REAL	Negative direction limit value	0 to 999999	100.0	User
processing	HS1	Public variable	REAL	Positive direction hysteresis	0 to 999999	0.0	User
	HS2	Public variable	REAL	Negative direction hysteresis	0 to 999999	0.0	User

7 - 62 7 - 62


7 - 63 7 - 63

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

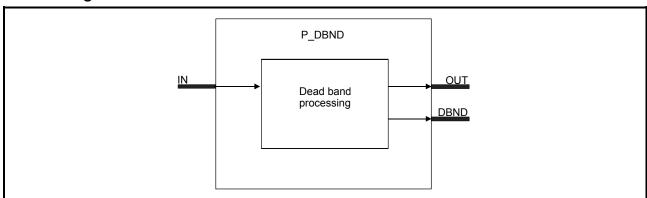
- When overflow occurs during operation. (Error code: 4100)
- When Positive direction hysteresis (HS1)<0, or Negative direction hysteresis (HS2)<0. (Error code: 4100)

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 64 7 - 64

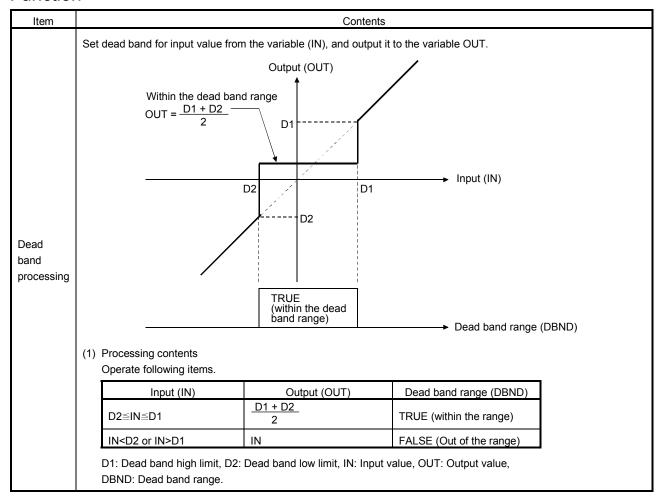

7.4.8 Dead Band (P_DBND)

FB	FBD parts		
P_DBND	P_DBND OUT DBND		

Function overview: Set dead band for input (IN), and output (OUT) the result.

Function/FB division name: General process FB_Control operation FB

Block Diagram


Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	IN	Input variable	REAL	Input	-999999 to 999999
	OUT	Output variable	REAL	Output	-999999 to 999999
Output	DBND	Output variable	BOOL	Dead band range (TRUE: Within range FALSE: Out of range)	TRUE, FALSE

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	D1	Public variable	REAL	Dead band high limit	-999999 to 999999	0.0	User
processing	D2	Public variable	REAL	Dead band low limit	-999999 to 999999	0.0	User

7 - 65



Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

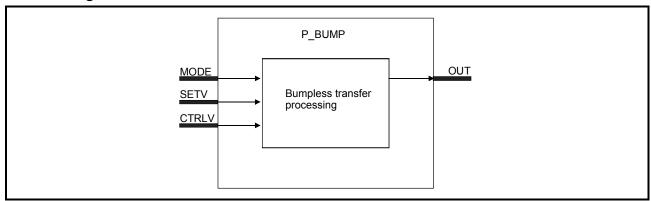
When overflow occurs during operation. (Error code: 4100)

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 66 7 - 66


7.4.9 Bumpless Transfer (P_BUMP)

FB	FBD parts			
P_BUMP	P_BUMP MODE OUT SETV CTRLV			

Function overview: When mode (MODE) is changed from FALSE (MANUAL) to TRUE (AUTO), change the output from control value CTRLV to output set value SETV smoothly.

Function/FB classification name: General process FB_Control operation FB

Block Diagram

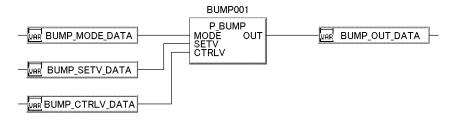
Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	MODE	Input variable	BOOL	Mode switching (TRUE: AUTO, FALSE: MANUAL)	TRUE, FALSE
Input	variable		REAL	Output set value	-99999 to 999999
			REAL	Output control value	-99999 to 999999
Output	OUT	Output variable	REAL	Output	-999999 to 999999

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	Т	Public variable	REAL	Delay Time (unit: s)	0 to 999999	1.0	User
processing	а	Public variable	REAL	Delay band	0 to 999999	1.0	User

7 - 67 7 - 67


Item		Contents							
	 When input variable MODE (mode switching) changes from FALSE (MANUAL) → TRUE (AUTO), change the value (OUT) from output control value CTRLV to output set value SETV smoothly. (1) Processing contents Execute the following items. (a) Output (OUT) approaches the output set value (SETV) at a ratio set by delay time (T). However, approach the output set value (SETV) by first-order lag taking SETV as a bench mark if it is the range set by delay band (a). 								
		Condition Mode switching (MODE)	Xp	Хр	Output (OUT)				
Bumpless transfer processing		FALSE (MANUAL)	_	Xq=CTRLV-SETV Xp=CTRLV-SETV	OUT=CTRLV				
		TRUE (AUTO)	Xp >a	$Xp = Xp' - \frac{\Delta T}{T} \times Xq$	OUT=SETV + Xp When OUT=SETV, $Xp=Xp'$ $ Xp \le (\frac{\Delta T}{T}) \times Xq $				
			Xp ≦a	$Xp = \frac{T}{T + \Delta T} \times Xp'$	OUT=SETV+Xp When OUT=SETV, Xp=Xp' Xp ≤0.0001				
		MODE: Mode switching, OUT: Output value, SETV: Output set value, CTRLV: Output control value, Xq: Initial deviation, Xp: deviation △T: Execution cycle, T: Delay time(s), a: Delay band.							

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

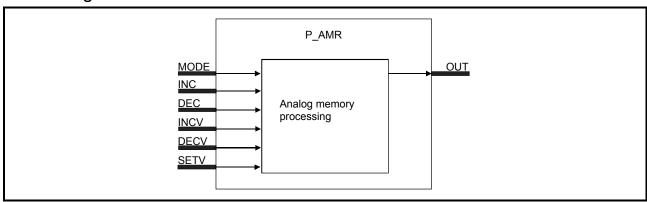
• When overflow occurs during operation. (Error code: 4100)

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 68 7 - 68

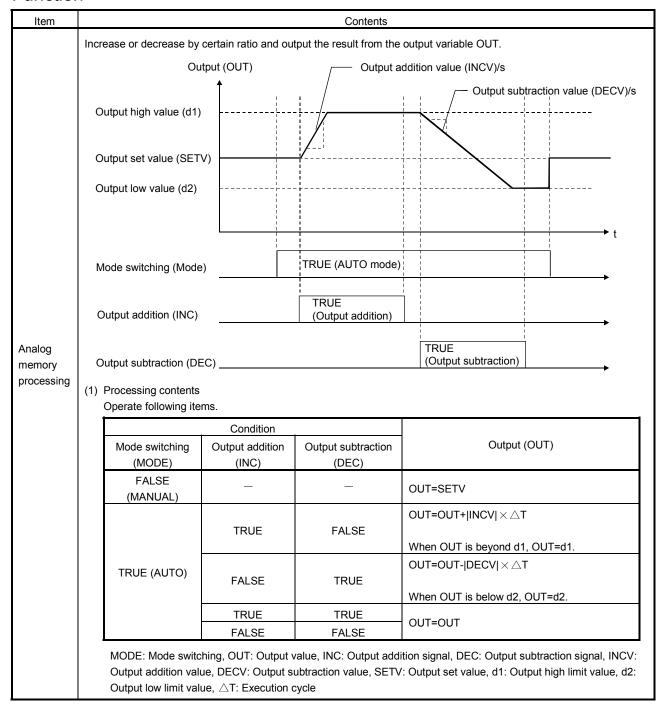

7.4.10 Analog Memory (P_AMR)

FB	FBD parts		
P_AMR	P_AMR MODE OUT INC DEC INCV DECV SETV		

Function overview: Increase or decrease output (OUT) by certain ratio.

Function/FB division name: General process FB_Control operation FB

Block Diagram

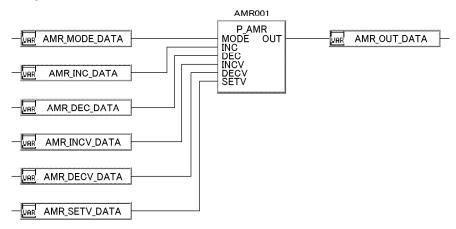

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	MODE	Input variable	BOOL	Mode switching (TRUE: AUTO, FALSE: MANUAL)	TRUE, FALSE
	INC	Input variable	BOOL	Output addition (TRUE: Used, FALSE: Not used)	TRUE, FALSE
Input	DEC	Input variable	BOOL	Output subtraction (TRUE: Used, FALSE: Not used)	TRUE, FALSE
	INCV	Input variable	REAL	Output addition value	-999999 to 999999
	DECV Input variable		REAL	Output subtraction value	-999999 to 999999
	SETV	Input variable	REAL	Output set value	-999999 to 999999
Output	OUT	Output variable	REAL	Output	-999999 to 999999

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	d1	Public variable	REAL	Output high Limit value	0 to 999999	1.0	User
processing	d2	Public variable	REAL	Output low limit value	0 to 999999	1.0	User

7 - 69 7 - 69


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

• When overflow occurs during operation. (Error code: 4100)

7 - 70 7 - 70

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 71 7 - 71

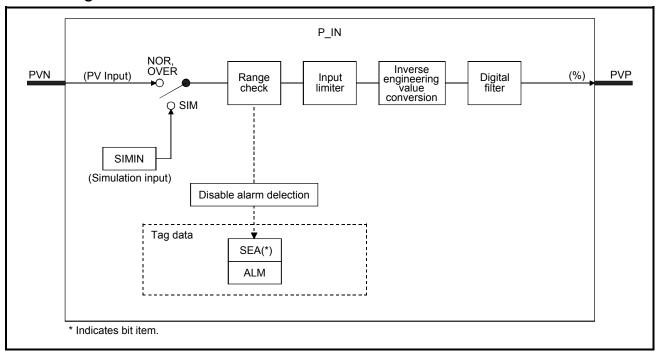
7.5 Tag Access FB_I/O Control Operation FB

7.5.1 Analog Input Processing (P_IN)

FB	FBD parts
P_IN	P_IN PVN PVP

Corresponding tag type
BPI, IPD, MONI, MWM, ONF2, ONF3, PID,
PIDP, R, SPI, 2PID, 2PIDH
-

Control mode							
MAN	MAN AUT CAS*1 CMV CSV						
0	0	0	0	0			


^{*1} Transition to CASDR is possible.

Functions overview: Read the converted digital value on analog module FB, carry out processing as range check, input limiter, inverse engineering value conversion and digital filter.

The input limiter processing can be enabled or disabled by using the project parameter. 2

Function/FB classification name: Tag access FB_I/O control FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	PVN	Input variable	REAL	PV input from module FB	NMIN to NMAX
Output	PVP	Output variable	REAL	PV output (unit %)	0 to 100

7 - 72 7 - 72

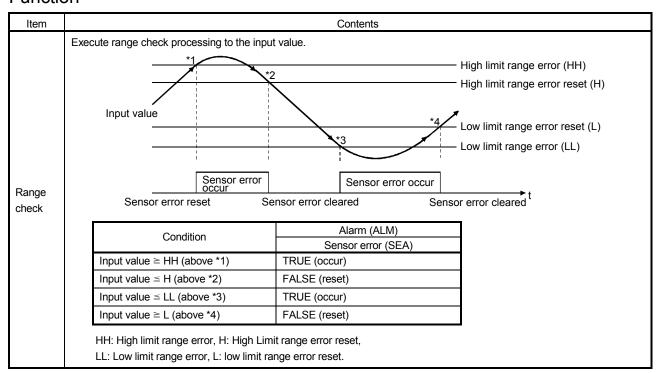
^{*2} Requires Process CPU or Redundant CPU whose upper five digits of serial No. are 10042 or later.

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
Operation	НН	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
processing	Н	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
	LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User

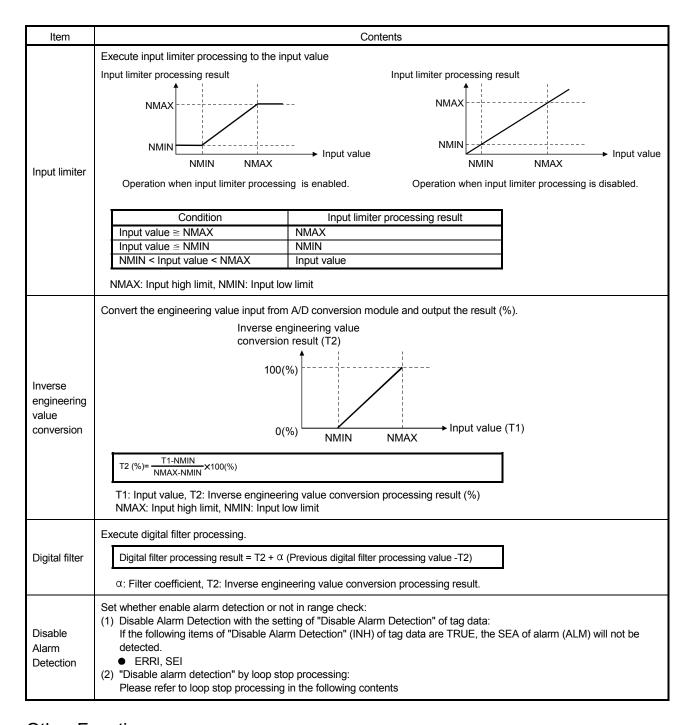
Public Variable (others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM*2	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User


^{*1} Please read and write them with program.

It will not be displayed in FB property window of PX Developer.

Tag Data


For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

Function

7 - 73 7 - 73

^{*2} It means simulation processing.

Other Functions

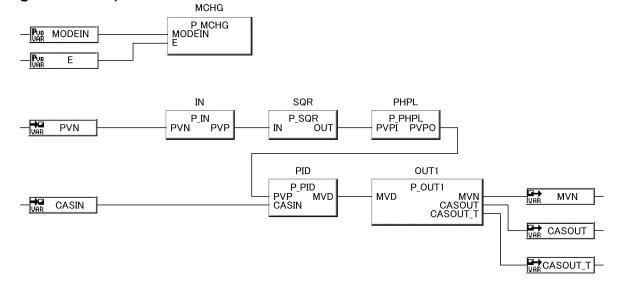
Item	Contents
Holding processing	Set whether hold output of P_IN will in case of sensor error (SEA) resulted from the high/low limit range error during the range check. The setting can be made through PX Developer project parameter setting. [Setting procedure] [Project Parameter] → [Program Execution] → Holding processing ■ "Hold the output of P_IN" selected: Hold output ■ "Hold the output of P_IN" unselected: Continue operation
Loop stop processing	The following processes are executed when either the stop alarm (SPA) of alarm (ALM) or the tag stop (TSTP) of monitor output buffer (DOM) is TRUE. 1) Hold the output (PVP). 2) Change the control mode automatically to MANUAL. 3) Reset SEA when the SEA of alarm (ALM) occurs or reset SPA when TSTP is TRUE. 4) Alarm is not detected in range check.

7 - 74 7 - 74

Processing Operation

Processing Control mode	Range check	Input limiter	Inverse engineering value conversion	Digital filter	Alarm
MAN, CMV, AUT, CAS, CSV, CASDR	0	0	0	0	O (*1)

○ : Execute ×: Not execute


Error

Error may occur in the following case, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

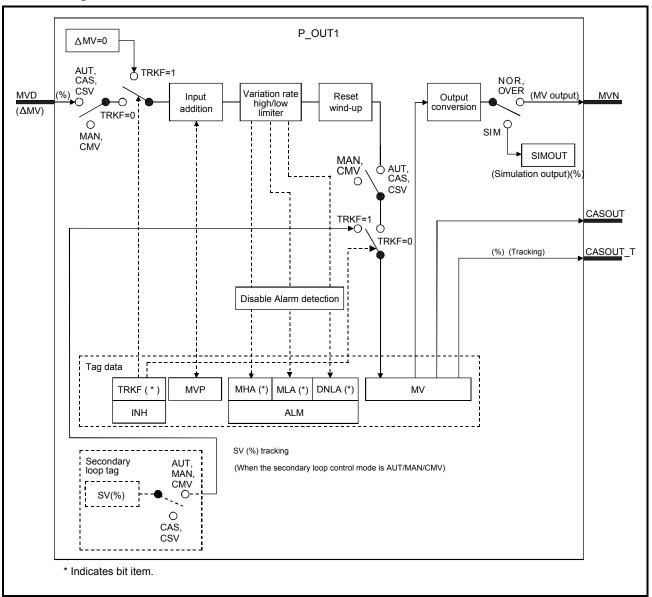
POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 75 7 - 75

^{*1} When the bit of "Disable Alarm Detection" (INH) which corresponds to an alarm in TRUE, the alarm is not detected.

7.5.2 Output Processing-1 with Mode Switching (With Input Addition) (P_OUT1)


FB	FBD parts		
P_OUT1	P_OUT1 MVD MVN CASOUT CASOUT_T		

	Corresponding tag type					
BPI,IPD,PID,SPI,2PID						
Control mode						
MAN	AUT	CAS	CMV	CSV		
0	0	0	0	0		

Functions overview: Execute processing to the input value (\triangle MV) as input addition, variation rate limiter and high/low limiter, reset windup, and output conversion and then output the MV.

Function/FB classification name: Tag access FB _ I/O control FB

Block Diagram

7 - 76

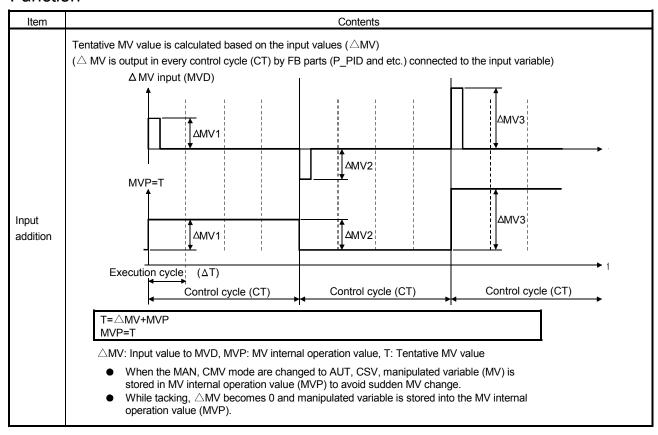
Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	MVD	Input variable	REAL	△MV input (unit: %)	-999999 to 999999
	MVN	Output variable	REAL	MV output to module FB	NMIN to NMAX
Output	CASOUT	Output variable	REAL	Cascade output (unit: %)	0 to 100
Carpat	CASOUT_T	Output variable	ADR_REAL	Cascade output (unit: %) (Tracking)	0 to 100

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
processing	NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

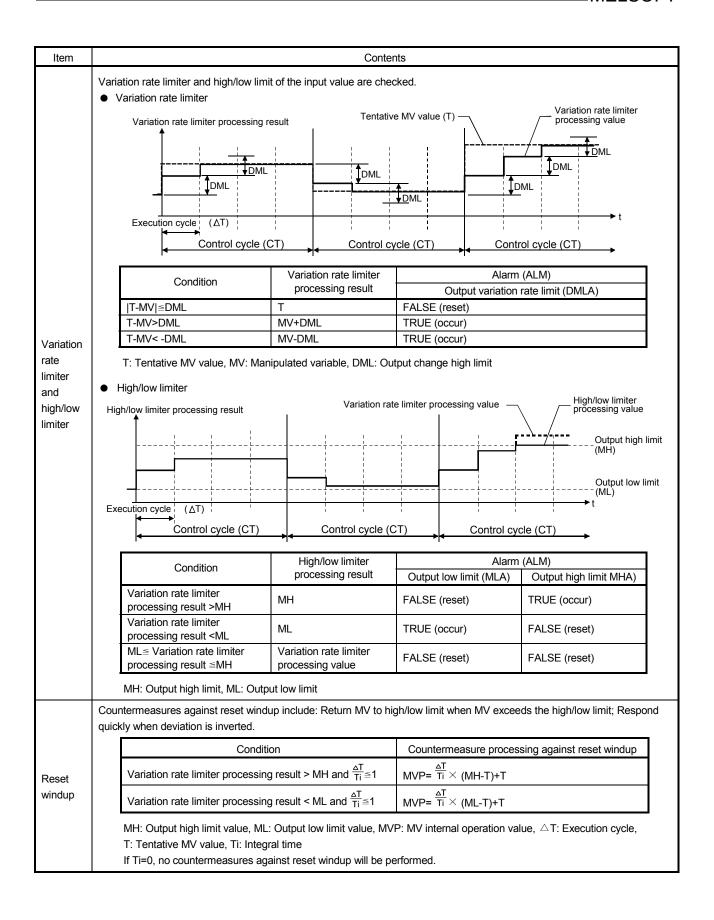
Public Variable (others) (*1)

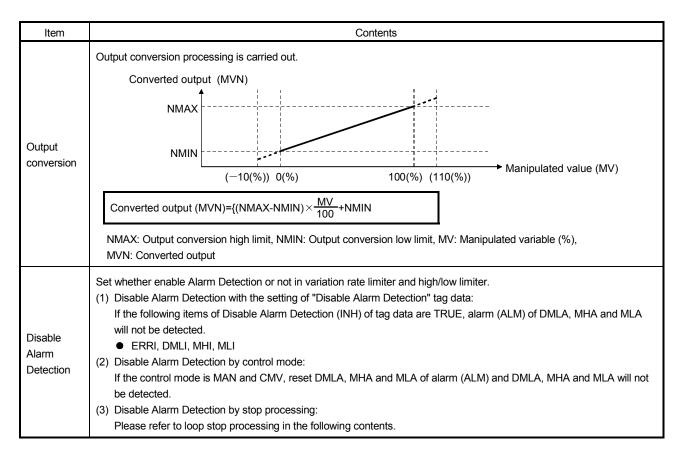

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM*2	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.


Function


7 - 77 7 - 77

It will not be displayed in FB property window of PX Developer.

^{*2} It means simulation processing.

7 - 78 7 - 78

Other Functions

Item	Contents
Holding processing	Set whether to hold output of P_OUT1 when sensor error (SEA) occurs in P_IN of tag access FB. Hold processing is to execute PX Developer project parameter setting. The setting can be made through PX Developer project parameter setting. [Setting procedure] [Project Parameter] → [Program Execution] → Holding processing ■ "Hold the output of P_OUT1, P_OUT2, P_DUTY" selected: Hold output ■ "Hold the output of P_OUT1, P_OUT2, P_DUTY" unselected: Continue operation
Loop stop processing	The following processing is executed if the stop alarm (SPA) of alarm (ALM) is TRUE. 1) Hold the output (MVN). 2) Change the control mode automatically to MANUAL. 3) Reset DMLA, MHA, and MLA when DMLA, MHA, and MLA of alarm (ALM) occur. 4) Alarm is not detected in variation rate limiter and high/low limiter.

Processing Operation

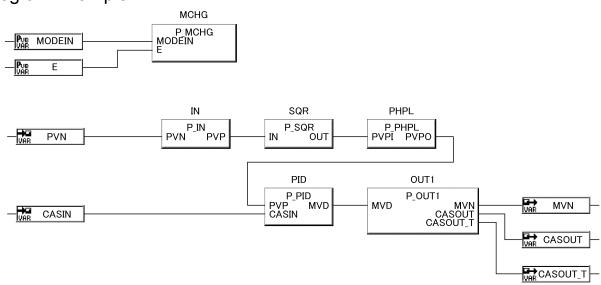
Processing Control mode	Input addition	Variation rate limiter and high/low limiter	Reset windup	Output conversion	Alarm
MAN, CMV,	×	×	×	0	× (*1)
AUT, CAS, CSV	0	0	0	0	○ (*2)

○: Execute ×: Not execute

7 - 79 7 - 79

^{*1} When the bit of alarm (ALM) is reset to TRUE (occur), the alarm can't be detected.

^{*2} When the bit of Disable Alarm Detection (INH) which corresponds to an alarm is TRUE, the alarm is not detected.


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

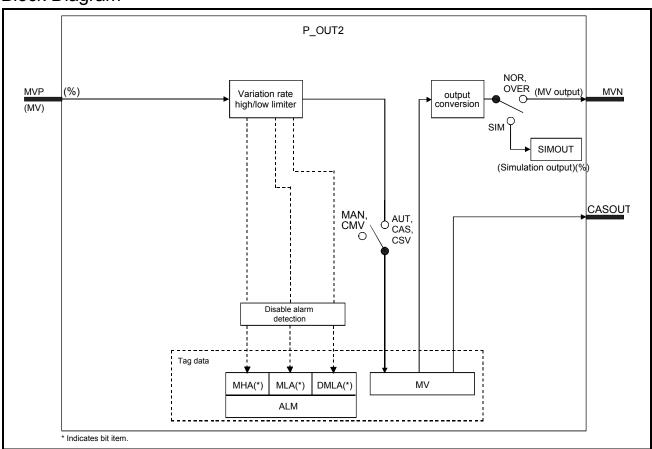
Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.


7 - 80 7 - 80

7.5.3 Output Processing-2 with Mode Switching (Without Input Addition) (P_OUT2)

FB	FBD parts		Corresp	onding ta	ag type		
	P OUT2	R					
P_OUT2	— MVP MVN —		Control mode				
	CASOUT	MAN	AUT	CAS	CMV	CSV	
		0	0	0	0	0	
Functions overview: Carry out	processing as variation rate & high/low limiter, output conversion	on to the inp	out (MV);	and then	output M	V.	

Function/FB classification name: Tag access FB _I/O control FB

Block Diagram

Input and output pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	MVP	Input variable	REAL	MV input (unit: %)	0 to 100
Output	MVN	Output variable	REAL	MV output to module FB	NMIN to NMAX
Output	CASOUT	Output variable	REAL	Cascade output (unit: %)	0 to 100

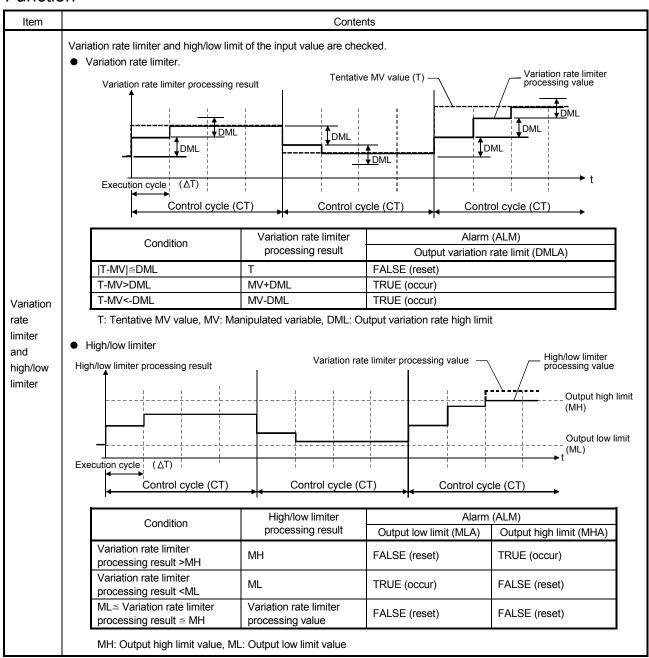
Public Variable (operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
processing	NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

7 - 81 7 - 81

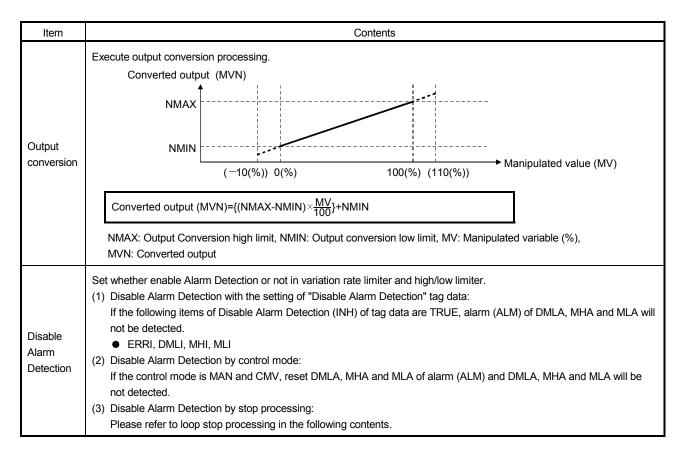
Public Variable (others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM*2	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System


^{*1} Please read and write them with program.

It will not be displayed in FB property window of PX Developer.

Tag Data


For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

Function

7 - 82 7 - 82

^{*2} It means simulation processing.

Other Functions

Item	Contents
Holding processing	Set whether hold output of P_OUT2 will or not in case of sensor error (SEA) on tag access P_IN. The setting can be made through PX Developer project parameter setting. [Setting procedure][Project Parameter] → [Program Execution] → Holding processing ■ "Hold the output of P_OUT1, P_OUT2, P_DUTY" selected: Hold output ■ "Hold the output of P_OUT1, P_OUT2, P_DUTY" unselected': Continue operation
Loop stop processing	The following processing is executed if the stop alarm (SPA) of alarm (ALM) is TRUE. 1) Hold the output (MVN). 2) Change the control mode automatically to MANUAL. 3) Reset DMLA, MHA, and MLA when DMLA, MHA, and MLA of alarm (ALM) occur. 4) Alarm is not detected in variation rate limiter and high/low limiter.

Processing Operation

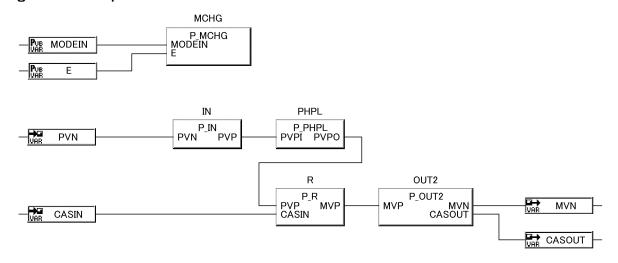
Processing Control mode	Variation rate limiter and high/low limiter	Output conversion	Alarm
MAN, CMV	×	0	× (*1)
AUT, CAS, CSV	0	0	○ (*2)

: Execute ×: Not execute

7 - 83 7 - 83

^{*1} When the bit of alarm (ALM) is reset to TRUE (occur), the alarm can't be detected.

^{*2} When the bit of Disable Alarm Detection (INH) which correspond to an alarm is TRUE, the alarm is not detected.

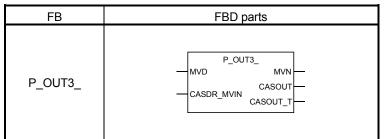

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

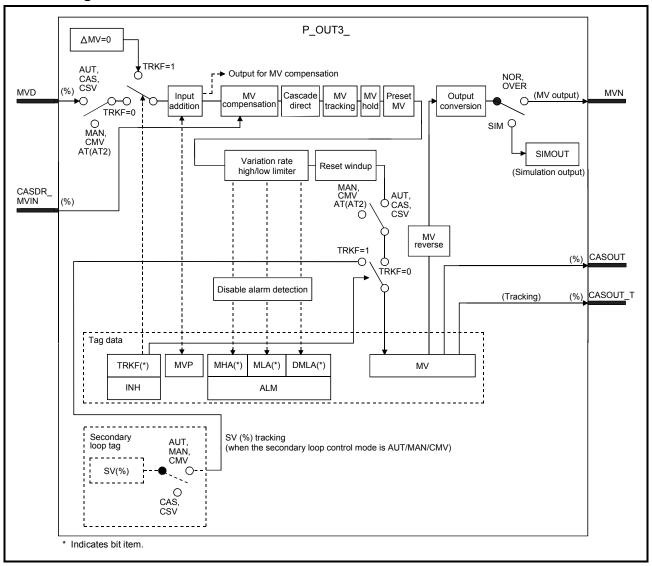


POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 84 7 - 84

7.5.4 Output Processing-3 with Mode Switching (With Input Addition and Compensation) (P OUT3)


	Corre	sponding tag	g type				
2PIDH							
Control mode							
MAN	AUT	CAS ^{*1}	CMV	CSV			
_	_	_	_	_			

*1 Transition to CASDR is possible.

Functions overview: Executes processing to the input value (\triangle MV) as input addition, MV compensation, preset MV, MV hold, MV tracking, variation rate limiter and high/low limiter, reset windup, MV reverse, and output conversion and then output the MV.

Function/FB classification name: Tag access FB _ I/O control FB

Block Diagram

7 - 85 7 - 85

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	MVD	Input variable	REAL	△MV input (unit: %)	-999999 to 999999
input	CASDR_MVIN	Input variable	REAL	MV input for Cascade direct (unit: %)	0 to 100
	MVN	Output variable	REAL	MV output to module FB	NMIN to NMAX
Output	CASOUT	Output variable	REAL	Cascade output (unit: %)	0 to 100
	CASOUT_T	Output variable	ADR_REAL	Cascade output (unit: %) (Tracking)	0 to 100

Public Variable (Operation constant)

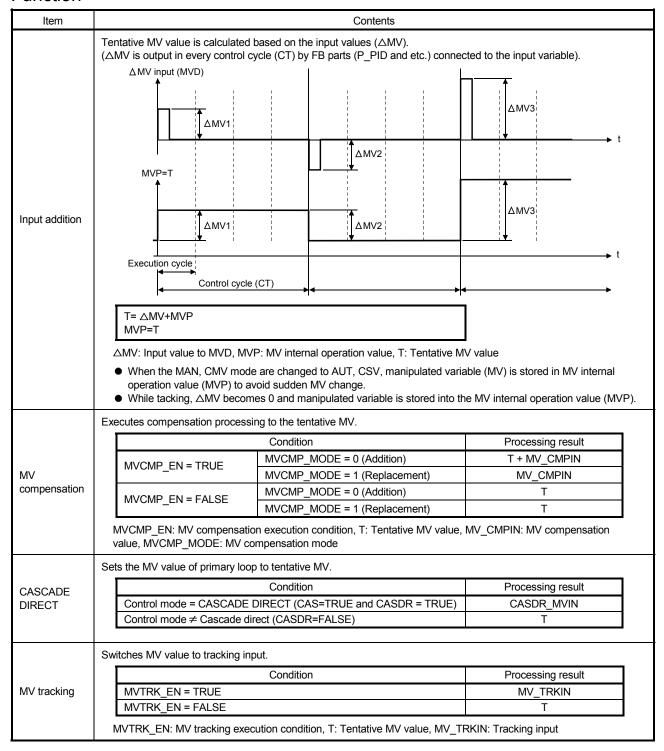
	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User
	MVCMP_EN	Public variable	BOOL	MV compensation execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	MV_CMPIN	Public variable	REAL	MV compensation value (Unit: %)	-999999 to 999999	0.0	User
	MVCMP_MODE	Public variable	INT	MV compensation mode (0: Addition, 1: Replacement)	0 to 1	0	User
	PREMV_EN	Public variable	BOOL	Preset MV execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	PREMV_V	Public variable	REAL	Preset MV value (Unit: %)	0 to 100	0.0	User
	MVHLD_EN	Public variable	BOOL	MV hold execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
Operation processing	MVTRK_EN	Public variable	BOOL	MV tracking execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
p. cccccg	MV_TRKIN	Public variable	REAL	MV tracking input (Unit: %)	0 to 100	0	User
	STP_OTYPE	Public variable	INT	Output in loop stop or tag stop (0: Hold, 1: Preset value)	0 to 1	0	User
	SEA_OTYPE	Public variable	INT	MV output selection when SEA occurs (0: Hold, 1: Preset MV output, 2: Neither hold nor preset MV output is executed.)	0 to 2	0	User
	ARW_EX_EN	Public variable	BOOL	MV value instantaneous pullback when MV internal operation high/low limit value is over (TRUE: Execute, FALSE: Not execute)	TRUE, FALSE	FALSE	User
	MVPH	Public variable	REAL	MV internal operation high limit value (Unit: %)	MH to 999999	100.0	User
	MVPL	Public variable	REAL	MV internal operation low limit value (Unit: %)	-999999 to ML	0.0	User
	MVREV_EN	Public variable	BOOL	MV reverse execution condition (TRUE: Execute, FALSE: Not execute)	TRUE, FALSE	FALSE	User

Public Variable (others) (*1)

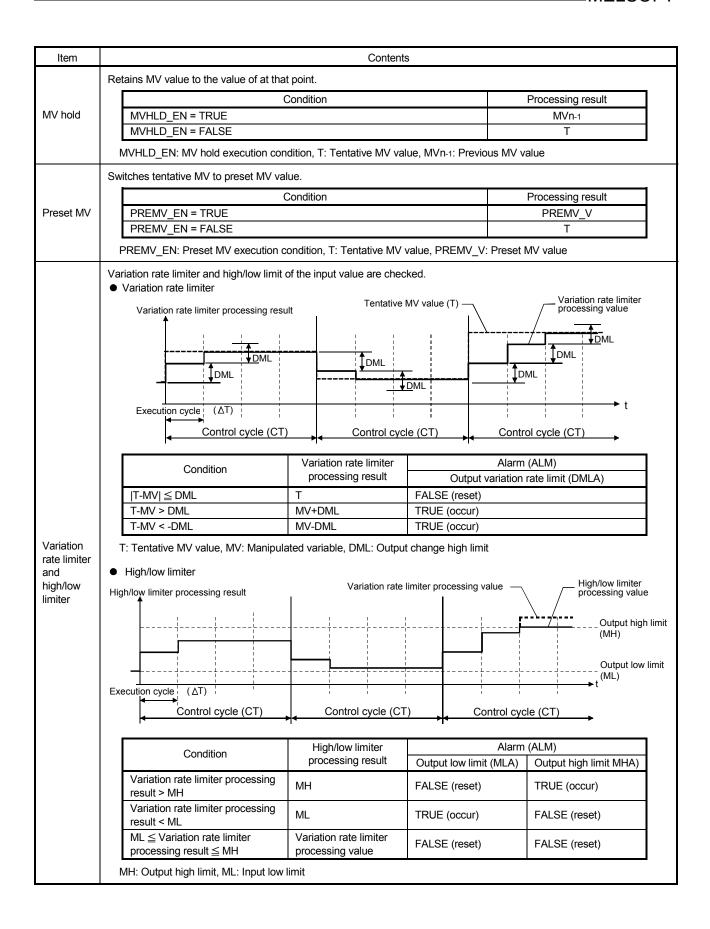
	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM*2	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System
MV compensation processing	compensation MV_CMPOUT Public variable REAL C		Output for MV compensation (Unit: %)	-999999 to 999999	0.0	System	

^{*1} Please read and write them with program.

7 - 86


It will not be displayed in FB property window of PX Developer.

^{*2} It means simulation processing.


Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

Function

7 - 87 7 - 87

7 - 88 7 - 88

Item		Contents				
	Countermeasures against reset windup include quickly when deviation is inverted.	: Return MV to high/low limit when MV exceeds the high/low limit; Respond				
	Condition	Countermeasure processing against reset windup				
	MHA=1 and $\frac{\Delta T}{T_i} \leq 1$	$MVP = \frac{\Delta T}{Ti} \times (MH-T) + T$				
	MLA=1 and $\frac{\Delta T}{Ti} \leq 1$	$MVP = \frac{\Delta T}{Ti} \times (ML-T) + T$				
Reset windup	MVP: MV internal operation value, △T: Exect If Ti=0, no countermeasures against reset with the MRW_EX_EN is TRUE	de: Immediately returns to MV internal operation high/low limit value when				
	Condition	Countermeasure processing against reset windup				
	MVP > MVPH	MVP = MVPH				
	MVP < MVPL	MVP = MVPL				
	MVP: MV internal operation value, MVPH: M' MVPL: MV internal operation low limit value However, when MVPH is less than MH, the owner MVPH is more than ML, the condition is	condition and the pullback value are processed as MH.				
	Executes MV value inversion processing (100-N	MV).				
	Condition	Processing result				
MV reverse	MVREV_EN = TRUE	MVREV = 100-MV				
TEVELSE	MVREV_EN = FALSE	MVREV = MV				
	MVREV: Output after processing of MV reverse for internal operation (%), MV: MV value (%)					
Outside	Output conversion processing is carried out. converted output (MVN) NMAX					
Output conversion	NMIN					
	(-10(%)) 0(%)	100(%) (110(%)) Manipulated value (MV)				
	Converted output (MVN)={(NMAX-NMIN)× MV / 100 +NMIN					
	NMAX: Output conversion high limit, NMIN: Output conversion low limit, MV: Manipulated variable (%), MVN: Converted output					
Disable Alarm Detection	Set whether enable Alarm Detection or not in variation rate limiter and high/low limiter. (1) Disable Alarm Detection with the setting of "Disable Alarm Detection" tag data: If the following items of Disable Alarm Detection (INH) of tag data are TRUE, alarm (ALM) of DMLA, MHA and MLA will not be detected. ■ ERRI, DMLI, MHI, MLI (2) Disable Alarm Detection by control mode: If the control mode is MAN and CMV, reset DMLA, MHA and MLA of alarm (ALM) and DMLA, MHA and MLA will not be detected. (3) Disable Alarm Detection by stop processing: Please refer to loop stop processing in the following contents.					

7 - 89

Other Functions

Item	Contents							
	When a sensor error (SEA) occurs in P_IN of tag access FB, select the output of P_OUT3_ from any of the following.							
Output processing	Condition	Processing result						
at sensor	SEA_OTYPE = 0	MV value hold						
alarm	SEA_OTYPE = 1	Preset MV output						
occurrence	SEA_OTYPE = 2	Neither hold nor preset MV output is executed.						
Loop stop processing	The following processes are executed when either the stop alarm (SPA) of alarm (ALM) or the tag stop (TSTP) of monitor output buffer (DOM) is TRUE. 1) When the output at loop stop is the previous value (STP_OTYPE=0), holds the output (MVN). When the output at loop stop is the preset value (STP_OTYPE=1), presets the output (MVN). 2) Change the control mode automatically to MANUAL. 3) Reset DMLA, MHA, and MLA when DMLA, MHA, and MLA of alarm (ALM) occur. 4) Alarm is not detected in variation rate limiter and high/low limiter.							
Auto tuning (AT2)	If auto tuning with the Limit Cycle method is in execution, this FB performs in the same way with MANUAL mode.							

Processing Operation

Processing Control mode	Loop		Input addition		CASCADE DIRECT			MV tracking	Variation rate limiter and high/ low limiter	Reset windup	MV reverse	Alarm		Output Conver -sion
MAN, CMV	0	0	×	×	×	×	×	×	×	×	0	× (*1)	0	0
AUT, CAS, CSV	0	0	0	0	×	0	0	0	0	0	0	O (*2)	0	0
CASDR	0	0	0	×	0	0	0	0	0	0	0	O (*2)	×	0

^{○:} Execute ×: not execute

Output function priority

The following shows the priority in each output function.

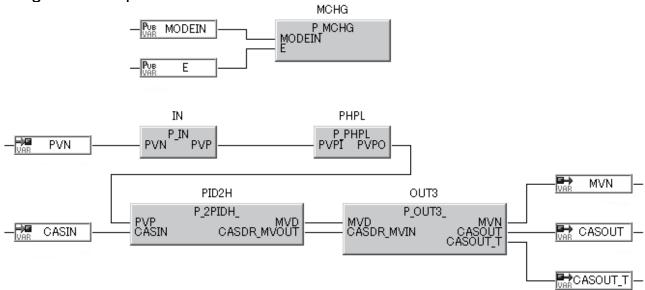
Priority	Output function			
1	Preset MV			
2	MV hold			
3	MV tracking			
4	Cascade direct			
5	MV compensation			

Example) When both preset MV and MV tracking are valid (PREMV_EN=TRUE, MVHLD_EN=TRUE), preset MV value is output as it has higher priority.

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.


• When overflow occurs during operation. (Error code: 4100)

7 - 90 7 - 90

^{*1} When the bit of alarm (ALM) is reset to TRUE (occur), the alarm can't be detected.

^{*2} When the bit of Disable Alarm Detection (INH) which corresponds to an alarm is TRUE, the alarm is not detected.

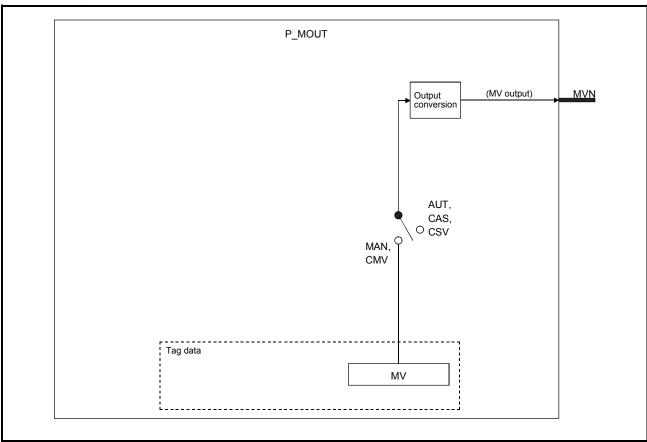
Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 91 7 - 91

7.5.5 Manual Output (P_MOUT)


FB	FBD parts
P_MOUT	P_MOUT MVN

Corresponding tag type							
MOUT, MWM							
Control mode							
MAN	AUT	CAS	CMV	CSV			
0			0	_			

Functions overview: Read the manipulated variable (MV) of the tag data, execute output conversion processing and output MV.

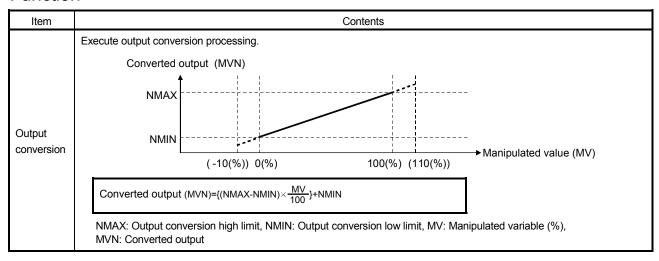
Function/FB classification name: Tag access FB _ I/O control FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Output	MVN	Output variable	REAL	MV output to module FB	NMIN to NMAX

Public Variable (Operation constant)


	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
processing	NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

7 - 92 7 - 92

Tag Data

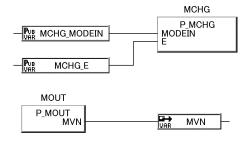
For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

Function

Processing Operation

Processing Control mode	Output conversion
MAN, CMV	0
AUT, CAS, CSV	×

O: Execute X: Not execute


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

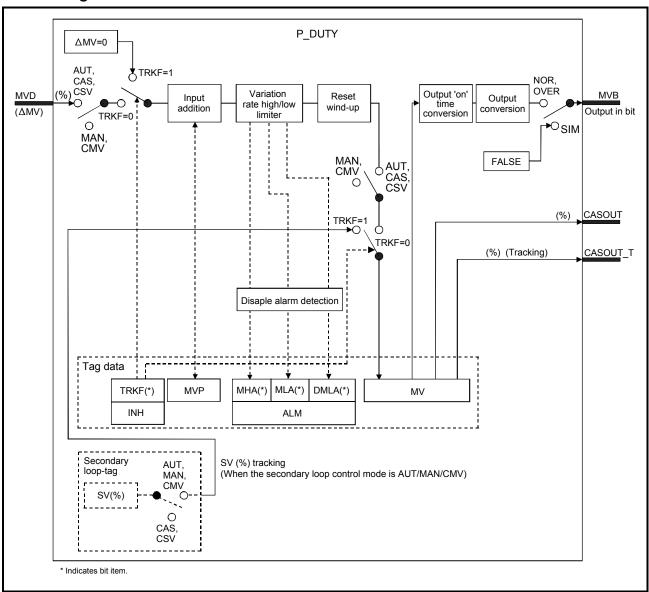
Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 93 7 - 93

7.5.6 Time Proportioning Output (P_DUTY)


P_DUTY
→ MVD MVB —
CASOUT —
CASOUT_T —

Corresponding tag type					
BPI, I PD, PID, SPI, 2PID					
Control mode					
MAN AUT CAS CMV CSV					
0	0	0	0	0	

Functions overview: For the input value (\triangle MV), execute processing as input addition, variation rate limiter and high/low limiter, reset wind-up, output 'ON' time conversion and output conversion and output in bit.

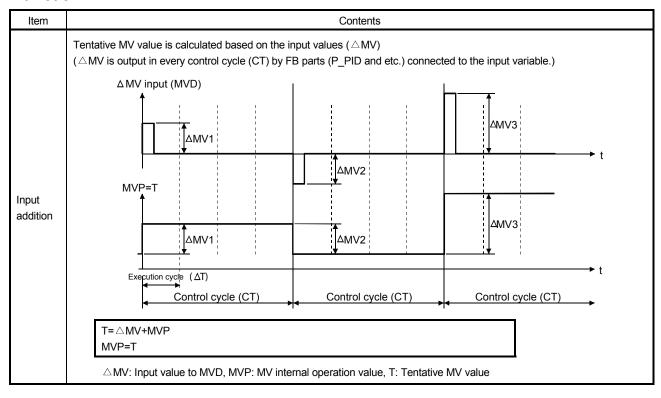
Function/FB classification name: Tag access FB _ I/O control FB

Block Diagram

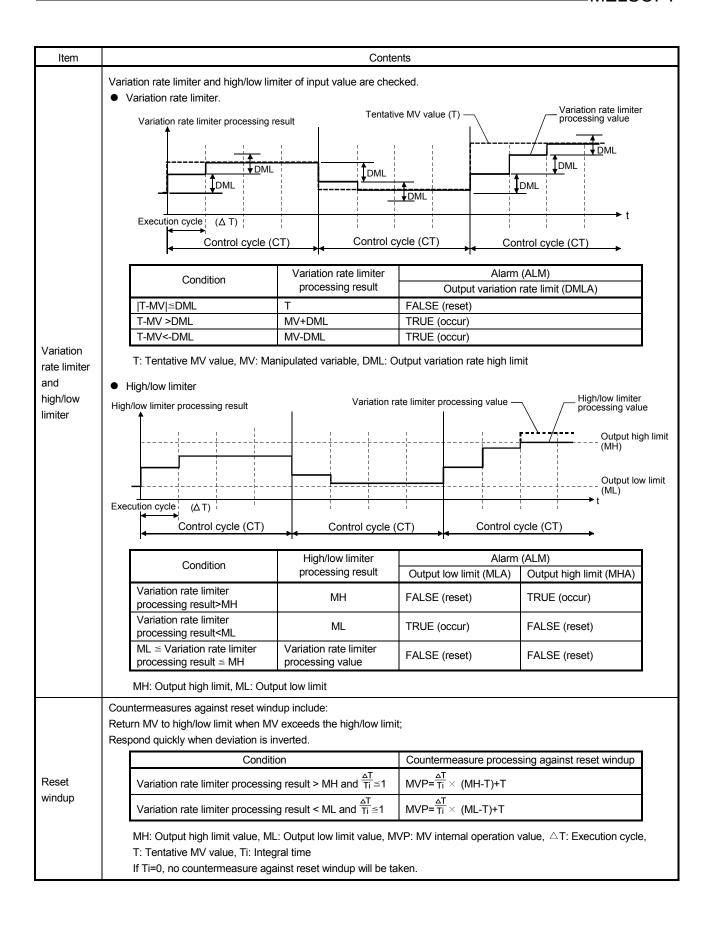
7 - 94 7 - 94

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range	
Input	MVD	Input variable	REAL	△MV input (unit: %)	-99999 to 999999	
	MVB	Output variable	BOOL	Bit ON/OFF duty output to module FB	TRUE, FALSE	
Output	CASOUT	Output variable	REAL	Cascade output (unit: %)	0 to 100	
	CASOUT_T	Output variable	ADR_REAL	Cascade output (unit: %) (Tracking)	0 to 100	


Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
processing	NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User


Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

Function

7 - 95 7 - 95

7 - 96 7 - 96

Item		Contents					
	Duty manipulated variable (MVB) to manipulated variable (MV) is output.						
	Item		Contents				
		-	If the 'ON' time execution cycle count is defined as $\left(\frac{\text{CTDUTY} \times \text{MV}}{\text{ATX} + 100}\right)$ with the first digit				
	Duty manipulated variable 'on' time	after decimal point rounded off, then:					
	variable on time	Duty manipulated variable (MVB) 'on' tin	ne='on' time execution	on cycle count \times \triangle T			
Output	Duty manipulated variable 'off' time	cycle) –('on' time execution cycle count)	If the 'off' time execution cycle count is defined as (execution cycle count in control cycle) –('on' time execution cycle count) then: Duty manipulated variable (MVB) 'off' time='off' time execution cycle count $\times \triangle T$				
'ON' time conversion /Output conversion	(E.g.: Suppose exec	output time, △T: Execution cycle, MV: Manipoution cycle △T=100ms, control output time V read	. ,				
	Control output time (CTDUTY)	1s		1s			
	manipulated	ON OFF 700	ON	055 700			
	value (MV) 30% ON:	300ms OFF: 700ms	ON: 300ms	OFF: 700ms			
Disable Alarm Detection	Set whether enable Alarm Detection or not in variation rate limiter and high/low limiter. (1) Disable Alarm Detection with the setting of "Disable Alarm Detection" tag data: If the following items of Disable Alarm Detection (INH) of tag data are TRUE, alarm (ALM) of DMLA, MHA and MLA w not be detected. • ERRI, DMLI, MHI, MLI (2) Disable Alarm Detection by control mode: If the control mode is MAN and CMV, reset DMLA, MHA and MLA of alarm (ALM) and DMLA, MHA and MLA will be detected. (3) Disable Alarm Detection by stop processing: Please refer to loop stop processing in the following contents.						

Other Functions

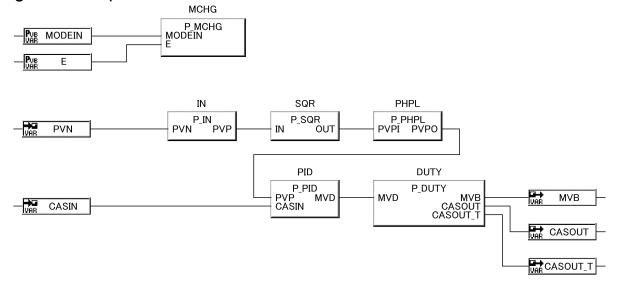
Item	Contents
Holding processing	Set whether hold output of P_DUTY will or not in case of sensor error (SEA) on tag access P_IN. The setting can be made through PX Developer project parameter setting. [Setting procedure][Project Parameter] → [Program Execution] → Holding processing ■ "Hold the output of P_OUT1, P_OUT2, P_DUTY" selected: Hold output ■ "Hold the output of P_OUT1, P_OUT2, P_DUTY" unselected': Continue operation
Loop stop processing	The following processing is executed if the stop alarm (SPA) of alarm (ALM) is TRUE. 1) Hold the output (MVB). 2) Change the control mode automatically to MANUAL. 3) Reset DMLA, MHA, and MLA when DMLA, MHA, and MLA of alarm (ALM) occurs. 4) Alarm is not detected in range check.

7 - 97

Processing Operation

Processing Control mode	Input processing	Variation rate limiter and high/low limiter	Reset windup	Output 'ON' time conversion	Output conversion	Alarm
MAN, CMV × ×		×	0	0	× (*1)	
AUT, CAS, CSV		0	0	0	○ (*2)	

: Execute ×: Not execute


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

POINT

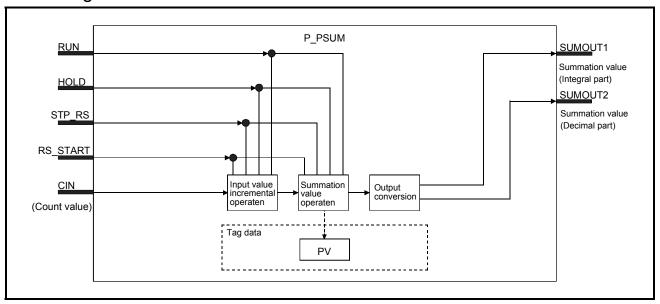
It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 98 7 - 98

^{*1} When the bit of alarm (ALM) is reset to TRUE (occur), the alarm cannot be detected.

^{*2} When the bit of Disable Alarm Detection (INH) which correspond to an alarm is TRUE, the alarm is not detected.

7.5.7 Pulse Integration (P_PSUM)


FB	FBD parts		
P_PSUM	P_PSUM RUN SUMOUT1 HOLD SUMOUT2 STPRS RS_START CIN		

	Corresponding tag type					
PSUM,BC						
	Control mode					
MAN	AUT	CAS	CMV	CSV		

Functions overview: It executes the input value incremental operation, integration value operation and output conversion for the count value when the integration start signal (RUN) is TRUE, then output the result.

Function/FB classification name: Tag access FB _ I/O control FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	RUN	Input variable	BOOL	Integration start signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE
	HOLD	Input variable	BOOL	Integration pause signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE
Input	STPRS	Input variable	BOOL	Reset signal after integration pause (TRUE: Execute, FALSE: Stop)	TRUE, FALSE
	RS_START	Input variable	BOOL	Start signal after integration reset (TRUE: Execute, FALSE: Stop)	TRUE, FALSE
	CIN	Input variable	DINT	Count value	-2147483648 to 2147483647 ring counter (pulse increment for each execution should be less than 32767)
Output	SUMOUT1	Output variable	DINT	Integration value output (integral part)	0 to HILMT
Output	SUMOUT2	Output variable	DINT	Integration value output (decimal part)	0 to 999

7 - 99 7 - 99

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	W	Public variable	INT	Weight per pulse	1 to 999	1	User
	U	Public variable	INT	Unit conversion constant	1,10,100,1000	1	User
Operation processing	HILMT	Public variable	DINT	Integration high limit	0 to 2147483647	2147483647	User
	SUMPTN	Public variable	INT	Integration pattern: 0: return to 0 if over integration high limit. 1: hold the integration high limit value if over integration high limit	0,1	0	User

Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

Function

Item			Contents				
Input condition	If the input variable RUN is TRUE, integration processing is carried out to the input (CIN) and integration value is exported. If the input variable HOLD is TRUE, the integration processing to the input (CIN) is held. If the input variable STPRS is TRUE, integration processing is stopped and integration value is cleared. If the input variable RS_START is TRUE, integration processing is restarted after resetting the integration processing.						
	Integration start signal (RUN)	Integration pause signal (HOLD)	, , ,				
Input value incremental operation	FALSE	FALSE	_				
	FALSE	TRUE	-				
	TRUE	FALSE	CIN - CINn-1				
	TRUE	TRUE	_				
	CIN: Count value	e, CINn-1: Previous o	ount value, T1: Input value incremental processing result				
	Execute the following	operations to the inp	out increment that is calculated by input incremental operation.				
	Integration start	Integration pause	Integration value operation processing result				
	signal (RUN)	signal (HOLD)	(T2: Integration value (integral part), T3: Integration value (decimal part))				
	FALSE	FALSE	T2=0,T3=0				
	FALSE	TRUE	T2=0,T3=0				
Integration value operation	TRUE	FALSE	T4= Quotient of {(T1 × W)/U} (integral part) T5= Modulus of {(T1 × W)/U}(decimal part) T2= Quotient of PV+T4+[{SUM2+T5}/U](integral part) T3= Modulus of [{SUM2+T5}/U] (decimal part)				
	TRUE	TRUE	T2=PV, T3=SUM2				
	T1: Input value incremental processing result, T2: Integration value (integral part), T3: Integration value (decimal part), T4: Integration value increment (integral part), T5: Integration value increment (decimal part), W: Weight per pulse, U: Unit conversion constant, PV: Integration value (integral part), SUM2: Integration value (decimal part)						

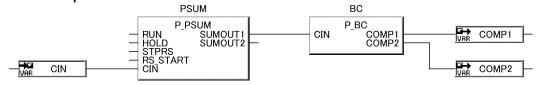
7 - 100 7 - 100

Item	Contents						
Output	Execute the following operation to the integration value that is calculated by integration value increment processing.						
	Integration		Output variable (SUM	OUT1, SUMOUT2)	Tag data (PV,SUM2)	
	pattern (SUMPTN)	Condition	Integration value (integral part) (SUMOUT1)	Integration value (decimal part) (SUMOUT2)	Integration value (integral part) (PV)	Integration value (decimal part) (SUM2)	
	0	T2>HILMT	SUMOUT1= T2 - HILMT - 1	SUMOUT2=T3	PV= T2 – HILMT – 1	SUM2=T3	
conversion		Else	SUMOUT1=T2	SUMOUT2=T3	PV=T2	SUM2=T3	
	4	T2>HILMT	SUMOUT1=HILMT	SUMOUT2=0	PV=HILMT	SUM2=0	
	'	Else	SUMOUT1=T2	SUMOUT2=T3	PV=T2	SUM2=T3	
	T2: Integration value (integral part), T3: Integration value (decimal part), PV: Integration value (integral part), SUMOUT1: Integration value (integral part) output, SUMOUT2: Integration value (decimal part) output						

Processing operation

Processing Control mode	Input value incremental operation	Integration operation	Output conversion
=	0	0	0

○: Execute ×: Not execute


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

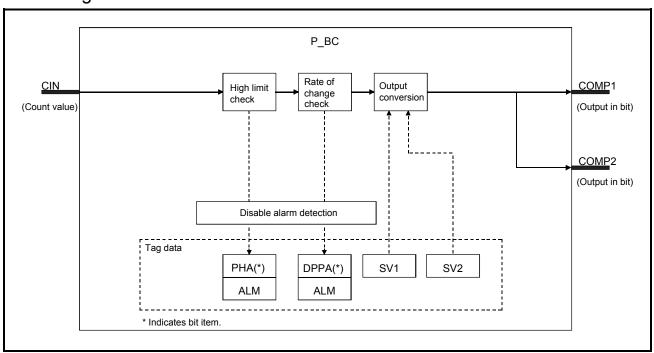
POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 101 7 - 101

7.5.8 Batch Counter (P_BC)

FB	FBD parts	
		В
P_BC	P_BC CIN COMP1 — COMP2 —	N


	Corresponding tag type						
BC							
	Control mode						
MAN	AUT	CAS	CMV	CSV			
_				-			

Functions overview: Compare the input (CIN) with set value 1 and set value 2. Complete signal is output when the input reaches set value.

Carry out high limit check, variation rate check, and output conversion processing.

Function/FB classification name: Tag access FB _ I/O control FB

Block Diagram

Input and Output Pins


Pin	Variable name	Variable type	Data type	Contents	Range
Input	CIN	Input variable	DINT	Count value	0 to 99999999
Output	COMP1	Output variable	BOOL	Set value 1 (SV1) completed output (TRUE:ON, FALSE:OFF)	TRUE, FALSE
Output	COMP2	Output variable	BOOL	Set value 2 (SV2) completed output (TRUE:ON, FALSE:OFF)	TRUE, FALSE

Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

7 - 102 7 - 102

Function

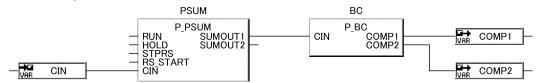
7 - 103 7 - 103

Item	Contents
Disable Alarm Detection	Set whether enable Alarm Detection or not in variation rate detection and high/low detection. If the following bit items of Disable Alarm Detection (INH) of tag data are TURE, alarm (ALM) of PHA, and DPPA will not be detected. • ERRI, PHI, DPPI

Processing Operation

Processing Control mode	Input value incremental operation	Integration operation	Output conversion	Alarm
_	0	0	0	^(*1)

○: Execute ×: Not execute


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

POINT

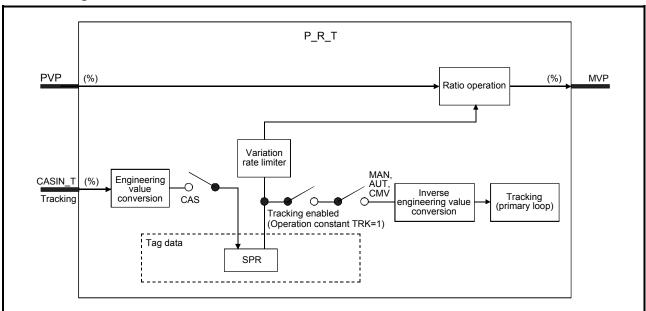
It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 104 7 - 104

^{*1} When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.

7.6 Tag Access FB _ Loop Control Operation FB

7.6.1 Ratio Control (With Tracking to primary loop) (P_R_T)


FB	FBD parts
P_R_T	P_R_T PVP MVP CASIN_T

Corresponding tag type							
R	R						
	Control mode						
MAN	AUT	CAS	CMV	CSV			
0	0	0	0	0			

Functions overview: Control 2 control volumes at a constant ratio and output (\(\Delta MV \).

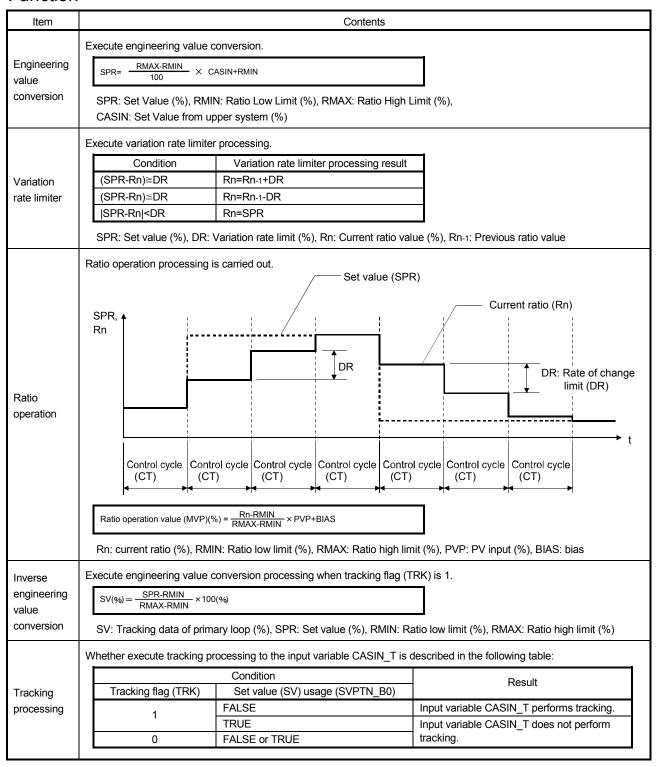
Function/FB classification name: Tag access FB _ Loop control operation FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	PVP	Input variable	REAL	PV input (unit: %)	0 to 100
iliput	CASIN_T	Input variable	ADR_REAL	Cascade SV input (unit: %) (Tracking)	0 to 100
Output	MVP	Output variable	REAL	MV output (unit: %)	-999999 to 999999

Public Variable (Operation constant)


	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
Operation processing	SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	SVPTN_B1	Public variable	BOOL	Set value (SV) pattern (TRUE: Not upper MV, FALSE: Upper MV)	TRUE, FALSE	TRUE	User

7 - 105 7 - 105

Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types Appendix 1.1.

Function

7 - 106 7 - 106

Other Functions

I	Item	Contents
	Loop stop processing	The following processing is executed if the stop alarm (SPA) of alarm (ALM) is TRUE. 1) Hold the output (MVP). 2) Change the control mode automatically to MANUAL.

Processing Operation

Processing Control mode	Ratio operation	Variation rate limiter	Engineering value conversion	Tracking
MAN, CMV	0	0	×	○ (*1)
AUT, CAS, CSV	0	0	0	×

O: Execute X: Not execute

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

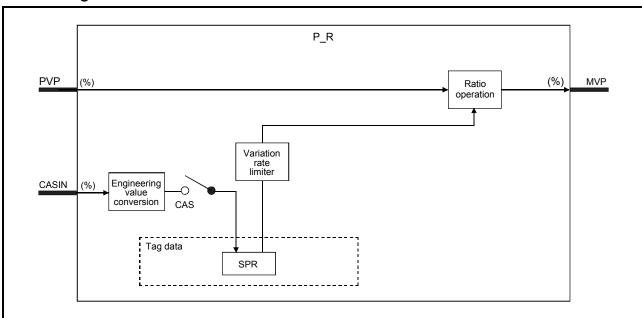
POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 107 7 - 107

^{*1} Tracking is executed when the tracking flag (TRK) is 1.

7.6.2 Ratio Control (Without Tracking to primary loop) (P_R)


FB	FBD parts
P_R	P_R — PVP MVP— — CASIN

Corresponding tag type						
R						
Control mode						
MAN AUT CAS CMV CSV						
0	0	0	0	0		

Functions overview: Control 2 control variables at a constant ratio.

Function/FB classification name: Tag access FB _ Loop control operation FB

Block Diagram

Input and Output Pins

Pin	Pin Variable name Variable type Data type Content		Contents	Range	
Imm. st	PVP	Input variable	REAL	PV input (unit: %)	0 to 100
Input	CASIN	Input variable	REAL	Cascade SV input (unit: %)	0 to 100
Output	MVP	Output variable	REAL	MV output (unit: %)	-999999 to 999999

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation processing	SVPTN_B0	Public variable	BOOL	Set value (SV) usage (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User

7 - 108 7 - 108

Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

Function

Item	Contents							
	Execute engineering value conversion processing.							
Engineering value conversion	$SPR = \frac{RMAX - RMIN}{100} \times CASIN + RMIN$							
	SPR: Set value (%), RMIN: Ratio low limit (%), RMAX: Ratio high limit (%), CASIN: Set value from host (%)							
	Execute the variation rate limiter processing.							
	Condition Variation rate limiter processing result (Rn)							
Variation	$(SPR-Rn) \ge DR$ $Rn = Rn-1 + DR$							
rate limiter	$(SPR-Rn) \le DR$ $Rn = Rn-1 - DR$							
	SPR—Rn < DR Rn = SPR							
	SPR: Set value (%), DR: Variation rate limit (%), Rn: Current ratio value (%), Rn-1: Previous ratio value							
Ratio operation	SPR, Rn Set value (SPR) Current ratio (Rn) DR: Rate of change limit (DR)							
	Control cycle Control cycle							

Other Functions

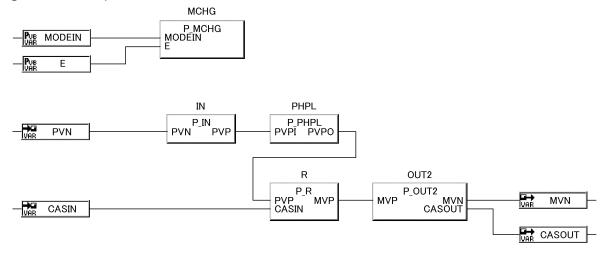
Item	Contents
Loop stop processing	Execute the following operation when the stop alarm (SPA) of alarm (ALM) is TRUE. 1) Hold the output (MVP). 2) Automatically change the control mode into Manual (MANUAL).

7 - 109

Processing Operation

Processing Control mode	Ratio operation	Variation rate limiter	Engineering value conversion	
MAN, CMV	0	0	×	
AUT, CAS, CSV	0	0	0	

○: Execute ×: Not execute


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

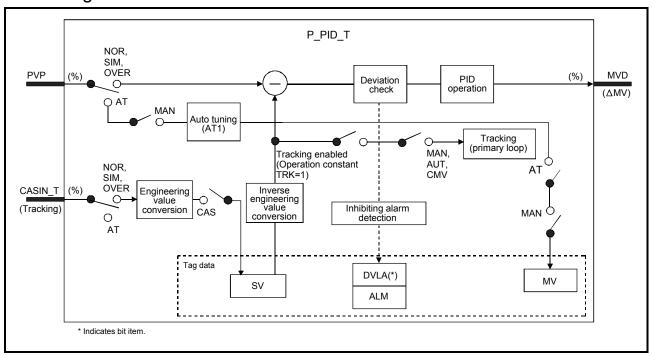
Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 110 7 - 110

7.6.3 Velocity Type PID Control (With Tracking to primary loop) (P_PID_T)


FB	FBD parts		
P_PID_T	P_PID_T		

Corresponding tag type								
PID	PID							
Control mode								
MAN AUT CAS CMV CSV								
0	0	0	0	0				

Functions overview: Execute PID operation by use of PV- derivative, imperfect derivative, velocity type, and output (\(\Delta NV \).

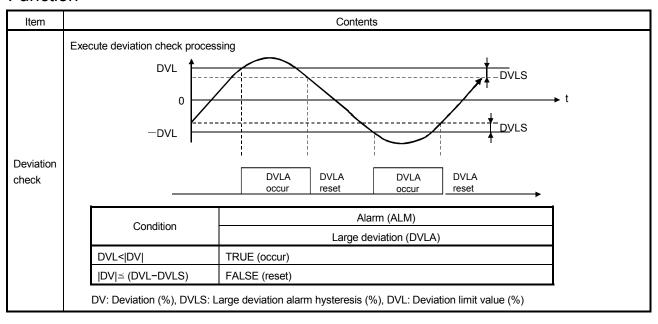
Function/FB classification name: Tag access FB _ Loop control operation FB

Block Diagram

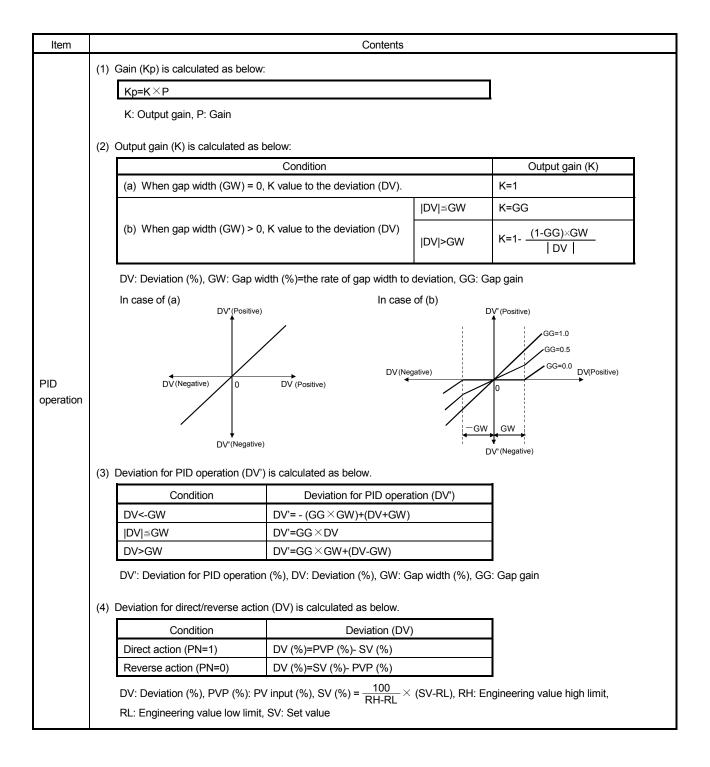
Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	PVP	Input variable	REAL	PV input (unit: %)	0 to 100
	CASIN_T	Input variable	ADR_REAL	Cascade SV input (unit: %) (Tracking)	0 to 100
Output	MVD	Output variable	REAL	△MV output (unit: %)	-999999 to 999999

7 - 111 7 - 111


Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
Operation processing	TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
	SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Use)	TRUE, FALSE	TRUE	User
	SVPTN_B1	Public variable	BOOL	Set value (SV) pattern (TRUE: Not upper MV, FALSE: Upper MV)	TRUE, FALSE	TRUE	User


Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

Function

7 - 112 7 - 112

7 - 113 7 - 113

Item			Contents)			
	(5)	PID operation	on is conducted as below.				
			Direct action	R	everse action		
		Deviation (DVn)	$DV_n = PV_n - SV_n$	D\	/n = SVn – PVn		
		Output variation (ΔMV)	ve(imperfect derivative) as follows.				
			● Derivative item : △MV = Kpx Bn (see belo	ow)			
		Bn	$B_{n} = B_{n-1} + \frac{Md \times Td}{Md \times CT + Td} \times $ $\{ (PV_{n} - 2PV_{n-1} + PV_{n-2}) - \frac{CT \times D_{n-1}}{Td} \}$	$B_{n} = B_{n-1} + \frac{Md}{Md \times}$ $\{-(PV_{n} - 2I_{n-1})\}$	$\frac{1 \times Td}{CT + Td} \times PV_{n-1} + PV_{n-2}) - \frac{CT \times D_{n-1}}{Td} $		
PID operation (continued from previous	(a)	Previous de Engineering	: Integral time, Td: Derivative time, Md: Derivative viation, PVn: Process value, PVn-1: Previous proc value conversion processing result	ess value, PVn-2: Pr	rocess value before last, SVn:		
page)	(α)	intograniton	Processing				
		Td=0 or co	Condition ontrol mode being either of MAN and CMV	Bn = 0			
			ither MH or ML error occurs, MVP>MH and $\frac{CT}{Ti}$ ither MH or ML error occurs, MVP <ml <math="" and="">\frac{CT}{Ti} ×</ml>				
			ime, CT: Control cycle, DVn: Deviation, MH: Outp ternal operation value	ut high limit, ML: Ou	tput low limit,		
	(b)	Control cycle	e (CT) should be set to be the integral number mu	ultiple of execution cy	ycle (△T).		
	(c)	Integral cons	stant should be set to be 0.0 or over control cycle	(CT).			
	(d)		on of the tag access FB is executed once in control the previous output value is kept (\triangle MV=0)	ol cycle (CT), (output	t \triangle MV). For, otherwise execution		
	Wh	en the contro	ol mode is CAS/CSV, the set value (%) from the p	rimary loop is conve	rted into engineering value.		
Engineering value	$SV = \frac{RH - RL}{100} \times Set \text{ value (\%) from the primary loop + RL}$						
conversion		RH: Engine	ering value high limit, RL: Engineering value low li	mit, SV: Set value			
Inverse	The	e set value (S	SV) of engineering value is converted to percentag	e SV (%)			
engineering value		SV (%) =	$\frac{100}{RH-RL} \times (SV - RL)$				
conversion		RH: Engine	ering value high limit, RL: Engineering value low li	mit, SV: Set value			

Item	Contents						
	Whether execute tracking processing to input variable CASIN_T.						
		Condition	Result				
Tracking	Tracking flag (TRK)	Set value used (SVPTN_B0)	Result				
processing	1	FALSE	Input variable CASIN_T performs tracking.				
	I	TRUE	Input variable CASIN_T does not perform				
	0	FALSE or TRUE	tracking.				
Disable Alarm Detection	 (1) Disable Alarm Detection with the setting of "Disable Alarm Detection" tag data: If the following items of Disable Alarm Detection (INH) of tag data are TRUE, alarm (ALM) of DVLA will not be detected. ERRI, DVLI (2) Disable Alarm Detection by loop stop processing: Please refer to loop stop processing in the following contents. 						
Auto tuning (ATI)	The proportional gain (Kp), integral time (Ti), derivative time (Td) is automatically calculated by use of the dynamic characteristics by automatic tuning. Please refer to Appendix 3.1 for more detailed information about automatic tuning. (1) The aim of Auto tuning is the initial value setting of proportional gain (Kp), integral time (Ti) and derivative time (Td) of PID control. ZN method (Step response method by Ziegler-Nichols) is being used here. (2) Auto tuning can only be executed when the control mode is manual (MANUAL).						

Other Functions

Item	Contents
Loop stop processing	The following processing is executed if the stop alarm (SPA) is TRUE. 1) Set △MV to 0. 2) Change the control mode automatically to MANUAL. 3) Reset DLVA when DLVA of alarm (ALM) occurs. 4) Alarm is not detected in deviation check.

Processing Operation

Processing Control mode	Deviation check	PID operation	Engineering value conversion	Inverse engineering value conversion	Tracking	Alarm	Auto tuning
MAN, CMV, AUT	0	0	×	0	O (*1)	O (*2)	O (*3)
CAS, CSV	0	0	0	0	×	○ (*2)	×

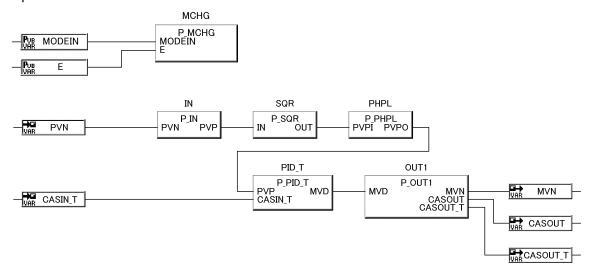
O: Execute X: Not execute

^{*1} Tracking is executed when the tracking flag (TRK) is 1.

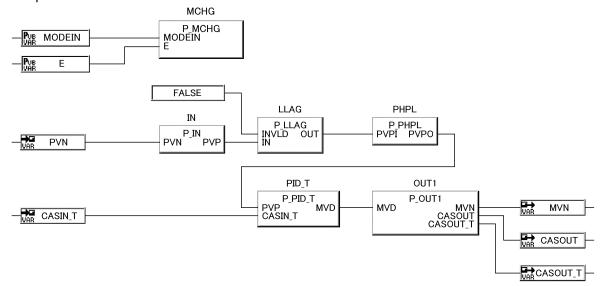
^{*2} When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.

^{*3} Auto tuning can only be executed when the control mode is Manual (MANUAL).

Error


Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.


When overflow occurs during operation. (Error code: 4100)

Program Example

(1) Example 1

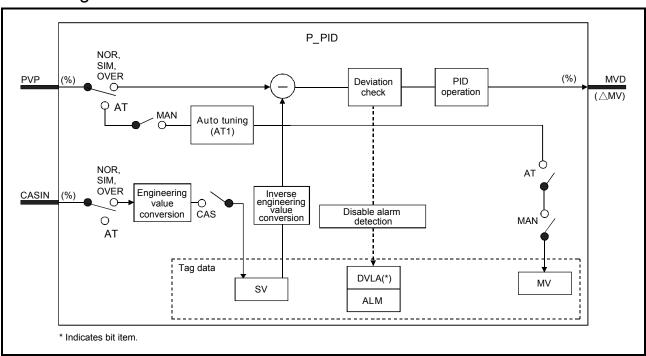
(2) Example 2

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 116 7 - 116

CSV \bigcirc


7.6.4 Velocity Type PID Control (Without Tracking to primary loop) (P PID)

FB	FBD parts		Corres	ponding	tag type
	D. DID	PID			
D DID	P_PID PVP MVD		С	ontrol mo	ode
P_PID	— CASIN	MAN	AUT	CAS	CMV
		0	0	0	0

Functions overview: Execute PID operation by use of PV-derivative, imperfect derivative and velocity type, and output (△MV)

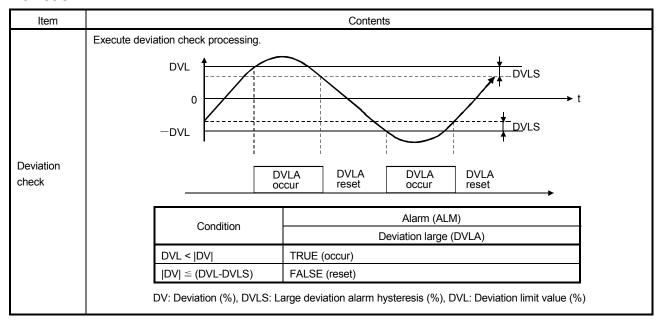
Function/FB classification name: Tag access FB Loop control operation FB

Block Diagram

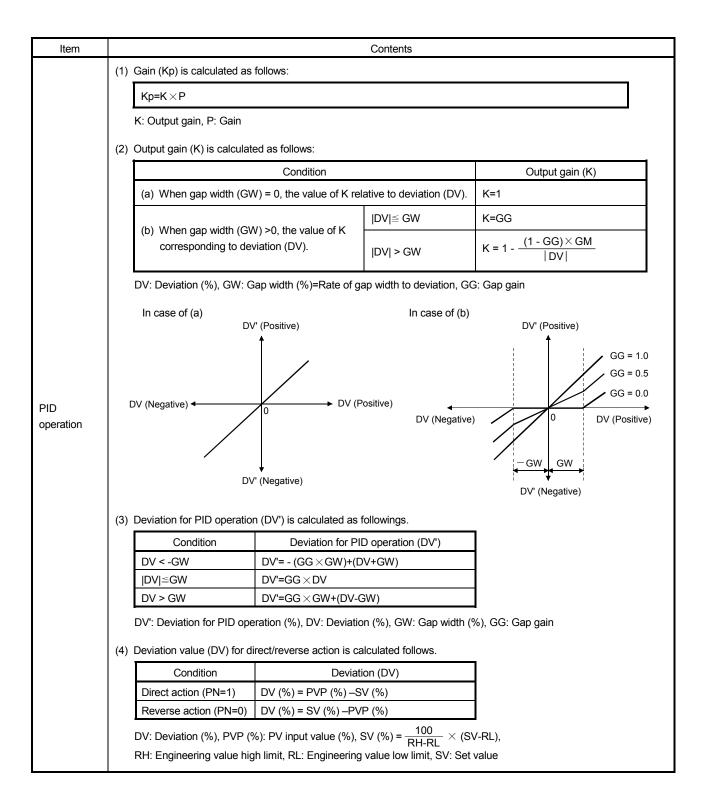
Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	PVP	Input variable	REAL	PV input (unit: %)	0 to 100
input	CASIN	Input variable	REAL	Cascade SV input (unit: %)	0 to 100
Output	MVD	Output variable	REAL	△MV output (unit: %)	-999999 to 999999

Public Variable (Operation constant)


	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
Operation processing	DVLS	LS Public variable REAL		Large deviation alarm hysteresis	0 to 100	2.0	User
	PN	Public variable	INT	Direct action and reverse action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Used, FALSE: Not used)	TRUE, FALSE	TRUE	User

7 - 117 7 - 117 7 PROCESS FB MELSOFT


Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

Function

7 - 118 7 - 118

7 - 119 7 - 119

Item	Contents							
	(5) PID operation is calculated is follows.							
		Direct action	Rever	se action				
	Deviation (DVn)	DVn=	SVn-PVn					
	Output variation (△MV)	$\Delta MV = \underbrace{Kp} \times \underbrace{\{\underbrace{(DVn - DVn - 1)}_{Gain} + \underbrace{\frac{CT}{Ti}} \times D}_{Proportional} + \underbrace{\frac{CT}{Ti}}_{II} \times D$ $= \underbrace{Kp} \times \underbrace{\{\underbrace{(DVn - DVn - 1)}_{Gain} + \underbrace{\frac{CT}{Ti}}_{II} \times D}_{Proportional} + \underbrace{\frac{CT}{Ti}}_{II} \times D$ $= \underbrace{Kp} \times \underbrace{\{\underbrace{(DVn - DVn - 1)}_{Proportional} + \underbrace{\frac{CT}{Ti}}_{II} \times D$ $= \underbrace{Kp} \times \underbrace{\{\underbrace{(DVn - DVn - 1)}_{Proportional} + \underbrace{\frac{CT}{Ti}}_{II} \times D$ $= \underbrace{Kp} \times \underbrace{\{\underbrace{(DVn - DVn - 1)}_{Proportional} + \underbrace{\frac{CT}{Ti}}_{II} \times D$ $= \underbrace{Kp} \times \underbrace{\{\underbrace{(DVn - DVn - 1)}_{Proportional} + \underbrace{\frac{CT}{Ti}}_{II} \times D$ $= \underbrace{Kp} \times \underbrace{\{\underbrace{(DVn - DVn - 1)}_{Proportional} + \underbrace{\frac{CT}{Ti}}_{II} \times D$ $= \underbrace{Kp} \times \underbrace{\{\underbrace{(DVn - DVn - 1)}_{Proportional} + \underbrace{\frac{CT}{Ti}}_{II} \times D$ $= \underbrace{Kp} \times \underbrace{\{\underbrace{(DVn - DVn - 1)}_{Proportional} + \underbrace{\frac{CT}{Ti}}_{II} \times D$ $= \underbrace{Kp} \times \underbrace{\{\underbrace{(DVn - DVn - 1)}_{Proportional} + \underbrace{\frac{CT}{Ti}}_{II} \times D$	n-DVn-1), ×DVn,					
PID operation	Bn	$Bn = Bn-1 + \frac{Md \times Td}{Md \times CT + Td} \times \{(PVn - 2PVn-1 + PVn-2) - \frac{CT \times Bn-1}{Td}\}$	$Bn = Bn-1 + \frac{Md \times Td}{Md \times CT + Td} \times \\ \{ (PVn - 2PVn-1 + PVn-2) - \frac{CT \times Bn-1}{Td} \}$ $Bn = Bn-1 + \frac{Md \times Td}{Md \times CT + Td} \times \\ \{ - (PVn - 2PVn-1 + PVn-2) - \frac{CT}{Td} \}$					
(continued from previous page)	DVn-1: Previou last, SVn: Engi	tegral time, Td: Derivative time, Md: Derivative gaus deviation, PVn: Process value, PVn-1: Previous neering value conversion processing result	s process value, PVn-2:					
	(a) Integral ite	m and derivative item are listed below correspond	ding to each condition.	December 1				
	When Td	Condition =0, or control mode is either MAN or CMV		Processing Bn=0				
	Any of the following 1), 2), 3) 1) Ti=0 2) When either MH or ML error occurs, MVP>MH and $\frac{CT}{Ti} \times DVn > 0$ 3) When either MH or ML error occurs, MVP <ml <math="" and="">\frac{CT}{Ti} \times DVn < 0 Ti: Integral time, CT: Control cycle, DVn: Deviation, MH: Output high limit value, ML: Output low limit value MVP: MV internal operation value (b) Control cycle (CT) should be set as the integral multiple of execution cycle ($\triangle T$). (c) Integral constant shall be set to 0.0 or over control cycle (CT). (d) PID operation of the tag access FB is executed in every control cycle (CT) ($\triangle MV$ output).</ml>							
Engineering value conversion	When the control mode is CAS/ CSV, the set value (%) from the primary loop is converted to engineering value. $SV = \frac{RH - RL}{100} \times Set \text{ value (\%) from the primary loop + RL}$ RH: Engineering value high limit, RL: Engineering value low limit, SV: Set value							
Inverse	The set value (SV)	of engineering value is converted to percentage	SV (%).					
engineering value	 	SV (%) = $\frac{100}{RH-RL}$ × (SV-RL)						
conversion	RH: Engineering value high limit, RL: Engineering value low limit, SV: Set value							
Disable Alarm Detection	 (1) Disable Alarm If the following detected. ■ ERRI, DVI (2) Disable Alarm 	Set whether Enable Alarm Detection or not in deviation check. (1) Disable Alarm Detection with the setting of "Disable Alarm Detection" tag data: If the following items of "Disable Alarm Detection" (INH) of tag data are TRUE, alarm (ALM) of DVLA will not be						

7 - 120 7 - 120

Item	Contents
Auto tunina	The proportional gain (Kp), integral time (Ti), derivative time (Td) is automatically calculated by use of the dynamic characteristics through automatic tuning. Please refer to Appendix 3.1 for more detailed information about automatic tuning. (1) The aim of Auto tuning is the initial value setting of proportional gain (Kp), integral time (Ti) and derivative time (Td) of PID control. ZN method (Step response method by Ziegler-Nichols) is being used here. (2) Auto tuning can only be executed when the control mode is manual (MANUAL).

Other Function

Item	Contents
Loop stop processing	The following processing is executed if the stop alarm (SPA) is TRUE. 1) Set △MV to 0. 2) Change the control mode automatically to MANUAL. 3) Reset DVLA when DVLA of alarm (ALM) occurs. 4) Alarm is not detected in deviation check

Processing Operation

Processing Control mode	Deviation check	PID operation	Engineering value conversion	Inverse engineering value conversion	Alarm	Auto tuning
MAN, CMV, AUT	0	0	×	0	O (*1)	○ (*2)
CAS, CSV	0	0	0	0	O (*1)	×

: Execute X: Not execute

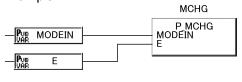
Error

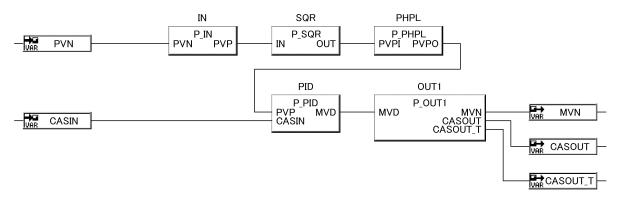
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

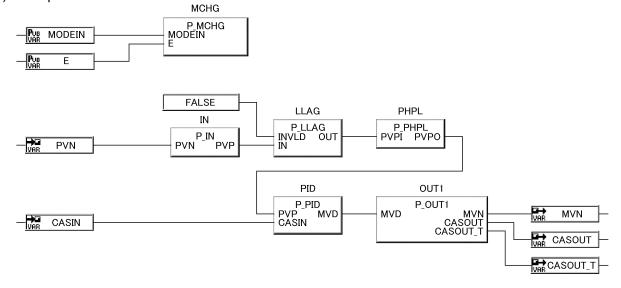
• When overflow occurs during operation. (Error code: 4100)

7 - 121 7 - 121


^{*1} When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.


^{*2} Auto tuning can only be executed when the control mode is Manual (MANUAL).

7 PROCESS FB MELSOFT


Program Example

(1) Example 1

(2) Example 2

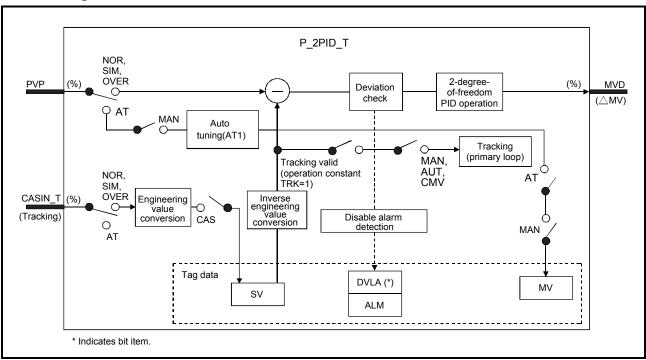
POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with program in FB property window.

7 - 122 7 - 122

7 PROCESS FB MELSOFT

7.6.5 2-Degree-of-Freedom PID Control (With Tracking to primary loop) (P_2PID_T)


FB	FBD parts	
P_2PID_T	P_2PID_T PVP MVD CASIN_T	

Corresponding tag type								
2PID								
	Control mode							
MAN	AUT	CAS	CMV	CSV				
0	0	0	0	0				

Functions overview: Optimize the response performance (target tracking) for set value change and disturbance response, and output (\triangle MV).

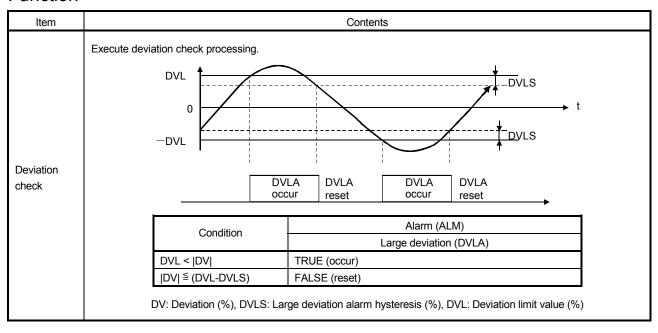
Function/FB classification: Tag access FB _ Loop control operation FB

Block Diagram

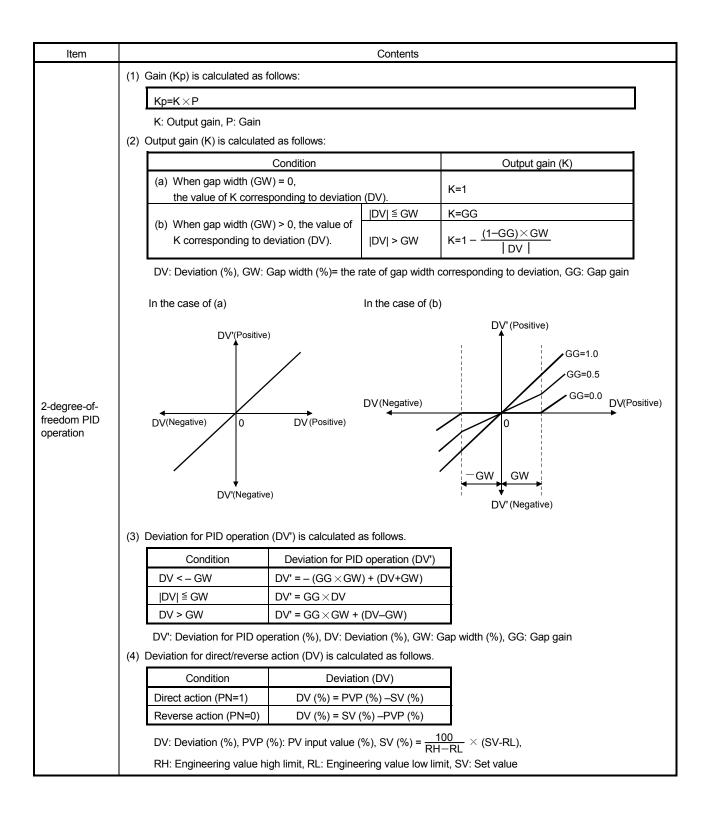
Input and Output Pins

Pin	Variable name	Variable type	Data type	Content	Range
PVP Input variable REAL		REAL	PV input (unit: %)	0 to 100	
Input	CASIN_T	Input variable	ADR_REAL	Cascade SV input (unit: %) (tracking)	0 to 100
Output	MVD	Output variable	REAL	△MV output (unit: %)	-999999 to 999999

7 - 123 7 - 123


Public Variable (Operation constant)

	Variable name	Variable type	Data type	Content	Range	Initial value	Storage
	MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
Operation processing	PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	TRK	Public variable	INT	Tracking flag (0: Not executed, 1: executed)	0 to 1	0	User
	SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	SVPTN_B1	Public variable	BOOL	Set value (SV) pattern (TRUE: Not host MV, FALSE: Host MV)	TRUE, FALSE	TRUE	User


Tag Data

For details about the tag data that is read/written by this tag access FB, please refer to tag data list of various tag types in Appendix 1.1.

Function

7 - 124 7 - 124

Item	Contents								
	(5)	2-degree-of-fr	reedom PID operation is executed as follows.						
			Direct action	Revers	se action				
		Deviation (DVn)	DVn = PVn - SVn	DVn = S	SVn — PVn				
		Output variation (△MV)	$\triangle MV = \frac{Kp}{L} \times \underbrace{\frac{(1-\alpha) \times (DV)}{Gain} \times Proport}_{Proport}$ $+ \underbrace{\frac{(1-\beta) \times Bn}{L_{Derivative}}}_{Derivative}$	$\frac{(n - DV_{n-1})}{\text{cional}} + \frac{\frac{CT}{Ti} \times DV_n}{\frac{1}{Ti} \times DV_n}$ $\frac{(2 \times C_n + \beta \times D_n)}{\frac{1}{Ti} \times DV_n}$ Feed forward compens	²¹				
		Bn	$B_{n-1} + \frac{Md \times Td}{Md \times CT + Td} \times \{ (DV_n - CT) \}$	- 2DVn-1 + DVn-2) - CT	×B _{n-1} }				
		Dn	$\begin{split} D_{n} &= D_{n\text{-}1} + \frac{\text{Md} \times \text{Td}}{\text{Md} \times \text{CT} + \text{Td}} \times \\ & \{ \left(\text{PV}_{n} - 2\text{PV}_{n\text{-}1} + \text{PV}_{n\text{-}2} \right) - \frac{\text{CT} \times D_{n\text{-}1}}{\text{Td}} \} \end{split}$	$D_{n} = D_{n-1} + \frac{Md \times Tc}{Md \times CT}$ $\{-(PV_{n} - 2PV_{n-1})\}$	$\frac{d}{d+Td} \times \frac{1}{1+PV_{n-2}} - \frac{CT \times D_{n-1}}{Td} $				
2-degree-of- freedom		Cn	PVn – PVn-1	- (PVn - PVn-1)					
PID operation (continued from previous page)	(a	Last deviatio Process valu parameter (fo	Integral time, Td: Derivative time, Md: Derivative $\mathfrak g$ n, DVn-2: Deviation before last, PVn: Process value before last, SVn: The processing result of engine edforward proportional), β : 2-degree-of-freedomens and derivative items are listed below correspondence.	le, PVn-1: Previous proce eering value conversion, parameter (feed forward	ess value, PVn-2: α: 2-degree-of-freedom				
p=9=7			Condition		Processing				
		Any of follow 1) Ti=0 2) When either	, or control mode is either MAN or CMV ving 1), 2), 3) ther MH or ML error occurs, MVP>MH and $\frac{\text{CT}}{\text{T i}}$ × ther MH or ML error occurs, MVP <ml <math="" and="">\frac{\text{CT}}{\text{T i}} ×</ml>	$\frac{\text{CT}}{\text{T i}} \times \text{DV}_{\text{n}} = 0$					
	(c)	MVP: MV int Control cycl Integral con PID operation	me, CT: Control cycle, DVn: Deviation, MH: Outputernal operation value to be the integral multiple of existant should be set to be 0.0 or over control cycle on of the tag access FB is executed in every control cycle (\triangle T), hold the previous value. (\triangle N	secution cycle (\triangle T). (CT). ol cycle (CT) (\triangle MV outp					
	Con	vert the set va	alue (%), which is from primary loop control when	the control mode is CAS	or CSV, to engineering value.				
Engineering value conversion	$SV = \frac{RH - RL}{100} \times Set \text{ value (\%) from the primary loop + RL}$								
		RH: High lim	it of engineering value, RL: Low limit of engineerin	g value, SV: Set value					
Inverse	Con		alue SV of engineering value to percentage SV (%).	1				
engineering value		SV (%) = \overline{R}	100 H−RL × (SV–RL)						
conversion		RH: High lim	it of engineering value, RL: Low limit of engineerin	g value, SV: Set value					

7 - 126 7 - 126

Item		Contents							
	Following indicates whether	Following indicates whether execute tracking processing to input variable CASIN_T.							
Tracking		Condition	Result						
	Tracking flag (TRK)	Set value (SV) usage (SVPTN_B0)	Nesuit						
processing	1	FALSE	Input variable CASIN_T performs tracking.						
		TRUE	Input variable CASIN_T does not perform						
	0	FALSE or TRUE	tracking.						
Disable Alarm Detection	Set whether Enable Alarm Detection or not in deviation check. (1) Disable Alarm Detection with the setting of "Disable Alarm Detection" tag data: If the following items of Disable Alarm Detection (INH) of tag data are TRUE, alarm (ALM) of DVLA will not be detected. ■ ERRI, DVLI (2) "Disable Alarm Detection" by loop stop processing: Please refer to loop stop processing in the following contents.								
Auto tuning (ATI)	characteristics by automatic (1) The aim of Auto tuning PID control. ZN method	Please refer to loop stop processing in the following contents. The proportional gain (Kp), integral time (Ti), derivative time (Td) is automatically calculated by use of the dynamic characteristics by automatic tuning. Please refer to Appendix 3.1 for more detailed information about automatic tuning. (1) The aim of Auto tuning is the initial value setting of proportional gain (Kp), integral time (Ti) and derivative time (Td) of PID control. ZN method (Step response method by Ziegler-Nichols) is being used here. (2) Auto tuning can only be executed when the control mode is manual (MANUAL).							

Other Function

Item	Contents
Loop stop processing	The following processing is executed if the stop alarm (SPA) is TRUE. 1) Set △ MV to 0. 2) Change the control mode automatically to MANUAL. 3) Reset DLVA when DLVA of alarm (ALM) occurs. 4) Alarm is not detected in deviation check.

Processing Operation

Processing Control mode	Deviation check	2-degree-of-freedom PID operation	Engineering value conversion	Inverse engineering value conversion	Tracking	Alarm	Auto tuning
MAN, CMV, AUT	0	0	×	0	O (*1)	(*2)	(*3)
CAS, CSV	0	0	0	0	×	○ (*2)	×

○: Execute ×: Not execute

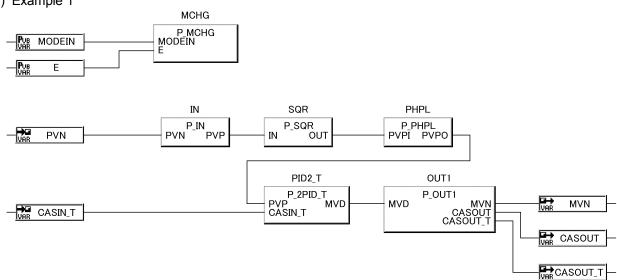
Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

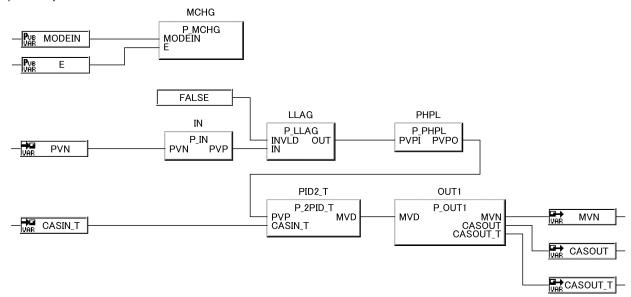
Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

^{*1} Tracking is executed when the tracking flag (TRK) is 1.


^{*2} When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.

^{*3} Auto tuning can only be executed when the control mode is Manual (MANUAL).


7 PROCESS FB MELSOFT

Program Example

(1) Example 1

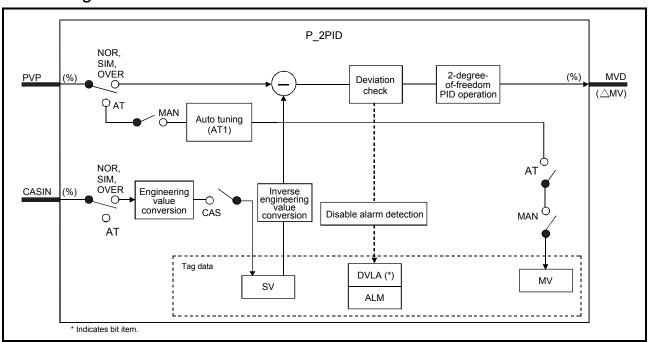
(2) Example 2

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with program in the FB property window.

7 - 128 7 - 128

7.6.6 2-Degree-of-Freedom PID Control (Without Tracking to primary loop) (P_2PID)


FB	FBD parts			
P_2PID	P_2PID PVP MVD CASIN			

	Corresponding tag type								
2PID									
	Control mode								
MAN	AUT	CAS	CMV	CSV					
0	0	0	0	0					

Functions overview: Optimize the response performance (target tracking) for set value change and disturbance response, and output (ΔMV) .

Function/FB classification: Tag access FB _ Loop control operation FB

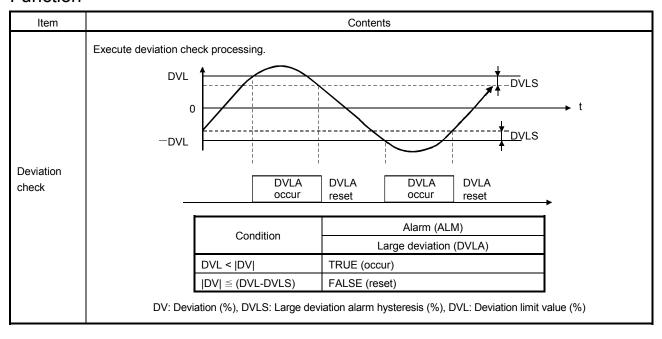
Block Diagram

Input and Output Pins

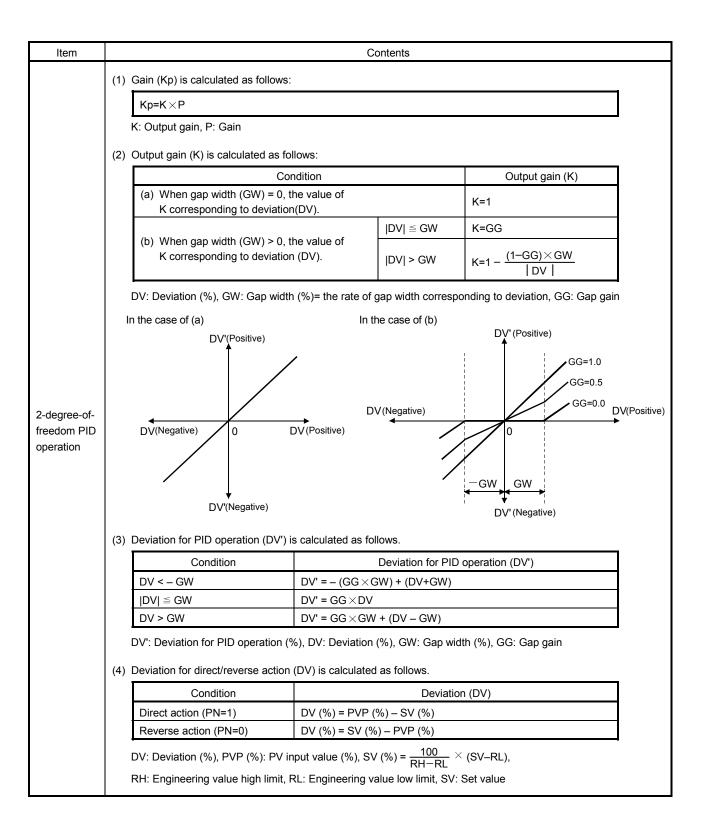
Pin	Variable name	Variable type	Data type	Content	Range
Input	PVP	Input variable	REAL	PV input (unit: %)	0 to 100
	CASIN	Input variable	REAL	Cascade SV input (unit: %)	0 to 100
Output	MVD	Output variable	REAL	△MV output (unit: %)	-999999 to 999999

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Content	Range	Initial value	Storage
	MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
Operation processing	DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User


7 - 129 7 - 129

7 PROCESS FB MELSOFT


Tag Data

For details about the tag data that is read/written by this tag access FB, please refer to tag data list of various tag types in Appendix 1.1.

Function

7 - 130 7 - 130

7 - 131 7 - 131

Item	Contents					
	(5) 2-degree-of-freedo	om IPD operation is conducted as follows.				
		Direct action	verse action			
	Deviation (DVn)	$DV_n = PV_n - SV_n$		= SVn – PVn		
	Output variation (△MV)		$\triangle MV = \frac{Kp}{L} \times \underbrace{\left\{ (1-\alpha) \times (DV_n - DV_{n-1}) + \frac{CT}{Ti} \times DV_n \right\}}_{Gain} + \underbrace{\frac{(1-\beta) \times B_n}{L} + \frac{\alpha \times C_n + \beta \times D_n}{L}}_{Derivative} + \underbrace{\frac{CT}{Ti} \times DV_n}_{Integral}$			
	Bn	B_{n-1} + $\frac{Md \times Td}{Md \times CT + Td}$ \times { (DV_n -	- 2DVn-1 + DVn-2)	$\frac{CT \times B_{n-1}}{Td}$ }		
	Dn	$\begin{split} D_{n} &= D_{n\text{-}1} + \frac{Md \times Td}{Md \times CT + Td} \times \\ & \{ \left(\ PV_{n} - 2PV_{n\text{-}1} + PV_{n\text{-}2} \ \right) - \frac{CT \times D_{n\text{-}1}}{Td} \ \} \end{split}$	$D_n = D_{n-1} + \frac{Md}{Md \times C}$ { - (PV _n - 2P'	$\frac{\times Td}{CT + Td} \times V_{n-1} + PV_{n-2}) - \frac{CT \times D_{n-1}}{Td} $		
2-degree-of- freedom	Cn	PVn – PVn-1	- (PVn - PVn-1)			
IPD operation (continued from previous page)	Previous deviation, Process value befor parameter (feedfor	al time, Td: Derivative time, Md: Derivative gain, 0 DVn-2: Deviation before last, PVn: Process value are last, SVn: The processing result of engineering ward proportional), β : 2-degree-of-freedom parant and derivative items are listed below corresponding	e, PVn-1: Previous prog g value conversion, α neter (feedforward de	ocess value, PVn-2: z: 2-degree-of-freedom		
		Condition	Processing			
	When Td=0, of Any of following 1) Ti=0 2) When either 3) When either	$\frac{\text{CT}}{\text{T i}} \times \text{DV}_{\text{n}} = 0$				
	Ti: Integral time, CT: Control cycle, DVn: Deviation, MH: Output high limit value, ML: Output low limit value, MVP: MV internal operation value					
	(b) Control time (C	CT) should be set to be the integral multiple of exe	ecution cycle (\triangle T).			
	 (c) Integral constant should be set to be 0.0 or over control cycle (CT). (d) PID operation of the tag access FB is executed in every control cycle (CT) (△MV output). For other execution cycle (△T), the previous value shall be applied. (△MV=0) 					
	Convert the set value	(%), which is from primary loop control when the	control mode is CAS	or CSV, to engineering value.		
Engineering value conversion	$SV = \frac{RH - RL}{100} \times Set \text{ value (\%) from the primary loop + RL}$					
	RH: High limit of er	ngineering value, RL: Low limit of engineering val	ue, SV: Set value			
Inverse	Convert the set value	SV of engineering value to percentage SV (%).		-		
engineering value	$SV (\%) = \frac{100}{RH - RL}$	- × (SV – RL)				
conversion	RH: High limit of er	ngineering value, RL: Low limit of engineering val	ue, SV: Set value			

7 - 132 7 - 132

Item	Contents
Disable Alarm Detection	Set whether to Enable Alarm Detection or not in deviation check. (1) Disable Alarm Detection with the setting of "Disable Alarm Detection" tag data: If the following items of Disable Alarm Detection (INH) of tag data are TRUE, alarm (ALM) of DVLA will not be detected. • ERRI, DVLI (2) Disable Alarm Detection by loop stop processing: Please refer to loop stop processing in the following contents.
Auto tuning (ATI)	The proportional gain (Kp), integral time (Ti), derivative time (Td) is automatically calculated by use of the dynamic characteristics by automatic tuning. Please refer to Appendix 3.1 for more detailed information about automatic tuning. (1) The aim of Auto tuning is the initial value setting of proportional gain (Kp), integral time (Ti) and derivative time (Td) of PID control. ZN method (Step response method by Ziegler-Nichols) is being used here. (2) Auto tuning can only be executed when the control mode is manual (MANUAL).

Other Function

Item	Contents
Loop stop processing	The following processing is executed if the stop alarm (SPA) is TRUE. 1) Set ΔMV to 0. 2) Change the control mode automatically to MANUAL. 3) Reset DLVA when DLVA of alarm (ALM) occurs. 4) Alarm is not detected in deviation check.

Processing Operation

Processing Control mode	Deviation check	2-degree-of-freedom PID operation	Engineering value conversion	Inverse engineering value conversion	Alarm	Auto tuning
MAN, CMV, AUT	0	0	×	0	○ (*1)	○ (*2)
CAS, CSV	0	0	0	0	○ (*1)	×

○: Execute ×: Not execute

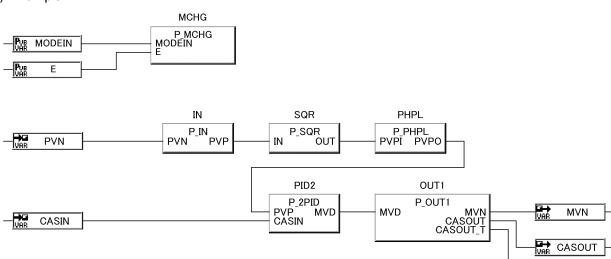
Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

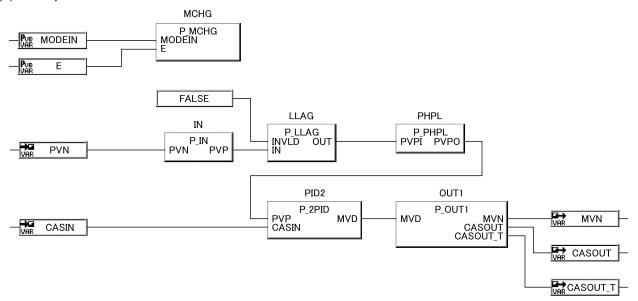
Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

7 - 133 7 - 133


^{*1} When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.

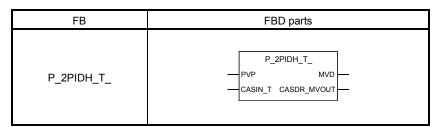
^{*2} Auto tuning can only be executed when the control mode is Manual (MANUAL).


7 PROCESS FB MELSOFT

Program Example

(1) Example 1

(2) Example 2


POINT

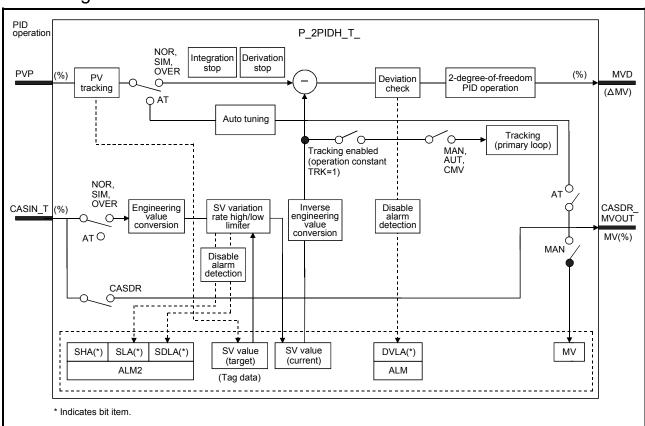
It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with program in the FB property window.

CASOUT_T

7 - 134 7 - 134

7.6.7 2-Degree-of-Freedom Advanced PID Control (With Tracking to primary loop) (P_2PIDH_T_)

		Corres	ponding t	ag type	
	2PIDH				
i					
		C	ontrol mo	de	
	MAN	AUT	CAS*1	CMV	CSV
	0	0	0	0	0


*1 Transition to CASDR is possible.

Functions overview: Optimizes the response performance (target tracking) for set value change and disturbance response, and output (ΔMV) .

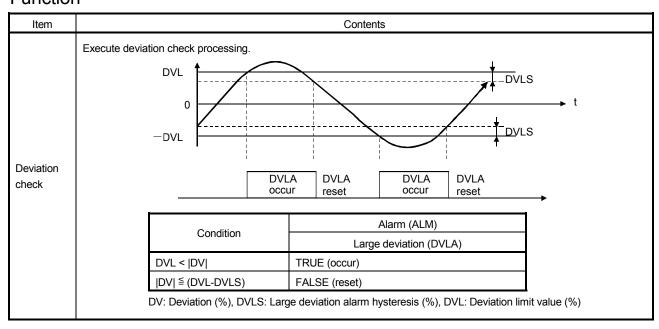
Executes 2-degree-of-freedom PID Operation, PV tracking, integration stop, derivation stop, SV variation rate and high/low limiter processing.

Function/FB classification name: Tag access FB _ Loop control operation FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Innut	PVP	Input variable	REAL	PV input (unit: %)	0 to 100
Input	CASIN_T	Input variable	ADR_REAL	Cascade SV input (unit: %) (tracking)	0 to 100
Output	MVD	Output variable	REAL	△MV output (unit: %)	-999999 to 999999
Output	CASDR_MVOUT	Output variable	REAL	MV output for cascade direct (Unit: %)	0 to 100


Public Variable (Operation constant)

	Variable name	Variable type	Data type	Content	Range	Initial value	Storage
	MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	TRK	Public variable	INT	Tracking flag (0: Not executed, 1: executed)	0 to 1	0	User
	SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
Operation	SVPTN_B1	Public variable	BOOL	Set value (SV) pattern (TRUE: Not host MV, FALSE: Host MV)	TRUE, FALSE	TRUE	User
processing	PVTRK_EN	Public variable	BOOL	PV tracking execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	ISTP	Public variable	BOOL	Integration stop signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	DSTP	Public variable	BOOL	Derivation stop signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	LMT_ISTP	Public variable	BOOL	Integration stop selection when MV value variation rate limiter alarm occurs (TRUE: Execute, FALSE: Not execute)	TRUE, FALSE	FALSE	User
	SVLMT_EN	Public variable	BOOL	SV high/low limiter (TRUE: Execute, FALSE: Not execute)	TRUE, FALSE	FALSE	User

Tag Data

For details about the tag data that is read/written by this tag access FB, please refer to tag data list of various tag types in Appendix 1.1.

Function

7 - 136 7 - 136

Item		Contents				
	(1) Gain (Kp) is calculated as follows:					
	$Kp = K \times P$					
	K: Output gain, P: Gain		<u> </u>			
	(2) Output gain (K) is calculated as follows:					
		ondition	Output gain (K)			
	(a) When gap width (GW) = 0, th		K=1			
	K corresponding to deviation					
	(b) When gap width (GW) > 0, the		K=GG			
	K corresponding to deviation	(DV). $ DV > GW$	$ K=1 - \frac{(1-GG) \times GW}{ DV }$			
	DV: Deviation (%), GW: Gap width	(%)= the rate of gap width correspon	ding to deviation, GG: Gap gain			
	In the case of (a)	In the case of (b)	7) (1)			
	DV'(Positive)		DV' (Positive)			
		,	GG=1.0			
			GG=0.5			
2-degree-of-	· /	DV(Negative)	GG=0.0 DV(Positive)			
freedom PID	DV(Negative) 0 D	V (Positive)	0			
operation						
			-GW GW			
	DV'(Negative)	I	DV' (Negative)			
	(3) Deviation for PID operation (DV') is	s calculated as follows.				
	Condition	Deviation for F	PID operation (DV')			
	DV < - GW	$DV' = -(GG \times GW) + (DV+GW)$				
	DV ≦ GW	DV' = GG × DV				
	DV > GW	$DV' = GG \times GW + (DV - GW)$	(9/) 000 0 an ania			
		%), DV: Deviation (%), GW: Gap width	(%), GG: Gap gain			
	(4) Deviation for direct/reverse action (
	Condition		ation (DV)			
	Direct action (PN=1) Reverse action (PN=0)	DV (%) = PVP (%) –SVC (%) DV (%) = SVC (%) –PVP (%)				
		put value (%), SVC (%) = $\frac{100}{RH-RI}$ ×	(SVC-RL)			
		Put value (%), SVC (%) = ${RH-RL}$ \wedge RL: Engineering value low limit, SVC:				
	Tan. Engineening value niigin liifilli, R	L. Lingilicelling value low littlit, 5VC. S	Det value (Guitetii)			

Item	Contents					
	(5) 2-degree-of-freedo	m PID operation is executed as follows.				
		Direct action	Reverse action			
	Deviation (DVn)	$DV_n = PV_n - SV_n$	DVn = SVn – PVn			
		$\triangle MV = \frac{Kp}{L} \times \underbrace{\{(1-\alpha) \times (DVr)\}_{Gain} \times Proport}_{Proport}$	$\frac{n-DV_{n-1}}{Ti} + \frac{CT}{Ti} \times DV_n$			
	Output variation		og. c.			
	(△MV)	$+\frac{(1-\beta)\times B_n}{}$	$\frac{\alpha \times C_n + \beta \times D_n}{\sum_{\text{Feed forward compensation}}}$			
		└─ Derivative	Feed forward compensation			
	Bn	$B_{n-1} + \frac{Md \times Td}{Md \times CT + Td} \times \{ (DV_n) \}$	$n - 2DV_{n-1} + DV_{n-2}) - \frac{CT \times B_{n-1}}{Td}$			
		$D_{n} = D_{n-1} + \frac{Md \times Td}{Md \times CT + Td} \times $	$D_n = D_{n-1} + \frac{Md \times Td}{Md \times CT + Td} \times$			
	Dn	$\{ (PV_{n} - 2PV_{n-1} + PV_{n-2}) - \frac{CT \times D_{n-1}}{Td} \}$	$\{-(PV_{n-2}PV_{n-1} + PV_{n-2}) - \frac{CT \times D_{n-1}}{Td}\}$			
2-degree- of-freedom	Cn	PVn – PVn-1	- (PVn - PVn-1)			
PID operation (continued from previous	deviation, DVn-2: De before last, SVn: Th (feedforward propor	 Kp: Gain, Ti: Integral time, Td: Derivative time, Md: Derivative gain, CT: Control cycle, DVn: Deviation, DVn-1: Last deviation, DVn-2: Deviation before last, PVn: Process value, PVn-1: Previous process value, PVn-2: Process value before last, SVn: The processing result of engineering value conversion, α: 2-degree-of-freedom parameter (feedforward proportional), β: 2-degree-of-freedom parameter (feed forward derivative) (a) Integral items and derivative items are listed below corresponding to each condition. 				
page)		Condition	Processing			
	When Td=0, o	or control mode is either MAN or CMV	Bn=0			
	Any of following	ng 1), 2), 3)				
	1) Ti=0	CT	CT × DV- = 0			
	2) When either MH or ML error occurs, MVP>MH and $\frac{CT}{Ti} \times DV_n > 0$ $\frac{CT}{Ti} \times DV_n = 0$					
	3) When eith	er MH or ML error occurs, MVP <ml <math="" and="">rac{CT}{Ti} imes</ml>	< DVn < 0			
	Ti: Integral time, CT: Control cycle, DVn: Deviation, MH: Output high limit value, ML: Output low limit value, MVP: MV internal operation value					
	(b) Control cycle (CT) shall be set to be the integral multiple of execution cycle (Δ T).					
	(c) Integral consta	nt should be set to be 0.0 or over control cycle (0	CT).			
	 (d) PID operation of the tag access FB is executed in every control cycle (CT) (ΔMV output). For other execution cycle (ΔT), hold the previous value (ΔMV=0). 					
Frank	Convert the set value (%), which is from primary loop control when the	control mode is CAS or CSV, to engineering value.			
Engineering value conversion	$SV = \frac{RH - RL}{100} \times S$	Set value (%) from the primary loop + RL				
3311131313131	RH: High limit of en	gineering value, RL: Low limit of engineering value	ue, SV: Set Value (Target)			
Inverse	Convert the set value S	SVC of engineering value to percentage SVC (%). 1			
engineering value	SVC (%) = $\frac{100}{RH-R}$	–× (SVC – RL)				
conversion	RH: High limit of en	gineering value, RL: Low limit of engineering value	lue, SVC: Set Value (Current)			

7 - 138 7 - 138

Item		Contents					
	Following indicates whether e	Following indicates whether execute tracking processing to input variable CASIN_T.					
		Condition	Result				
Tracking	Tracking flag (TRK)	Set value (SV) usage (SVPTN_B0)					
processing	1	FALSE	Input variable CASIN_T performs tracking.				
ļ	0	TRUE FALSE or TRUE	Input variable CASIN_T does not perform tracking.				
		TALGE OF THOSE					
Disable Alarm Detection	Set whether enable Alarm (ALM) detection or not in deviation check, SV variation rate high/low limiter (1) Disable alarm detection processing with the tag data setting of "Disable Alarm Detection" (INH) and "Disable Alarm2 Detection" (INH2) If the following bit items of disable alarm detection (INH) and disable alarm2 detection (INH2) of tag data are TRUE, DVLA of alarm (ALM) and DSVLA of alarm2 (ALM2), SVHA and SVLA will not be detected. • ERRI, DVLI, DSVLI, SVHI, SVLI (2) Disable alarm detection by loop stop processing: Refer to loop stop processing in this section. (3) Disable alarm detection when the control mode is CASDR Alarm detection will not be executed.						
Auto tuning (AT1, AT2)	Dynamic characteristics is detected and proportional gain (Kp), integral time (Ti), and derivative time (Td) are automatically calculated using auto tuning. Select either the Step Response method or the Limit Cycle method for auto tuning. (1) AT1 (Step Response method) This method calculates proportional gain (Kp), integral time (Ti), and derivative time (Td) for PID with ZN method (Step Response method by Ziegler-Nichols) and sets their initial values. Executable control modes are MAN and CMV. For details, refer to Appendix 3.1.1. (2) AT2 (Limit Cycle method) This method calculates proportional gain (Kp), integral time (Ti), and derivative time (Td) for PID with oscillation amplitude and oscillation period by repeatedly operating MV at two positions and generating process value cycle operation. Executable control modes are MAN, AUT, CAS, CMV, and CSV. For details, refer to Appendix 3.1.2.						
	To avoid the sudden MV chan mode is MAN or CMV and ma	,	matches SV value (target) with PV value when control				
PV	THOUSE IS THE WAY OF CHAIN WHICH THE	Condition	PV tracking function				
tracking function EVTRK EN = TRUE and control mode = "MAN (CMV)" SV value (target			SV value (target) = PV value SV value (current) = PV value				
i '	PVTRK EN = FALSE or control mode ≠ "MAN (CMV)" No processing						

7 - 139 7 - 139

Item			Contents			
	 Checks variation rate high/low limiter to SV value (target value). (1) Variation rate limiter • The control mode is AUT or CAS or CSV. SV variation rate high limit value inputted in % is converted to engineering value and the processing will be executed. DSVL → DSVLT (DSVL: SV variation rate high limit value, DSVLT: value converted to engineering value from SV 					
	variation rate high limit valu	ie)	Variation rate limiter result	-	te limit (DSVLA) of (ALM2)	
	SV - SVC ≦ DSVLT		SV	FALSE (reset)	(ALIVIZ)	
	SV - SVC > DSVLT		SVC + DSVLT	TRUE (occur)		
	SV - SVC < - DSVLT		SVC - DSVLT	TRUE (occur)		
SV variation rate high/low	SV: set value (target), SVC If DSVLI of disable alarm2 of the control mode is MAN of the Condition	detection or	ERRI of disable alarm detection	Target variation ra	ill be FALSE. te limit (DSVLA) of (ALM2)	
limiter	No		SV	FALSE (reset)	()	
	High/low limiter The control mode is MAN, A Condition	AUT, CAS, C	CMV and SVLMT_EN is TRUE. High/low limiter result	Alarm2	(ALM2)	
	Condition		riigii/iow iiiriitei resuit	Target lower limit (SVLA)	Target upper limit (SVHA)	
	Variation rate limiter result >		SH	FALSE (reset)	TRUE (occur)	
	Variation rate limiter result <		SL	TRUE (occur)	FALSE (reset)	
		etection or El etection or E	Variation rate limiter result RRI of disable alarm detection i RRI of disable alarm detection set value (current)).			
	 The control mode is CASDI Variation rate limiter result in 		-			
	Stops the operation of integral ele	ment.				
Integration	Condition			ocessing		
stop	ISTP = TRUE		Stops the operation of integral element.			
	ISTP = FALSE	No p	rocessing			
	Stops the operation of differential	element.			_	
Derivation	Condition			cessing		
stop	DSTP = TRUE		s the operation of differential el	ement.		
	DSTP = FALSE	No p	rocessing			
Stop	Stops the operation of integral ele	ment when N	//V variation rate limiter occurs.			
integration	Condition		Pro	cessing		
in MV variation rate limiter	LMT_ISTP = TRUE and DV alarm occurs		s the operation of integral elem			
occurrence	LMT_ISTP = FALSE		rocessing			
					•	

7 - 140 7 - 140

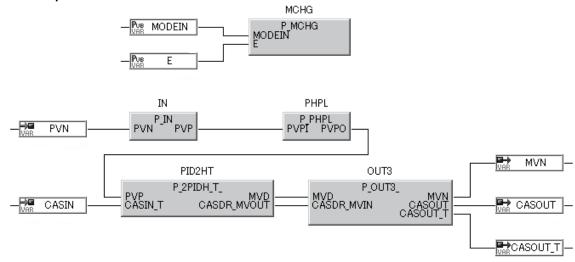
Other Function

Item	Contents
Loop stop processing	The following processes are executed when either the stop alarm (SPA) of alarm (ALM) or the tag stop (TSTP) of monitor output buffer (DOM) is TRUE. 1) Set △MV to 0. 2) Change the control mode automatically to MANUAL. 3) Resets DVLA when the DVLA of alarm (ALM) occurs. Reset DSVLA, SVLA, and SVHA when the DSVLA, the SVLA, and the SVHA of alarm2 (ALM2) occur. 4) Alarm is not detected in deviation check, SV variation rate high/low limiter.

Processing Operation

Processing Control mode	Dovistion	2-degree-of- freedom PID operation		Inverse engineering value conversion	Alarm	Auto tuning (AT1)	Auto tuning (AT2)	PV tracking	SV variation rate high/low limiter		Derivation stop
MAN, CMV	0	0	×	0	O (*1)	0	0	0	O (*2)	0	0
AUT	0	0	×	0	O (*1)	×	0	×	0	0	0
CAS, CSV	0	0	0	0	O (*1)	×	0	×	0	0	0
CASDR	X	0	0	0	×	×	×	×	×	0	0

○: Execute ×: Not execute


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

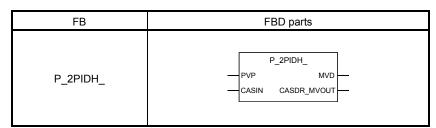
Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with program in the FB property window.


7 - 141 7 - 141

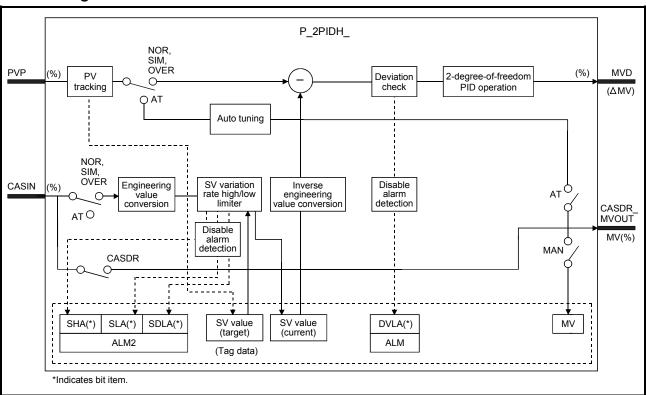
^{*1} When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.

^{*2} When the control mode is MAN, SV variation rate limiter processing is not executed.

7 PROCESS FB MELSOFT

7.6.8 2-Degree-of-Freedom Advanced PID Control (Without Tracking to primary loop) (P_2PIDH_)

	Corresponding tag type									
	2PIDH									
Ī	0.11									
	Control mode									
	MAN	AUT	CAS*1	CMV	CSV					
	0 0		0	0	0					


*1 Transition to CASDR is possible.

Functions overview: Optimizes the response performance (target tracking) for set value change and disturbance response, and output (ΔMV) .

Executes 2-degree-of-freedom PID Operation, PV tracking, integration stop, derivation stop, SV variation rate and high/low limiter processing.

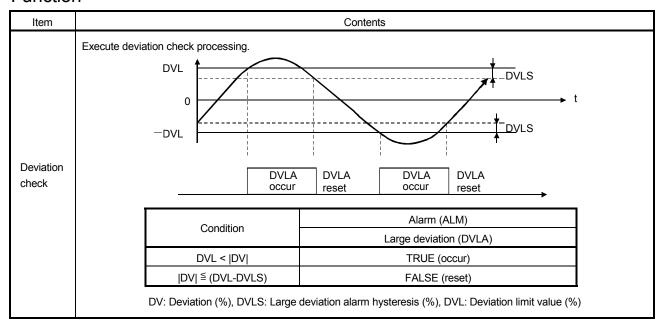
Function/FB classification name: Tag access FB _ Loop control operation FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
lanut	PVP	Input variable	REAL	PV input (unit: %)	0 to 100
Input	CASIN	Input variable	REAL	Cascade SV input (unit: %) (tracking)	0 to 100
O. start at	MVD	Output variable	REAL	△MV output (unit: %)	-999999 to 999999
Output	CASDR_MVOUT	Output variable	REAL	MV output for cascade direct (Unit: %)	0 to 100

7 - 142 7 - 142


Public Variable (Operation constant)

	Variable name	Variable type	Data type	Content	Range	Initial value	Storage
	MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	I SVPTN BO I Public variable I BOOL I		Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User	
Operation	PVTRK_EN	Public variable	BOOL	Set value (SV) pattern (TRUE: Not host MV, FALSE: Host MV)	TRUE, FALSE	FALSE	User
processing	ISTP	Public variable	BOOL	Integration stop signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	DSTP	Public variable	BOOL	Derivation stop signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	LMT_ISTP	Public variable	BOOL	When MV variation rate limiter alarm occurred, selects stop integration. (TRUE: Stop, FALSE: Not stop)	TRUE, FALSE	FALSE	User
	SVLMT_EN	Public variable	BOOL	SV high/low limiter (TRUE: Execute, FALSE: Not execute)	TRUE, FALSE	FALSE	User

Tag Data

For details about the tag data that is read/written by this tag access FB, please refer to tag data list of various tag types in Appendix 1.1.

Function

7 - 143 7 - 143

Item		Contents								
	(1) Gain (Kp) is calculated as follows:									
	Kp=K×P									
	K: Output gain, P: Gain									
		Output gain (K) is calculated as follows:								
	(2) Output gain (K) is calculated as follows. Condition		Output gain (K)							
	(a) When gap width (GW) = 0, the value of		Output gain (K)							
	K corresponding to deviation (DV).	1	K=1							
	(b) When gap width (GW) > 0, the value of	DV ≦ GW	K=GG							
	K corresponding to deviation (DV).	DV > GW	$K=1-\frac{(1-GG)\times GW}{\mid DV\mid}$							
	DV: Deviation (%), GW: Gap width (%)= the rate of	gap width corresponding to	deviation, GG: Gap gain							
	In the case of (a)	In the case of (b)	DV//Pacitiva)							
	DV'(Positive)	1	DV' (Positive)							
		! ! !	GG=1.0							
2 da		DV(Negative) GG=0.5 GG=0.0 DV(I								
2-degree- of-freedom	←									
PID	DV(Negative) 0 DV (Positive)		0							
operation										
		_Gv	V GW							
	DV'(Negative)									
	(3) Deviation for PID operation (DV') is calculated as follows.									
	Condition	Deviation for PID operation (DV')								
	DV < - GW	$DV' = -(GG \times GW) + (D')$								
	DV ≦ GW	$DV' = GG \times DV$								
	DV > GW	$DV' = GG \times GW + (DV - G)$	GW)							
	DV': Deviation for PID operation (%), DV: Deviation	ı (%), GW: Gap width (%), 0	GG: Gap gain							
	(4) Deviation for direct/reverse action (DV) is calculated									
	Condition	Dev	viation (DV)							
	Direct action (PN = 1)	DV (%) = PVP (%) - SV	C (%)							
	Reverse action (PN = 0)	DV (%) = SVC (%) - PVI	P (%)							
	DV: Deviation (%), PVP (%): PV input value (%), S	$VC (\%) = \frac{100}{RH_{-}PI} \times (SVC)$	- RL),							
	RH: Engineering value high limit, RL: Engineering v									

Item		Contents	
	(5) 2-degree-of-fre	edom PID operation is executed as follows.	
		Direct action	Reverse action
	Deviation (DV)	,	$DV_n = SV_n - PV_n$
	Output variatio (△MV)		$\frac{V_{n} - DV_{n-1})}{\text{ortional}} + \frac{\frac{CT}{Ti} \times DV_{n}}{\sqrt{\frac{I_{n}}{I_{n}}}}$ $\frac{\alpha \times C_{n} + \beta \times D_{n}}{\sqrt{\frac{I_{n}}{I_{n}}}}$ Feed forward compensation
	Bn	$Bn-1 + \frac{Md \times Td}{Md \times CT + Td} \times \{ (\ DN) \}$	$V_{n} - 2DV_{n-1} + DV_{n-2}) - \frac{CT \times B_{n-1}}{Td} $
	Dn	$D_{n} = D_{n-1} + \frac{Md \times Td}{Md \times CT + Td} \times \{ (PV_{n} - 2PV_{n-1} + PV_{n-2}) - \frac{CT \times D_{n-1}}{Td} \}$	$D_{n} = D_{n-1} + \frac{Md \times Td}{Md \times CT + Td} \times \left\{ - (PV_{n} - 2PV_{n-1} + PV_{n-2}) - \frac{CT \times D_{n-1}}{Td} \right\}$
2-degree- of-freedom	Cn	PVn – PVn-1	- (PVn - PVn-1)
PID operation (continued from previous	deviation, DVn- before last, SVi (feedforward pr	egral time, Td: Derivative time, Md: Derivative gai 2: Deviation before last, PVn: Process value, PVn: 1: The processing result of engineering value convoportional), β : 2-degree-of-freedom parameter (feand derivative items are listed below corresponding	n: Previous process value, PVn-2: Process value version, α: 2-degree-of-freedom parameter led forward derivative)
page)		Condition	Processing
	Any of followin 1) Ti=0 2) When eithe 3) When eithe Ti: Integral time MVP: MV interr (b) Control cycle (((c) Integral consta	r MH or ML error occurs, MVP>MH and $\frac{CT}{Ti} \times D$ r MH or ML error occurs, MVP <ml <math="" and="">\frac{CT}{Ti} \times D r MH or ML error occurs, MVP<ml <math="" and="">\frac{CT}{Ti} \times D r CT: Control cycle, DVn: Deviation, MH: Output heal operation value CT) shall be set to be the integral multiple of execute should be set to be 0.0 or over control cycle (CT) of the tag access FB is executed in every control cycle (ΔT), hold the previous value ($\Delta MV = D$)</ml></ml>	vn< 0 ligh limit value, ML: Output low limit value, ution cycle (△T). T). cycle (CT) (△MV output).
Engineering value		ue (%), which is from primary loop control when the Set value (%) from the primary loop + RL	ne control mode is CAS or CSV, to engineering value.
conversion	RH: High limit of	engineering value, RL: Low limit of engineering va	alue, Set Value (Target)
Inverse	Convert the SVC of	f engineering value to percentage SVC (%).	
engineering value	SVC (%) = $\frac{10}{RH}$	00 −RL × (SVC–RL)	
conversion	RH: High limit of	engineering value, RL: Low limit of engineering value	alue, Set Value (Current)

Item	Contents							
Disable Alarm Detection	Set whether enable Alarm (ALM) detection or not in deviation check, SV variation rate high/low limiter (1) Disable alarm detection processing with the tag data setting of "Disable Alarm Detection" (INH) and "Disable Alarm2 Detection" (INH2) If the following bit items of disable alarm detection (INH) and disable alarm2 detection (INH2) of tag data are TRUE, DVLA of alarm (ALM) and DSVLA of alarm2 (ALM2), SVHA and SVLA will not be detected. • ERRI, DVLI, DSVLI, SVHI, SVLI (2) Disable alarm detection by loop stop processing: Refer to loop stop processing in this section. (3) Disable alarm detection when the control mode is CASDR Alarm detection will not be executed.							
Auto tuning (AT1, AT2)	Dynamic characteristics is detected and proportional gain (Kp), integral time (Ti), and derivative time (Td) are automatically calculated using auto tuning. Select either the Step Response method or the Limit Cycle method for auto tuning. (1) AT1 (Step Response method) This method calculates proportional gain (Kp), integral time (Ti), and derivative time (Td) for PID with ZN method (Step Response method by Ziegler-Nichols) and sets their initial values. Executable control modes are MAN and CMV. For details, refer to Appendix 3.1.1. (2) AT2 (Limit Cycle method) This method calculates proportional gain (Kp), integral time (Ti), and derivative time (Td) for PID with oscillation amplitude and oscillation period by repeatedly operating MV at two positions and generating process value cycle operation. Executable control modes are MAN, AUT, CAS, CMV, and CSV. For details, refer to Appendix 3.1.2.							
PV tracking function	To avoid the sudden MV change in mode switching (MAN → AUTO), matches SV value (target) with PV value value is MAN or CMV and maintains the accordance.					ng function PV value		
SV variation rate high/low limiter	SV value (current) = PV value							

7 - 146 7 - 146

Item	Contents						
	Stops the operation of integral element.						
Integration	Condition	Processing					
stop	ISTP = TRUE	Stops the operation of integral element.					
	ISTP = FALSE	No processing					
	Stops the operation of differential elemen	nt.					
Derivation	Condition	Processing					
stop	DSTP = TRUE	Stops the operation of differential element.					
	DSTP = FALSE	No processing					
Stop	Stops the operation of integral element w	vhen MV variation rate limiter occurs.					
integration	Stops the operation of integral element w	when MV variation rate limiter occurs. Processing					
	i						

Other Function

Item	Contents
Loop stop processing	The following processes are executed when either the stop alarm (SPA) of alarm (ALM) or the tag stop (TSTP) of monitor output buffer (DOM) is TRUE. 1) Set △MV to 0. 2) Change the control mode automatically to MANUAL. 3) Resets DVLA when the DVLA of alarm (ALM) occurs. Reset DSVLA, SVLA, and SVHA when the DSVLA, the SVLA, and the SVHA of alarm2 (ALM2) occur. 4) Alarm is not detected in deviation check, SV variation rate high/low limiter.

Processing Operation

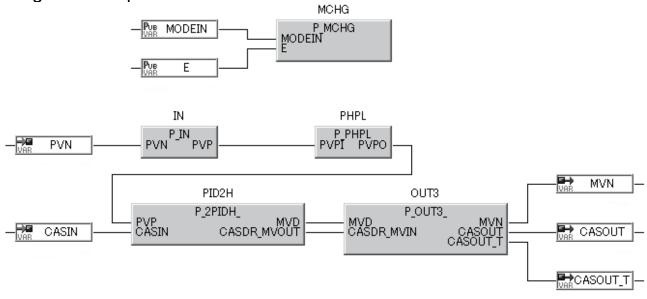
Processing Control mode	Deviation check	2-degree-of- freedom PID operation	Engineering value conversion	Inverse engineering value conversion	Alarm	Auto tuning (AT1)	Auto tuning (AT2)	PV tracking		Integration	Derivation stop
MAN, CMV	0	0	×	0	O (*1)	0	0	0	○ (*2)	0	0
AUT	0	0	X	0	O (*1)	×	0	×	0	0	0
CAS, CSV	0	0	0	0	O (*1)	×	0	×	0	0	0
CASDR	×	0	0	0	×	×	×	×	×	0	0

○: Execute ×: Not execute

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

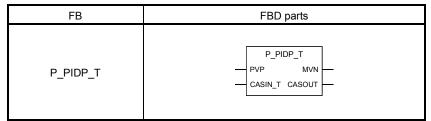

• When overflow occurs during operation. (Error code: 4100)

7 - 147 7 - 147

^{*1} When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.

^{*2} When the control mode is MAN, SV variation rate limiter processing is not executed.

Program Example

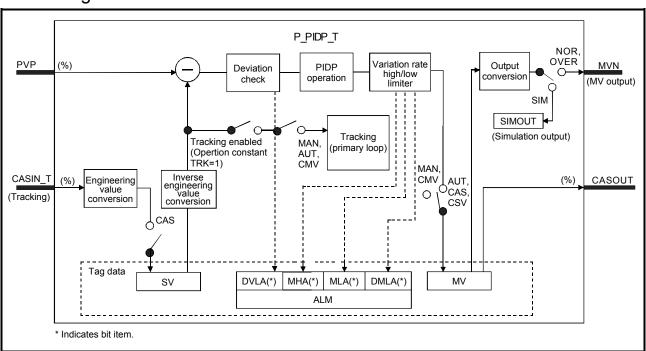

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with program in the FB property window.

7 - 148 7 - 148

7 PROCESS FB ______ MELSOFT

7.6.9 Position Type PID Control (With Tracking to primary loop, Without Tracking from secondary loop) (P_PIDP_T)



	Corresponding tag type							
	PIDP							
i								
		C	ontrol mo	de				
	MAN	AUT	CAS	CMV	CSV			
	0	0	0	0	0			

Functions overview: Execute PID operation by PV.

Function/FB classification name: Tag access FB _ loop control operation FB

Block Diagram

Input and Output Pins

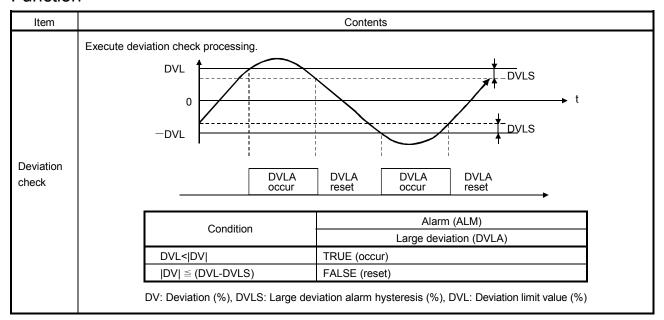
Pin	Variable name	Variable type	Data type	Contents	Range
lanat	PVP	Input variable	REAL	PV input (unit: %)	0 to 100
Input	CASIN_T	Input variable	ADR_REAL	Cascade SV input (unit: %) (With tracking)	0 to 100
Output	MVN	Output variable	REAL	MV output	NMIN to NMAX
Output	CASOUT	Output variable	REAL	Cascade SV output (unit: %)	0 to 100

7 - 149 7 - 149

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
Operation processing	SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	SVPTN_B1	Public variable	BOOL	Set value (SV) pattern (TRUE: Not host MV, FALSE: Host MV)	TRUE, FALSE	TRUE	User
	NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

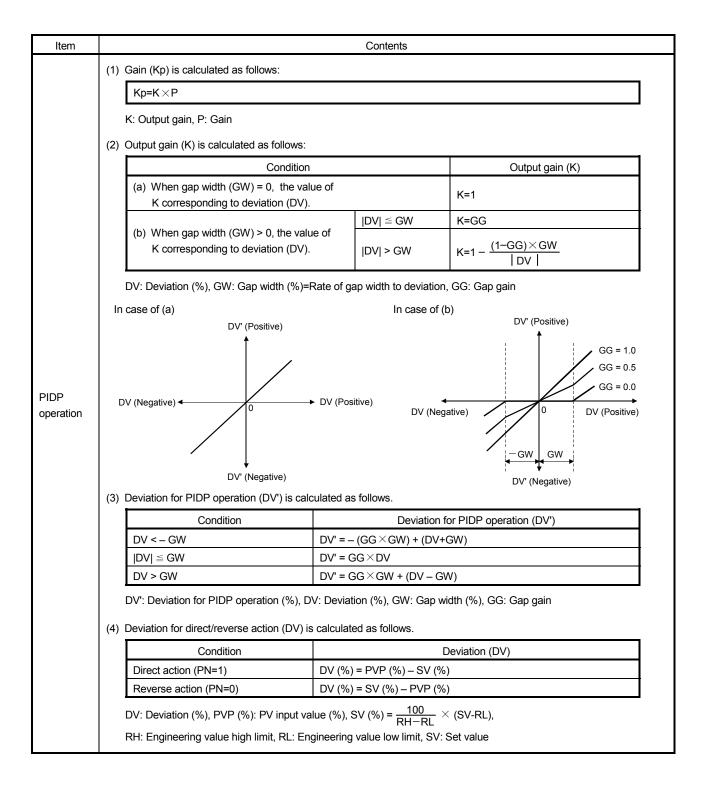
Public Variables (Others) (*1)


	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM*2	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System

^{*1} Please read and write them with program.

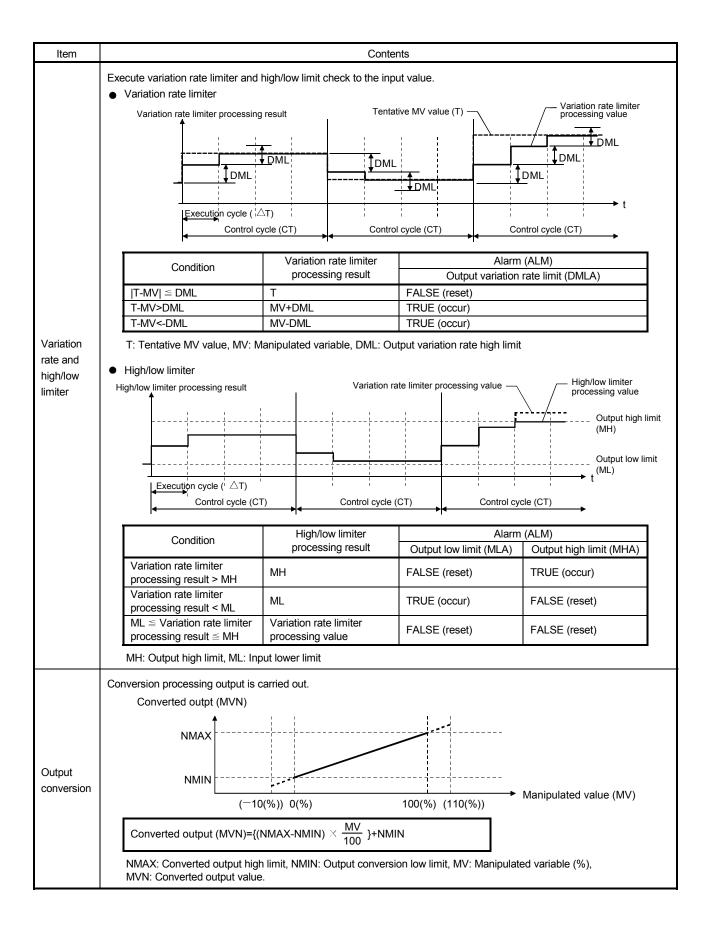
Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.


Function

7 - 150 7 - 150

It will not be displayed in FB property window of PX Developer.


^{*2} It means simulation processing.

7 - 151 7 - 151

Item	Contents								
	(5) PIDP operation is	calculated as follows							
		Direct action	Reverse action						
	Deviation (DVn)	DVn = PVn – SVn	DVn = SVn – PVn						
	Output variation (MV)	$MV = \frac{Kp}{\sqrt{Gain}} \times {\frac{DV_n}{\sqrt{In}}} + {\frac{I_n}{\sqrt{In}}} +$	Bn }						
	In	In = In-1 +	$\frac{CT}{Ti} \times DV_n$						
	Bn	$B_{n} = B_{n-1} + \frac{Md \times Td}{Md \times CT + Td} \times \{ (PV_{n} - PV_{n-1}) - \frac{CT \times B_{n-1}}{Td} \}$	$B_{n} = B_{n-1} + \frac{Md \times Td}{Md \times CT + Td} \times \left\{ - (PV_{n} - PV_{n-1}) - \frac{CT \times B_{n-1}}{Td} \right\}$						
PIDP operation (continued from	Kp: Gain, Ti: Integral time, Td: Derivative time, Md: Derivative gain, CT: Control cycle, DVn: Deviation, DVn-1 Previous deviation, PVn: Process value, PVn-1: Previous process value, SVn: Engineering value conversion processing result. (a) Integral item and derivative item are listed below corresponding to each condition.								
orevious		Condition	Processing						
page)	Td=0 or cont	rol cycle is any of MAN, CMV	Bn=0						
	Any of 1), 2), 1) Ti=0 2) When MH		CT X DVn = 0						
	 Ti: Integral time, CT: Control cycle, DVn: Deviation, MH: Output high limit value, ML: Output low lim (b) Control cycle (CT) should be set to be the integral multiple of execution cycle (ΔT). (c) Integral constant should be set to be 0.0 or over control cycle (CT). (d) PIDP operation of the tag access FB is executed in every control cycle (CT), (MV output). For other execution cycle (ΔT), the previous value shall be applied. (MV=0) 								
Engineering	Convert the set value (%), which is from primary loop control when the control mode is CAS or CSV, to engineering value.								
alue conversion	$SV = \frac{RH - RL}{100} \times \text{ set value (\%) from the primary loop +RL}$								
	RH: High limit of er	ngineering value, RL: Low limit of engineering	value, SV: Set value						
nverse	Convert the set value	SV of engineering value to percentage SV (%)).						
engineering value	$SV (\%) = \frac{100}{RH-RL}$	× (SV–RL)							
conversion	RH: High limit of en	gineering value, RL: Low limit of engineering va	alue, SV: Set value						
	Tracking operation for	input variable CASIN_T is executed as follow	s:						
		Condition	Result						
Fracking	Tracking flag (TI								
rocessing	1	FALSE	Input variable CASIN_T performs tracking.						
		TRUE	Input variable CASIN_T does not perform						
	0	FALSE or TRUE	tracking.						

7 - 152 7 - 152

Item	Contents
Disable Alarm Detection	Set whether Enable Alarm Detection or not in variation rate limiter and high/low limiter. (1) Disable Alarm Detection with the setting of "Disable Alarm Detection" tag data: If the following items of Disable Alarm Detection (INH) of tag data are TRUE, alarm (ALM) of DMLA, MHA and MLA will not be detected. • ERRI, DMLI, MHI, MLI (2) Disable Alarm Detection by control mode: If the control mode is MAN and CMV, reset DMLA, MHA and MLA of alarm (ALM) and DMLA, MHA and MLA will be detected. (3) Disable Alarm Detection by loop stop processing: Please refer to loop stop processing in the following contents.

Other Function

Item	Contents
Loop stop processing	The following processing is executed if the stop alarm (SPA) of alarm (ALM) is TRUE. 1) Hold the output (MVN). 2) Change the control mode automatically to MANUAL. 3) Reset DMLA, MHA, and MLA when DMLA, MHA, and MLA of alarm (ALM) occurs. 4) Alarm is not detected in variation rate limiter and high/ low limiter.

Processing Operation

Processing Control mode	Deviation check	PIDP operation	Engineering value conversion	Inverse engineering value conversion	Variation rate Limiter and high/low limiter	Output conversion	Tracking	Alarm
MAN, CMV	0	0	×	0	×	0	O (*1)	× (*2)
AUT	0	0	×	0	0	0	O (*1)	O (*3)
CAS, CSV	0	0	0	0	0	0	×	O (*3)

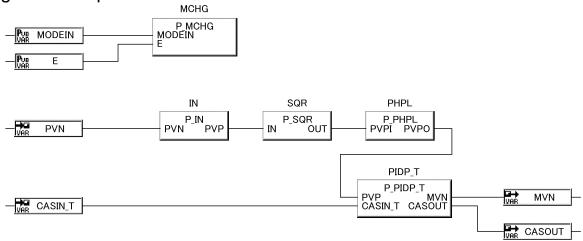
○: Execute ×: Not execute

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)


7 - 154 7 - 154

^{*1} Tracking is executed when the tracking flag (TRK) is 1.

^{*2} When the bit of alarm (ALM) is reset to TRUE (occurred), the alarm can't be detected.

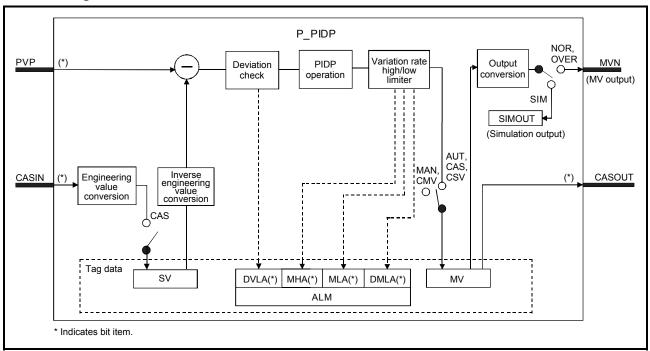
^{*3} When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with program in the FB property window.

7.6.10 Position Type PID Control (Without Tracking to primary loop, Without Tracking from secondary loop) (P_PIDP)


FB	FBD parts
P_PIDP	P_PIDP PVP MVN CASIN CASOUT

	Corresponding tag type							
	PIDP							
i								
		C	ontrol mo	de				
	MAN	AUT	CAS	CMV	CSV			
	0	0	0	0	0			

Functions overview: Execute PID operation by PV-derivative, imperfect derivative and position type, and output the result.

Function/FB classification name: Tag access FB _ Loop control operation FB

Block Diagram

Input and Output Pins

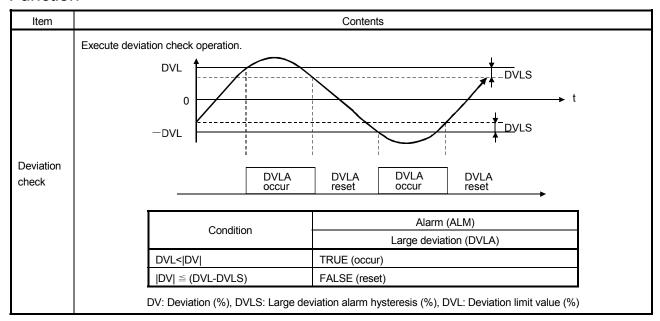
Pin	Variable name	Variable type	Data type	Contents	Range
Input	PVP	Input variable	REAL	PV input (unit: %)	0 to 100
IIIput	CASIN	Input variable	REAL	Cascade SV input (unit: %)	0 to 100
Output	MVN	Output variable	REAL	MV output	NMIN to NMAX
Output	CASOUT	Output variable	REAL	Cascade SV output (unit: %)	0 to 100

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
Operation processing	SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	NMIN	Public variable	REAL	Output conversion lower limit	-999999 to 999999	0.0	User

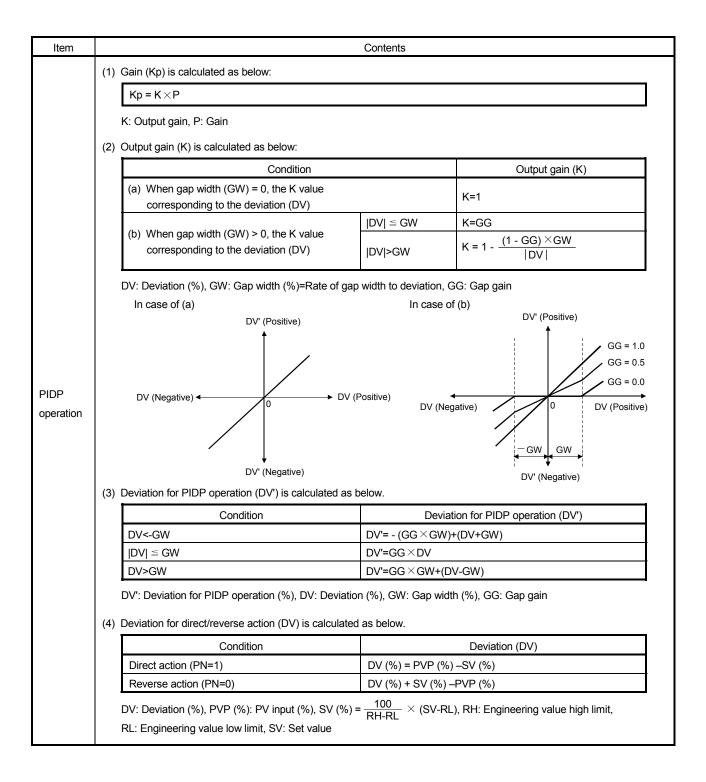
Public Variable (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM*2	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System

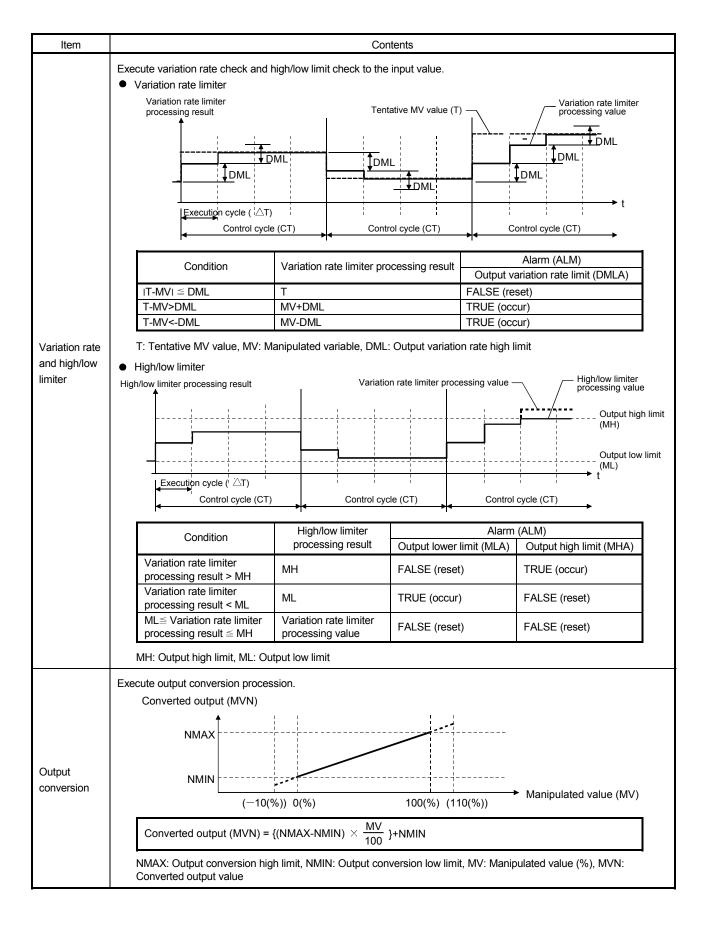

^{*1} Please read and write them with program.

It will not be displayed in FB property window of PX Developer.

Tag Data


For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

Function



7 - 157 7 - 157

^{*2} It means simulation processing.

Item	Contents								
	(5) PID	P operation is co	nducted as below.						
			Direct action	Reverse action					
		Deviation (DVn)	$DV_n = PV_n - SV_n$	DVn = SVn - PVn					
	C	Output variation (MV)	Proportional	Bn } Derivative (imperfect derivative) egral etails about In, Bn)					
		In	ln = ln-1 + -	$\frac{CT}{Ti} \times DV_n$					
		Bn	$B_{n} = B_{n-1} + \frac{Md \times Td}{Md \times CT + Td} \times \{ (PV_{n} - PV_{n-1}) - \frac{CT \times B_{n-1}}{Td} \}$	$B_{n} = B_{n-1} + \frac{Md \times Td}{Md \times CT + Td} \times \{-(PV_{n} - PV_{n-1}) - \frac{CT \times B_{n-1}}{Td}\}$					
PIDP operation (continued	Pre pro	evious deviation, F cessing result	time, Td: Derivative time, Md: Derivative gain, PVn: Process value, PVn-1: Previous process v	/alue, SVn: Engineering value conversion					
from previous	(a)	Integral term and	d derivative term are listed below corresponding	ng to each condition.					
page)			Condition	Processing					
		Td=0, or control mode being either MAN or CMV Bn = 0							
		Any of 1), 2), 3)						
		1) Ti=0 2) When MH 6	error occurs $\frac{CT}{Ti} \times DVn > 0$	$\frac{CT}{Ti} \times DVn = 0$					
		3) When ML e	rror occurs $\frac{CT}{Ti} \times DVn < 0$						
		Ti: Integral time, CT: Control cycle, DVn: Deviation, MH: Output high limit, ML: Output low limit							
	(b) Control cycle (CT) should be set to be the integral multiple of execution cycle (\triangle T).								
	(c) Integral constant should be set to be 0.0 or over control cycle (CT).								
	(d) PIDP operation of the tag access FB is executed in every control cycle (CT), (output MV). For other execution cycle (△T), the last execution value of MV is held.								
	When t	he control mode i	s CAS/CSV, the set value (%) from the primar	y loop is converted into engineering value.					
Engineering value conversion	$SV = \frac{RH - RL}{100} \times \text{ set value (\%) from the primary loop + RL}$								
COLIVERSION	RI	H: Engineering va	lue high limit, RL: Engineering value lower lim	it, SV: Set value					
Inverse	The set	value (SV) of en	gineering value is converted to percentage SV	· (%).					
engineering value	S	$V (\%) = \frac{100}{RH - RL}$	\times (SV–RL)						
conversion	RI	H: Engineering va	lue high limit, RL: Engineering value low limit,	SV: Set value					

7 - 160 7 - 160

Item	Contents
Disable Alarm Detection	Set whether Enable Alarm Detection or not in variation rate limiter and high/low limiter. (1) Disable Alarm Detection with the setting of "Disable Alarm Detection" tag data: If the following items of Disable Alarm Detection (INH) of tag data are TRUE, alarm (ALM) of DMLA, MHA and MLA will not be detected. • ERRI, DMLI, MHI, MLI (2) Disable Alarm Detection by control mode: If the control mode is MAN and CMV, reset DMLA, MHA and MLA of alarm (ALM) and DMLA, MHA and MLA will be detected. (3) Disable Alarm Detection by loop stop processing: Please refer to loop stop processing in the following contents.

Other Function

Item	Contents
Loop stop processing	The following processing is executed if the stop alarm (SPA) of alarm (ALM) is TRUE. 1) Hold the output (MVN). 2) Change the control mode automatically to MANUAL. 3) Reset DMLA, MHA, and MLA when DMLA, MHA, and MLA of alarm (ALM) occurs. 4) Alarm is not detected in variation rate limiter and high/ low limiter.

Processing Operation

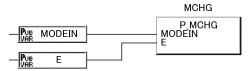
Processing Control mode	Deviation check	PIDP operation	Engineering value conversion	Inverse engineering value conversion	Variation rate limiter and high/low limiter	Output conversion	Alarm
MAN, CMV	0	0	×	0	×	0	× (*1)
AUT	0	0	×	0	0	0	O (*2)
CAS, CSV	0	0	0	0	0	0	O (*2)

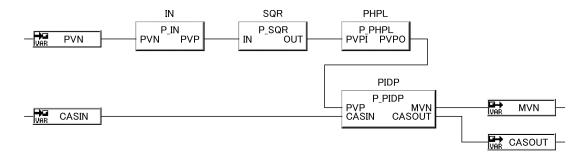
○: Execute ×: Not execute

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

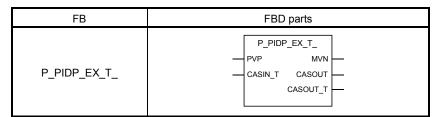

• When overflow occurs during operation. (Error code: 4100)


7 - 161 7 - 161

^{*1} When the bit of alarm (ALM) is reset to TRUE (occurred), the alarm can't be detected.

^{*2} When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.

Program Example



POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with program in the FB property window.

7 - 162 7 - 162

7.6.11 Position Type PID Control (With Tracking to primary loop, With Tracking from secondary loop) (P_PIDP_EX_T_)



	Corresponding tag type					
PIDP						
	Control mode					
MAN	AUT	CAS	CMV	CSV		
0	0	0	0	0		

Functions overview: Execute PID operation by PV- derivative, imperfect derivative and position type and output the result. MV value bumpless switching and tracking from the secondary loop at control mode change are also possible. *1

Function/FB classification name: Tag access FB _ loop control operation FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	PVP	Input variable	REAL	PV input	0 to 100
input	CASIN_T	Input variable	ADR_REAL	CASCADE SV input (unit: %) (Tracking)	0 to 100
	MVN	Output variable	REAL	MV output	NMIN to NMAX
Output	CASOUT	Output variable	REAL	CASCADE SV output (unit: %)	0 to 100
	CASOUT_T	Output variable	ADR_REAL	CASCADE MV output (unit: %) (Tracking)	0 to 100

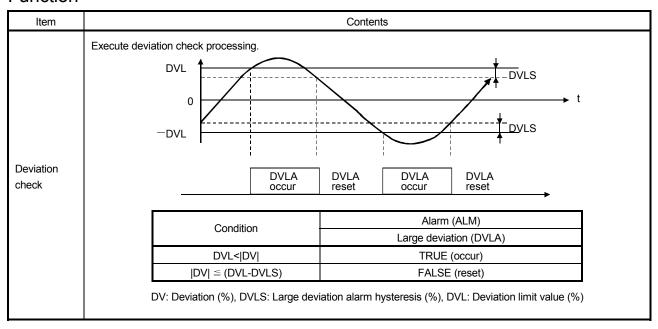
^{*1} Requires Process CPU or Redundant CPU whose upper five digits of serial No. are 07032 or later.

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
Operation processing	SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	SVPTN_B1	Public variable	BOOL	Set value (SV) pattern (TRUE: Not host MV, FALSE: Host MV)	TRUE, FALSE	TRUE	User
	NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

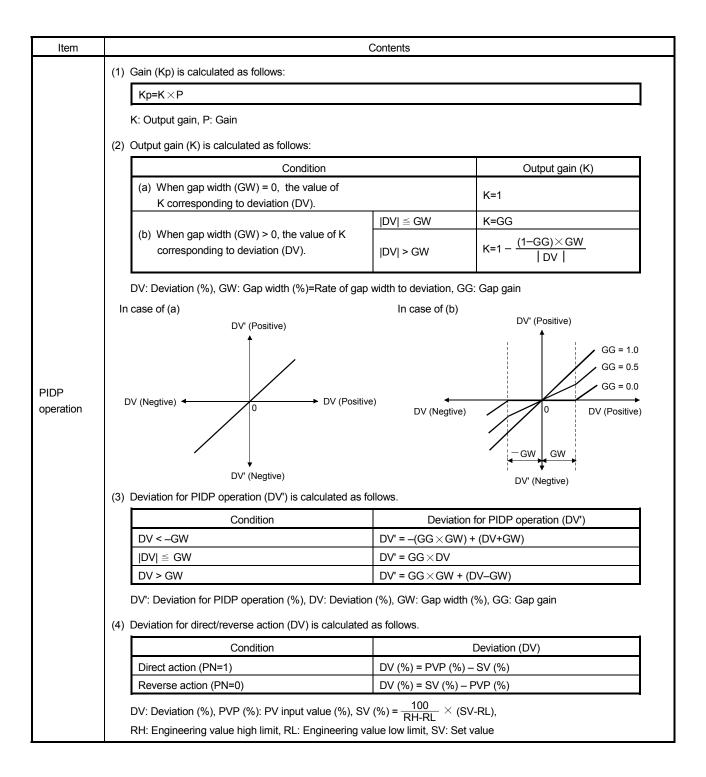
Public Variables (Others) (*1)

		Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
ĺ	SIM*2	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System

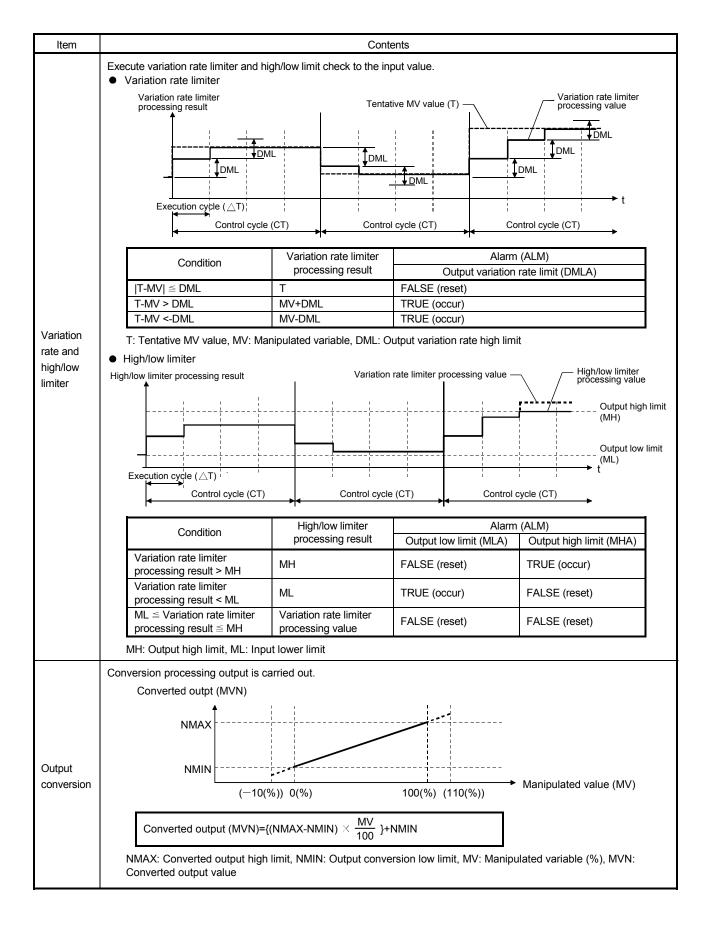

^{*1} Please read and write them with program.

It will not be displayed in FB property window of PX Developer.

Tag Data


For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

Function


7 - 164 7 - 164

^{*2} It means simulation processing.

Item	Contents								
	(5) PIDP operation is calc	ulated as follows.							
		Direct action	Reverse action						
	Deviation (DVn)	DVn = PVn – SVn	DVn = SVn – PVn						
	Output variation (MV)	$MV = \frac{Kp}{C} \times \left\{ \frac{DVn}{C} + \frac{In}{C} + \frac{In}{C} \right\}$ Proportional	Bn }						
	In	In = I _{n-1} +	$-\frac{CT}{Ti} \times DV_n$						
	Bn	$\begin{split} B_{n} = B_{n-1} + \frac{Md \times Td}{Md \times CT + Td} \times \\ & \{ (PV_{n} - PV_{n-1}) - \frac{CT \times B_{n-1}}{Td} \} \end{split}$	$B_{n} = B_{n-1} + \frac{Md \times Td}{Md \times CT + Td} \times $ $\{-(PV_{n} - PV_{n-1}) - \frac{CT \times B_{n-1}}{Td}\}$						
PIDP operation	Kp: Gain, Ti: Integral time, Td: Derivative time, Md: Derivative gain, CT: Control cycle, DVn: Deviation, DVn-1: Previous deviation, PVn: Process value, PVn-1: Previous process value, SVn: Engineering value conversion processing result								
(continued	(a) Integral item and d	erivative item are listed below corresponding							
from	T. 0	Condition	Processing						
previous		e is any of MAN, CMV	Bn=0						
page)	Any of 1), 2), 3) 1) Ti=0 2) When MH error oc 3) When ML error oc 4) Control mode is ei	curs $\frac{CT}{Ti} \times DVn < 0$	$\frac{CT}{Ti} \times DVn = 0$						
		m the secondary loop mode is changed from MAN or CMV to any CSV	$I_{n-1} = \frac{MV}{Kp} - (DV_n + B_n)$						
	Ti: Integral time, CT: Control cycle, DVn: Deviation, MH: Output high limit value, ML: Output low limit value								
	(b) Control cycle (CT) should be set to be the integral multiple of execution cycle (\triangle T).								
	(c) Integral constant should be set to be 0.0 or over control cycle (CT).								
	(d) PIDP operation of the tag access FB is executed in every control cycle (CT), (MV output). For other execution cycle (\triangle T), the previous value shall be applied. (MV=0)								
	Convert the set value (%),	which is from primary loop control when the	control mode is CAS or CSV, to engineering value.						
Engineering value	$SV = \frac{RH - RL}{100} \times \text{ set value (\%) from the primary loop + RL}$								
conversion	RH: High limit of engineering value, RL: Low limit of engineering value, SV: Set value								
Inverse	Convert the set value SV of	f engineering value to percentage SV (%).							
engineering value	$SV (\%) = \frac{100}{RH - RL} \times (SV - RL)$								
conversion	RH: High limit of engin	eering value, RL: Low limit of engineering va	alue, SV: Set value						
	Tracking operation for input	t variable CASIN_T is executed as follows:							
Tracking	Tracking flag (TRK)	Condition Set value (SV) used (SCPTN_B0)	Result						
processing	1	FALSE TRUE	Input variable CASIN_T performs tracking. Input variable CASIN_T does not perform						
	0	FALSE or TRUE	tracking.						

7 - 166 7 - 166

7 - 167 7 - 167

Item	Contents
Disable Alarm Detection	Set whether Enable Alarm Detection or not in variation rate limiter and high/low limiter. (1) Disable Alarm Detection with the setting of "Disable Alarm Detection" tag data: If the following items of Disable Alarm Detection (INH) of tag data are TRUE, alarm (ALM) of DMLA, MHA and MLA will not be detected. • ERRI, DMLI, MHI, MLI (2) Disable Alarm Detection by control mode: If the control mode is MAN and CMV, reset DMLA, MHA and MLA of alarm (ALM) and DMLA, MHA and MLA will be detected. (3) Disable Alarm Detection by loop stop processing: Please refer to loop stop processing in the following contents.

Other Function

Item	Contents
Loop stop processing	The following processing is executed if the stop alarm (SPA) of alarm (ALM) is TRUE. 1) Hold the output (MVN). 2) Change the control mode automatically to MANUAL. 3) Reset DMLA, MHA, and MLA when DMLA, MHA, and MLA of alarm (ALM) occurs. 4) Alarm is not detected in variation rate limiter and high/ low limiter.

Processing Operation

Processing Control mode	Deviation check	PIDP operation	Engineering value conversion	Inverse engineering value conversion	Variation rate and high/low limiter	Output conversion	Tracking	Alarm
MAN, CMV	0	0	×	0	×	0	O (*1)	× (*2)
AUT	0	0	×	0	0	0	O (*1)	O (*3)
CAS, CSV	0	0	0	0	0	0	×	○ (*3)

○: Execute ×: Not execute

Restriction

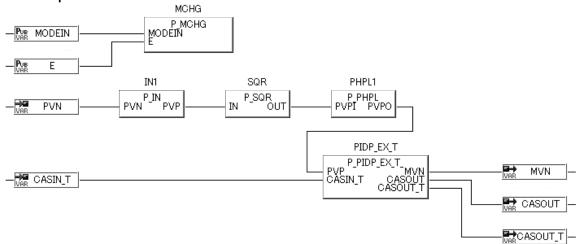
This FB supports the Process CPU and the Redundant CPU whose upper five digits of serial No.s are 07032 or later

If either of the CPU whose upper five digits of serial No. are 07031 or earlier is used, the MV value bumpless switching and tracking processing from the secondary loop at control mode change will not be executed.

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

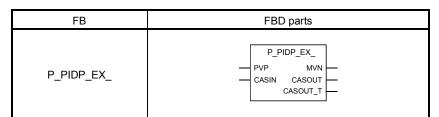

• When overflow occurs during operation. (Error code: 4100)

^{*1} Tracking is executed when the tracking flag (TRK) is 1.

^{*2} When the bit of alarm (ALM) is reset to TRUE (occurred), the alarm can't be detected.

^{*3} When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.

Program Example

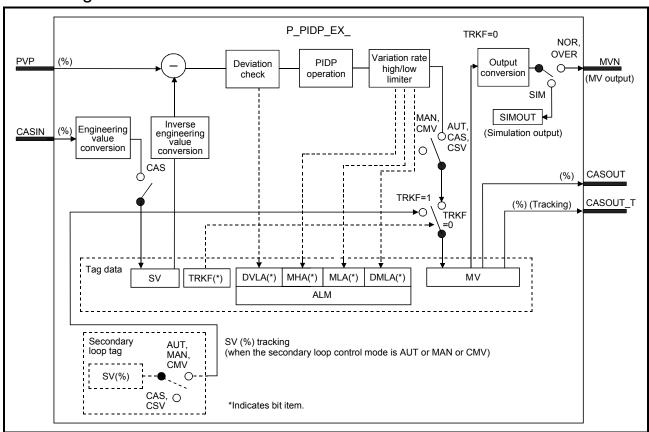


POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with program in the FB property window.

7 - 169 7 - 169

7.6.12 Position Type PID Control (Without Tracking to primary loop, With Tracking from secondary loop) (P_PIDP_EX_)



	Corresponding tag type							
PIDP								
	Control mode							
MAN	MAN AUT CAS CMV CSV							
0	0	0	0	0				

Functions overview: Execute PID operation by PV-derivative, imperfect derivative and position type, and output the result. MV value bumpless switching and tracking from the secondary loop at control mode change are also possible. *1

Function/FB classification name: Tag access FB _ Loop control operation FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	PVP	Input variable	REAL	PV input	0 to 100
input	CASIN	Input variable	REAL	CASCADE SV input (unit: %)	0 to 100
	MVN	Output variable	REAL	MV output	NMIN to NMAX
Output	CASOUT	Output variable	REAL	CASCADE SV output (unit: %)	0 to 100
	CASOUT_T	Output variable	ADR_REAL	CASCADE MV output (unit: %)(Tracking)	0 to 100

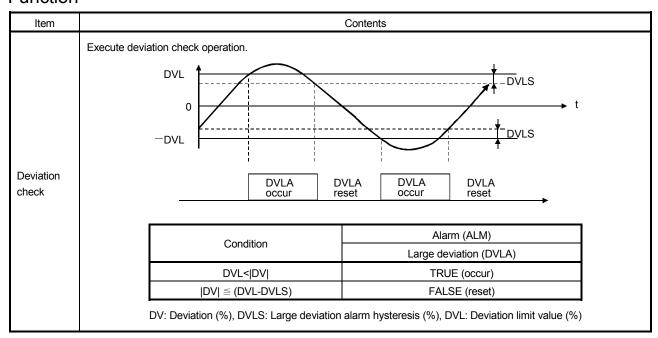
7 - 170 7 - 170

^{*1} Requires Process CPU or Redundant CPU whose upper five digits of serial No. are 07032 or later.

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
processing	PN	Public variable INT		Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	NMAX	C Public variable		Output conversion high limit	-999999 to 999999	100.0	User
	NMIN	Public variable	REAL	Output conversion lower limit	-999999 to 999999	0.0	User

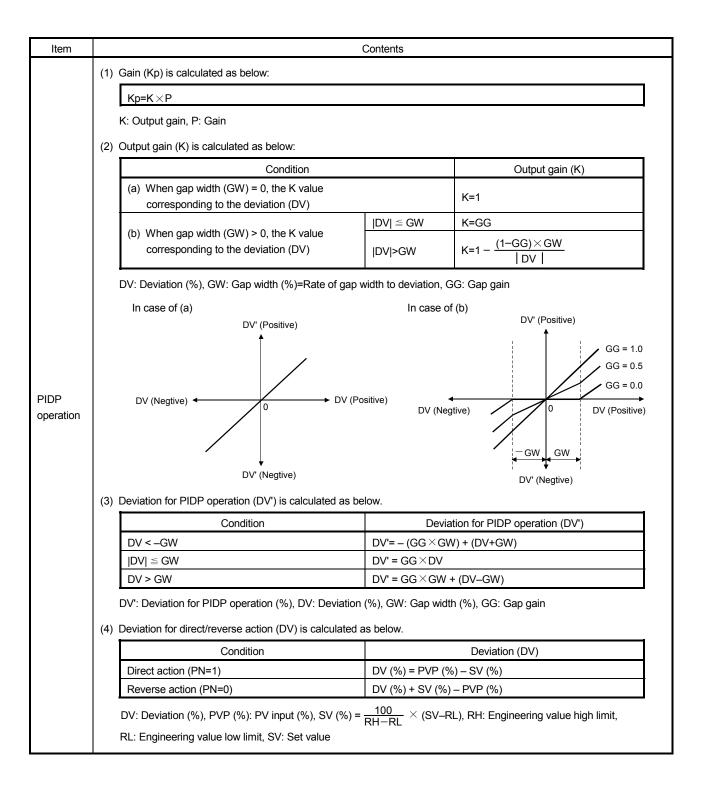
Public Variable (Others) (*1)


	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM*2	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System

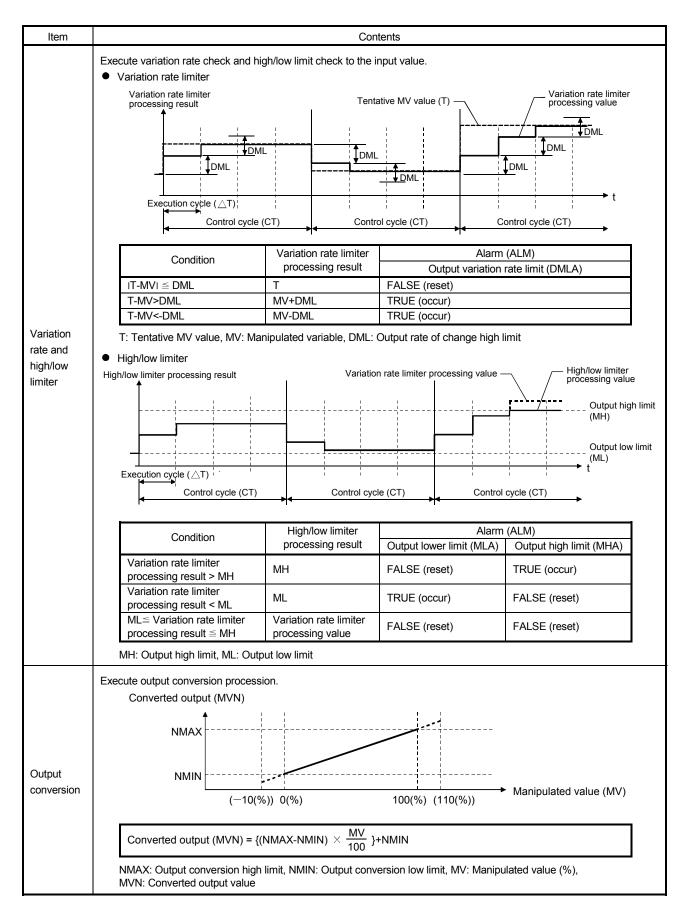
^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.


Function

7 - 171 7 - 171


It will not be displayed in FB property window of PX Developer.

^{*2} It means simulation processing.

7 - 172 7 - 172

Item	Contents							
	(5) PIDP operation is conducted as below.							
			Direct action	Reverse action				
		Deviation (DVn)	$DV_n = PV_n - SV_n$	DVn = SVn – PVn				
		Output variation (MV)	⊢Proportional	Bn } ☐Derivative (imperfect derivative) egral etails about In, Bn)				
		In	In = In-1 + -	$\frac{CT}{Ti} \times DV_n$				
		Bn	$B_{n} = B_{n-1} + \frac{Md \times Td}{Md \times CT + Td} \times \{ (PV_{n} - PV_{n-1}) - \frac{CT \times B_{n-1}}{Td} \}$	$B_{n} = B_{n-1} + \frac{Md \times Td}{Md \times CT + Td} \times \left\{ - (PV_{n} - PV_{n-1}) - \frac{CT \times B_{n-1}}{Td} \right\}$				
PIDP		Previous deviation, processing result	I time, Td: Derivative time, Md: Derivative gain PVn: Process value, PVn-1: Previous process value, Pvn-1: Previous process	value, SVn: Engineering value conversion				
operation	(a)	integral term and de	Condition					
(continued		Td=0 or control m	node being either MAN or CMV	Processing Bn=0				
from previous		Any of 1), 2), 3)	lode being either MAN or Civiv	BII-U				
page)		1) Ti=0						
		<i>'</i>	r occurs $\frac{CT}{Ti} \times DVn > 0$	$\frac{CT}{Ti} \times DVn = 0$				
		3) When ML error	coccurs $\frac{CT}{Ti} \times DVn < 0$					
		4) Control mode is	s either MAN or CMV					
		_ ·	from the secondary loop rol mode is changed from MAN or CMV to AS and CSV	$I_{n-1} = \frac{MV}{Kp} - (DV_n + B_n)$				
		Ti: Integral time, CT	: Control cycle, DVn: Deviation, MH: Output hi	igh limit, ML: Output low limit				
	(b)	Control cycle (CT) s	hould be set to be the integral multiple of exec	cution cycle (△T).				
	(c)	Integral constant she	ould be set to be 0.0 or over control cycle (CT)).				
	(d) PIDP operation of the tag access FB is executed in every control cycle (CT), (output MV). For other execution cycle (△T), the last execution value of MV is held.							
	Whe	en the control mode	is CAS/CSV, the set value (%) from the prima	ry loop is converted into engineering value.				
Engineering value conversion		$SV = \frac{RH - RL}{100} \times$	set value (%) from the primary loop + RL					
301110131011		RH: Engineering value high limit, RL: Engineering value lower limit, SV: Set value						
Inverse	The	set value (SV) of er	ngineering value is converted to percentage S\	V (%).				
engineering value		$SV (\%) = \frac{100}{RH - RL}$	- × (SV–RL)					
conversion		RH: Engineering val	lue high limit, RL: Engineering value low limit,	SV: Set value				

7 - 174 7 - 174

Item	Contents
Disable Alarm Detection	Set whether Enable Alarm Detection or not in variation rate limiter and high/low limiter. (1) Disable Alarm Detection with the setting of "Disable Alarm Detection" tag data: If the following items of Disable Alarm Detection (INH) of tag data are TRUE, alarm (ALM) of DMLA, MHA and MLA will not be detected. • ERRI, DMLI, MHI, MLI (2) Disable Alarm Detection by control mode: If the control mode is MAN and CMV, reset DMLA, MHA and MLA of alarm (ALM) and DMLA, MHA and MLA will be detected. (3) Disable Alarm Detection by loop stop processing: Please refer to loop stop processing in the following contents.

Other Function

Item	Contents
Loop stop processing	The following processing is executed if the stop alarm (SPA) of alarm (ALM) is TRUE. 1) Hold the output (MVN). 2) Change the control mode automatically to MANUAL. 3) Reset DMLA, MHA, and MLA when DMLA, MHA, and MLA of alarm (ALM) occurs. 4) Alarm is not detected in variation rate limiter and high/ low limiter.

Processing Operation

Processing Control mode	Deviation check	PIDP operation	Engineering value conversion	Inverse engineering value conversion	Variation rate and high/low limiter	Output conversion	Alarm
MAN, CMV	0	0	×	0	×	0	× (*1)
AUT	0	0	×	0	0	0	O (*2)
CAS, CSV	0	0	0	0	0	0	O (*2)

^{○:} Execute ×: Not execute

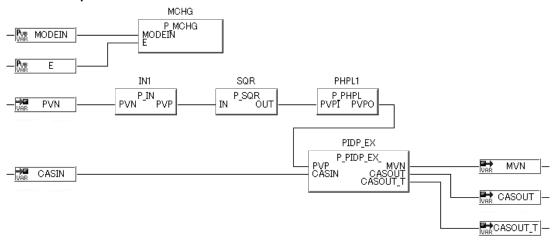
Restriction

This FB supports the Process CPU and the Redundant CPU whose upper five digits of serial No.s are 07032 or later.

If either of the CPU whose upper five digits of serial No. are 07031 or earlier is used, the MV value bumpless switching and tracking processing from the secondary loop at control mode change will not be executed.

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.


Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

^{*1} When the bit of alarm (ALM) is reset to TRUE (occurred), the alarm can't be detected.

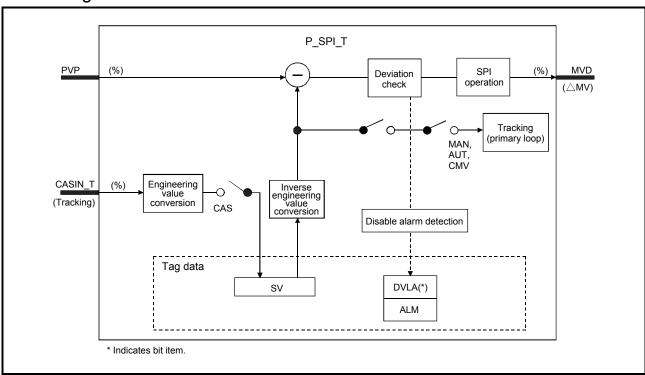
^{*2} When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with program in the FB property window.

7.6.13 Sample PI Control (With Tracking to primary loop) (P_SPI_T)


FB	FBD parts	
	P_SPI_T	SP
P_SPI_T	PVP MVD — CASIN_T	MA

	Corresponding tag type							
SPI								
	Control mode							
MAN	AUT	CAS	CMV	CSV				
0	0	0	0	0				

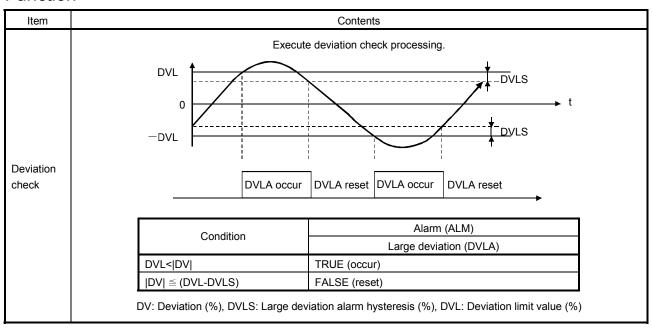
Functions overview: Execute PI control and output (ΔMV) during operating time (ST). During hold time (HD), hold the output (ΔMV=0).

Function/FB classification name: Tag access FB $\underline{\ }$ Loop control operation FB

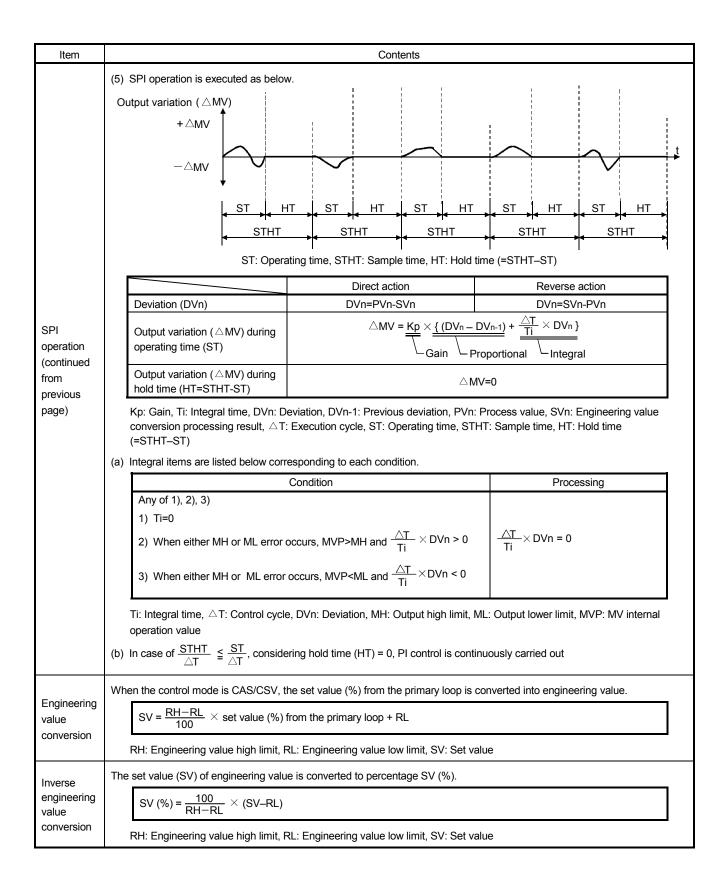
Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Innut	PVP	Input variable	REAL	PV input (unit: %)	0 to 100
Input	CASIN_T	Input variable	ADR_REAL	Cascade SV input (unit: %) (Tracking)	0 to 100
Output	MVD	Output variable	REAL	△MV output (unit: %)	-999999 to 999999


Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
Operation processing	TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
processing	SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	SVPTN_B1	Public variable	BOOL	Set value (SV) pattern (TRUE: Not host MV, FALSE: Host MV)	TRUE, FALSE	TRUE	User


Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

Function

Item		Contents							
	(1) Gain (Kp) is calculated as below:								
	Kp=K×P								
	K: Output gain, P: Gain.								
	Output gain (K) is calculated as below:								
	Condition		Output gain (K)						
	(a) When gap width (GW) = 0, the K value corresponding to the deviation (DV)	_	K=1						
	(b) When gap width (GW) > 0, the K value	DV ≦ GW	K=GG						
	corresponding to the deviation (DV)	DV > GW	$K = 1 - \frac{(1 - GG) \times GW}{ DV }$						
	DV: Deviation (%), GW: Gap width (%)=Rate of gap	width to deviation, GG: 0	Gap gain						
	In the case of (a) DV' (Positive)	In the case of (b)	DV' (Positive)						
SPI operation	DV (Negative) DV' (Negative) DV' (Negative) (3) Deviation for PID operation (DV') is calculated as below	DV (Negative)	GG = 1.0 GG = 0.5 GG = 0.0 DV (Positive) DV' (Negative)						
	Condition	Deviation for PID operation (DV')							
	DV<-GW	DV'= - (GG × GW)+(E	DV+GW)						
	DV ≦ GW	DV'=GG × DV							
	DV>GW	DV'=GG × GW+(DV-	,						
		DV': Deviation for PID operation (%), DV: Deviation (%), GW: Gap width (%), GG: Gap gain Deviation for direct/reverse action (DV) is calculated as below.							
	Condition		Deviation (DV)						
	Direct action (PN=1)	DV (%)=PVP (%)-SV	` '						
	Reverse action (PN=0)	DV (%)=SV (%)-PVP							
	DV: Deviation (%), PVP (%): PV input (%), SV (%) = RH: Engineering value high limit, RL: Engineering va	$\frac{100}{\text{RH-RL}} \times (\text{SV} - \text{RL})$ lue low limit, SV: Set va	lue						

7 - 180 7 - 180

Item	Contents							
	Whether execute tracking processing to the input variable CASIN_T is described in the following table:							
			Condition	Result				
Tracking		Tracking flag	Set value used (SVPTN_B0)	Result				
processing		1	FALSE	Input variable CASIN_T performs tracking.				
		ı	TRUE	Input variable CASIN_T does not perform				
		0	FALSE or TRUE	tracking.				
	Set whether Enable Alarm Detection or not in deviation check.							
	(1) Disable Alarm Detection with the setting of "Disable Alarm Detection" tag data:							
Disable	If the following items of Disable Alarm Detection (INH) of tag data are TRUE, alarm (ALM) of DVLA will not be							
Alarm	detected.							
Detection	● ERRI, DVLI							
	(2) Disable Alarm Detection by loop stop processing:							
	Please refer to loop stop processing in the following contents.							

Other Functions

Item	Contents
Loop stop processing	The following processing is executed if the stop alarm (SPA) is TRUE. 1) Set △MV to 0. 2) Change the control mode automatically to MANUAL. 3) Reset DVLA when DVLA of alarm (ALM) occurs. 4) Alarm is not detected in deviation check.

Processing Operation

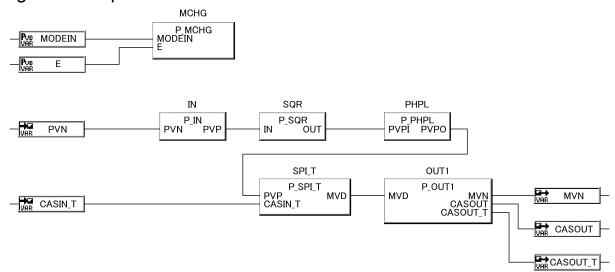
Processing Control mode	Deviation check	SPI operation	Engineering value conversion	Inverse engineering value conversion	Tracking	Alarm
MAN, CMV, AUT	0	0	×	0	O (*1)	○ (*2)
CAS, CSV	0	0	0	0	×	○ (*2)

○: Execute ×: Not execute

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.


• When overflow occurs during operation. (Error code: 4100)

7 - 181 7 - 181

^{*1} Tracking is executed when the tracking flag (TRK) is 1.

^{*2} When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.

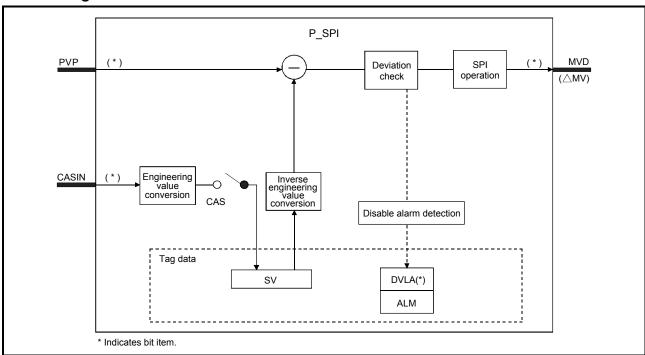
Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with program in the FB property window.

7 - 182 7 - 182

7.6.14 Sample PI Control (Without Tracking to primary loop) (P_SPI)


FB	FBD parts
P_SPI	P_SPI PVP MVD CASIN

	Corresponding tag type								
SPI									
	Control mode								
MAN									
0	0	0	0	0					

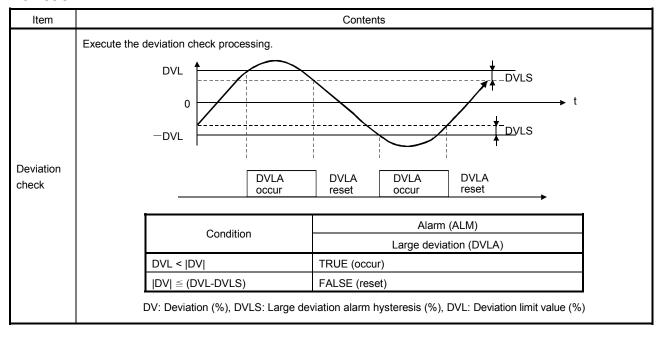
Functions overview: Execute PI control and output (\triangle MV) during operating time (ST). During hold time (HD), hold the output (\triangle MV=0).

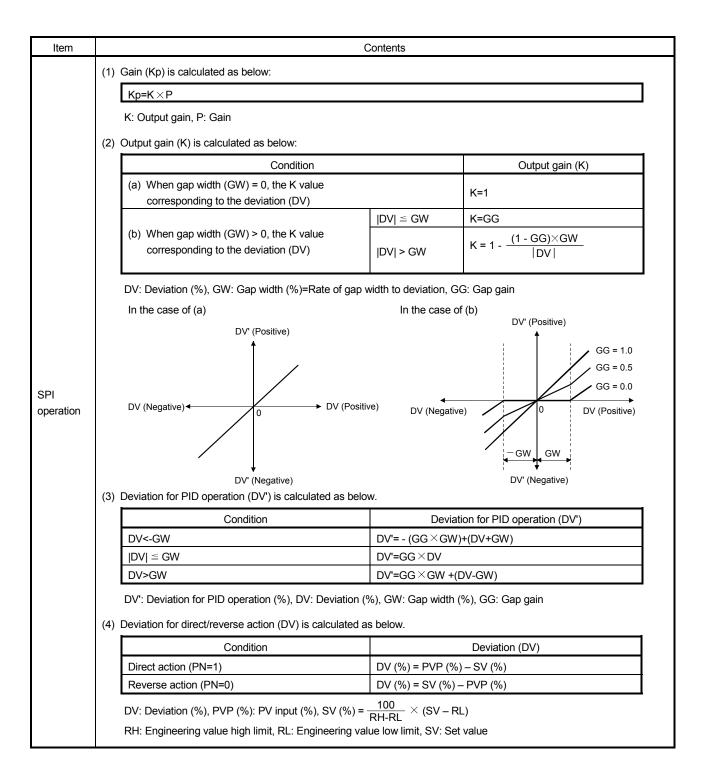
Function/FB classification name: Tag access FB _ Loop control operation FB

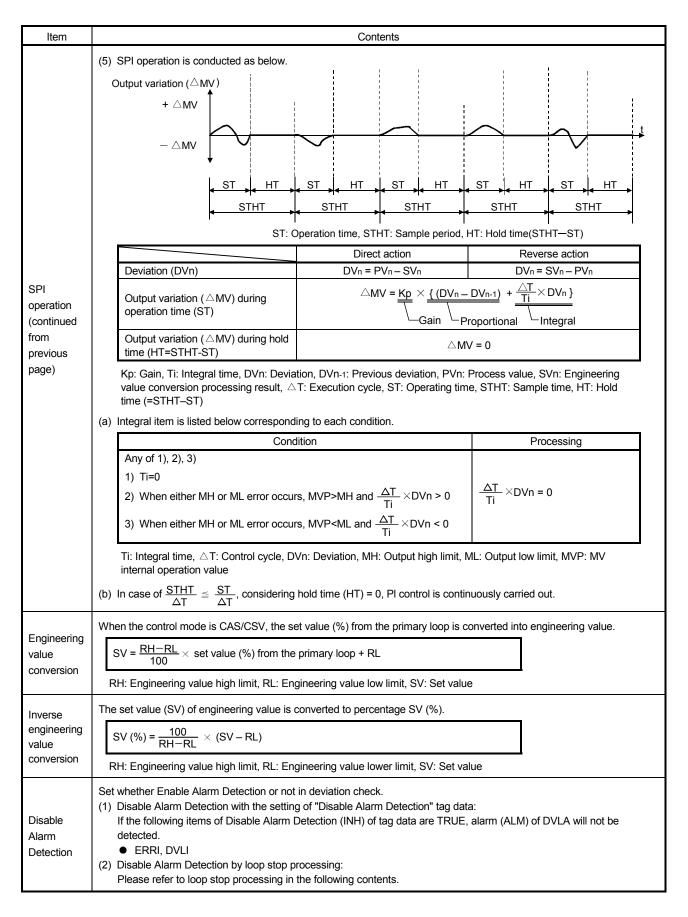
Block Diagram

Input and Output Pins

Pins	Variable name	Variable type	Data type	Contents	Range
Input	PVP	Input variable	REAL	PV input (unit: %)	0 to 100
input	CASIN	Input variable	REAL	Cascade SV input (unit: %)	0 to 100
Output	MVD	Output variable	REAL	△MV output (unit: %)	-999999 to 999999


Public Variable (Operation constant)


	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
Operation processing	PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User


Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

Function

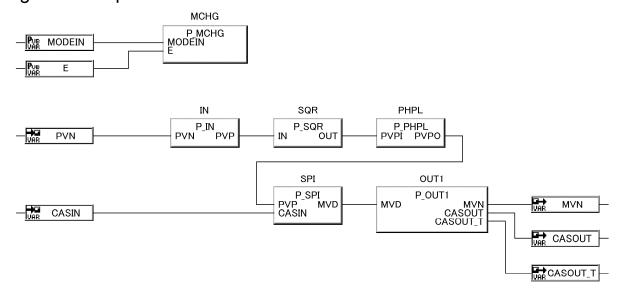
Other Functions

Item	Contents
Loop stop processing	The following processing is executed if the stop alarm (SPA) is TRUE. 1) Set △MV to 0. 2) Change the control mode automatically to MANUAL. 3) Reset DVLA when DVLA of alarm (ALM) occurs. 4) Alarm is not detected in deviation check.

Processing Operation

Processing Control mode	Deviation check	SPI operation	Engineering value conversion	Inverse engineering value conversion	Alarm
MAN, CMV, AUT	0	0	×	0	○ (*1)
CAS, CSV	0	0	0	0	○ (*1)

○: Execute ×: Not execute


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

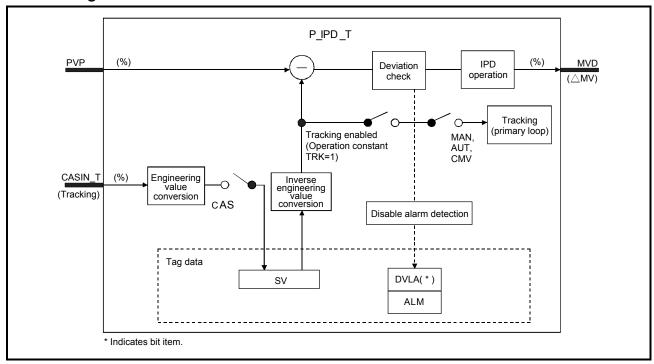
Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with program in the FB property window.

^{*1} When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.

7.6.15 I-PD Control (With Tracking to primary loop) (P_IPD_T)


FB	FBD parts
P_IPD_T	P_IPD_T PVP MVD CASIN_T

	Corresponding tag type				
IPD					
	C	ontrol mo	de		
MAN	AUT	CAS	CMV	CSV	
0	0	0	0	0	

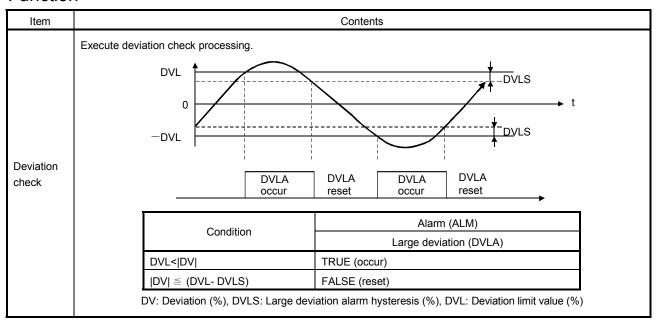
Functions overview: In the I-PD control, as process value is used in proportional and derivative terms, a step change in the set point does not result in shock in the output and enable slow response. (\triangle MV).

Function/FB classification name: Tag access FB _ Loop control operation FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
lanut	PVP	Input variable	REAL	PV input (unit: %)	0 to 100
Input	CASIN_T	Input variable	ADR_REAL	Cascade SV input (unit: %) (tracking)	0 to 100
Output	MVD	Output variable	REAL	△MV output (unit: %)	-999999 to 999999


Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
Operation processing	TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
	SVPTN_B0	Public variable	BOOL	Set value (SV) usage (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	SVPTN_B1	Public variable	BOOL	Set value (SV) pattern (TRUE: Not host MV, FALSE: Host MV)	TRUE, FALSE	TRUE	User

Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

Function

Item	Contents						
	(1) Gain (Kp) is calculated as below:	(1) Gain (Kp) is calculated as below:					
	Kp=K×P						
	K: Output gain, P: Gain						
	(2) Output gain (K) is calculated as below:						
	Condition		Output gain (K)				
	(a) When gap width (GW) = 0, the K value						
	corresponding to the deviation (DV)	T	K=1				
	(b) When gap width (GW) > 0, the K value	DV ≦ GW	K=GG (1 - GG) × GW				
	corresponding to the deviation (DV)	DV >GW	$K = 1 - \frac{(1 - GG) \times GW}{ DV }$				
	DV: Deviation (%), GW: Gap width (%)=Rate of gap	width to deviation, GG: Ga	ap gain				
	In case of (a) DV' (Positive)	In case of (b)	DV' (Positive)				
IPD operation	DV (Negative) DV (Negative) DV (Negative)	DV (Negative)	GG = 1.0 GG = 0.5 GG = 0.0 DV (Positive)				
	(3) Deviation for PID operation (DV') is calculated as belo	Ι	: PID operation (DV/)				
	DV<-GW	DV'= - (GG × GW)+(DV+	PID operation (DV') GW)				
	IDV ≤ GW	DV'=GG×DV	- ,				
	DV>GW	DV'=GG×GW +(DV-GW	/)				
	DV': Deviation for PID operation (%), DV: Deviation (%), GW: Gap width (%), G	G: Gap gain				
	(4) Deviation for positive/reverse operation (DV) is calculated	lated as below.					
	Condition	Dev	viation (DV)				
	Direct action (PN=1)	DV (%)=PVP (%)- SV (%	·				
	Reverse action (PN=0)	DV (%)=SV (%)- PVP (%	5)				
	DV: Deviation (%), PVP (%): PV input (%), SV (%) = RH: Engineering value high limit, RL: Engineering value	· · · · · -					

7 - 190 7 - 190

Item	Contents						
	(5) IPD operation	on is executed as below.					
		Direct action	Direct action Reverse action				
	Deviation (DVn)	$DV_n = PV_n - SV_n$	D\	√n =SVn − PVn			
	Output variation	$\triangle MV = Kp \times \{\frac{CT}{Ti} \times DV_n + (PV_n - PV_{n-1}) + B_n \}$ $\overline{\bigcup}_{Gain} \overline{\bigcup}_{Integral} \overline{\bigcup}_{Proportional} \overline{\bigcup}_{Derivative}$	$\triangle MV = Kp \times \{\frac{CT}{Ti} \times I$ $\overline{\bigcup}_{Gain} \overline{\bigcup}_{Ini}$	$\frac{DV_{n} - (PV_{n} - PV_{n-1}) + B_{n}}{Proportional}$ tegral Proportional			
	Bn	$\begin{split} B_{n} &= B_{n\text{-}1} + \frac{Md \times Td}{Md \times CT + Td} \times \\ & \{ (PV_{n} - 2PV_{n\text{-}1} + PV_{n\text{-}2}) - \frac{CT \times B_{n\text{-}1}}{Td} \} \end{split}$		$\frac{\text{Md} \times \text{Td}}{\text{I} \times \text{CT} + \text{Td}} \times \\ \text{PV}_{\text{n-1}} + \text{PV}_{\text{n-2}}) - \frac{\text{CT} \times \text{B}_{\text{n-1}}}{\text{Td}} \}$			
IPD operation	Previous de	: Integral time, Td: Derivative time, Md: Derivative viation, PVn: Process value, PVn-1: Previous proceering value conversion processing result					
(continued	(a) Integral	item and derivative term are listed below correspondent	nding to each condit	ion.			
from		Condition		Processing			
previous page)	Td=0,	or control mode being either MAN or CMV	Bn=0				
pago	Any of	f 1), 2), 3)					
	1) Ti= 2) Wh	:0 nen either MH or ML error occurs, MVP>MH and _	CT Ti × DVn > 0	$\frac{CT}{Ti} \times DVn = 0$			
	3) Wh	nen either MH or ML error occurs, MVP <ml and<="" td=""><td>CT Ti × DVn < 0</td><td></td></ml>	CT Ti × DVn < 0				
		Ti: Integral time, CT: Control cycle, DVn: Deviation, MH: Output high limit, ML: Output low limit, MVP: MV internal operation value					
	(b) Control	cycle (CT) should be set to be the integral multiple	of execution cycle (ΔΤ)			
	(c) Integral	constant should be set to be 0.0 or over control cyc	cle (CT).				
	` ,	ration of the tag access FB is executed in every con cycle (\triangle T), the last execution value is held (\triangle N	, , , , ,	iod, (output \triangle MV). For other			
	When the contro	ol mode is CAS/CSV, the set value (%) from the pri	mary loop is conver	ted to engineering value.			
Engineering value	$SV = \frac{RH - 100}{100}$	$\frac{RL}{0}$ $ imes$ set value (%) from the primary loop + RL					
conversion	RH: Engine	ering value high limit, RL: Engineering value low lin	mit, SV: Set value				
Inverse	The set value (S	V) of engineering value is converted to percentage	e SV (%).				
engineering value	$SV (\%) = \frac{1}{F}$	$\frac{100}{RH-RL} imes (SV-RL)$					
conversion	RH: Engine	ering value high limit, RL: Engineering value low lin	mit, SV: Set value				

7 - 191 7 - 191

Item	Contents						
	Whether execute track	ng processing to input variable CASIN_1	г.				
		Condition	Result				
Tracking	Tracking flag	Set value used (SVPTN_B0)	Result				
processing	1	FALSE	Input variable CASIN_T performs tracking.				
	1	TRUE	Input variable CASIN_T does not perform				
	0	FALSE or TRUE	tracking.				
Disable Alarm Detection	Set whether Enable Alarm Detection or not in variation rate limiter and high/low limiter. (1) Disable Alarm Detection with the setting of "Disable Alarm Detection" tag data: If the following items of Disable Alarm Detection (INH) of tag data are TRUE, alarm (ALM) of DVLA will not be detected. • ERRI, DVLI (2) Disable Alarm Detection by loop stop processing: Please refer to loop stop processing in the following contents.						

Other Functions

Item	Contents
Loop stop processing	The following processing is executed if the stop alarm (SPA) is TRUE. 1) Set △MV to 0. 2) Change the control mode automatically to MANUAL. 3) Reset DVLA when DVLA of alarm (ALM) occurs. 4) Alarm is not detected in deviation check.

Processing Operation

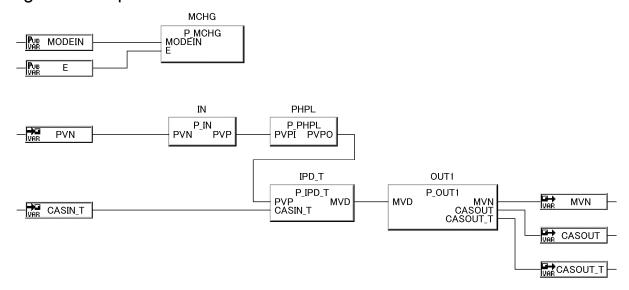
Processing Control mode	Deviation check	IPD operation	Engineering value conversion	Inverse engineering value conversion	Tracking	Alarm
MAN, CMV, AUT	0	0	×	0	O (*1)	O (*2)
CAS, CSV	0	0	0	0	×	○ (*2)

○: Execute ×: Not execute

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.


• When overflow occurs during operation. (Error code: 4100)

7 - 192 7 - 192

^{*1} Tracking is executed when the tracking flag (TRK) is 1.

^{*2} When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.

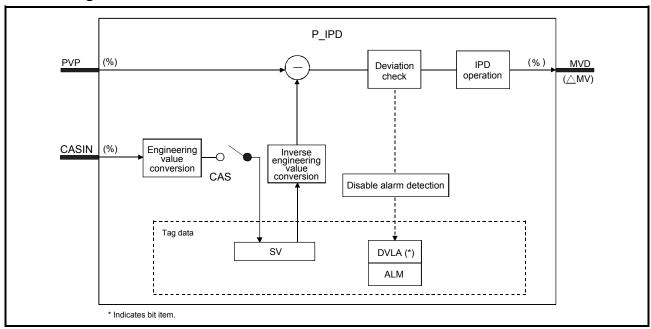
Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with program in the FB property window.

7 - 193 7 - 193

7.6.16 I-PD Control (Without Tracking to primary loop) (P_IPD)


FB	FBD parts
P_IPD	P_IPD PVP MVD CASIN

Corresponding tag type						
IPD						
Control mode						
0	0	0	0			
		Control mo	Control mode			

Function overview: In the I-PD control, as process value is used in proportional and derivative terms, a step change in the set point does not result in shock in the output and enable slow response. ($\triangle MV$).

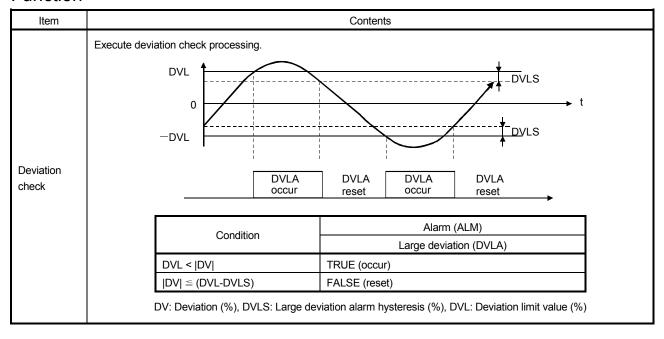
Function/FB classification name: Tag access FB _ Loop control operation FB

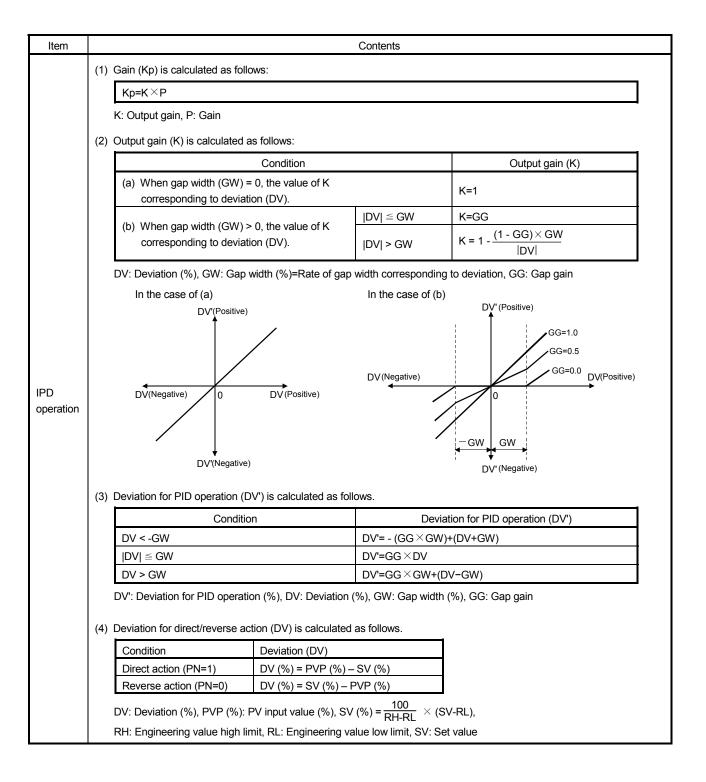
Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	PVP	Input variable	REAL	PV input (unit: %)	0 to 100
прис	CASIN	Input variable	REAL	Cascade SV input (unit: %)	0 to 100
Output	MVD	Output variable	REAL	△MV output (unit: %)	-999999 to 999999

Public Variable (Operation constant)


	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
Operation processing	PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User


7 - 194 7 - 194

Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

Function

7 - 196 7 - 196

Item	Contents							
	(5) IPD operat	tion is executed as follows.						
		Revers	se action					
	Deviation (DVn)	$DV_n = PV_n - SV_n$	DVn = S	SVn — PVn				
	Output variation (△MV)		$\triangle MV = Kp \times \{\frac{CT}{Ti} \times DV_n - \frac{CT}{Ti} \times DV_n $	$\frac{(PV_n - PV_{n-1}) + B_n}{Proportional}$				
	Bn	$B_{n} = B_{n-1} + \frac{Md \times Td}{Md \times CT + Td} \times \{(PV_{n} - 2PV_{n-1} + PV_{n-2}) - \frac{CT \times B_{n-1}}{Td}\}$		$ \frac{Td}{r + Td} \times + PVn-2) - \frac{CT \times B_{n-1}}{Td} \} $				
IPD operation	Previous d SVn: The p	Ti: Integral time, Td: Derivative time, Md: Derivative of eviation, PVn: Process value, PVn-1: Previous procesorocessing result of engineering value conversion litems and derivative items are listed below corresponds.	ess value, PVn-2: The proc					
(continued	(a) integral	Condition	onding to each condition.	Processing				
from	When Td=	=0, or control mode is either MAN or CMV		Bn=0				
previous page)	Any of 1), 1) Ti=0 2) When	2), 3) either MH or ML error occurs, MVP > MH and $\frac{CT}{Ti}$	$\frac{CT}{T i} \times DV_n = 0$					
	3) When either MH or ML error occurs, MVP < ML and CT/T i × DVn < 0 Ti: Integral time, CT: Control cycle, DVn: Deviation, MH: Output high limit value, ML: Output low limit value, MVP: MV internal operation value (b) Control cycle (CT) shall be set to be the integral multiple of execution cycle (△T).							
	(c) Integral	constant shall be set to be 0.0 or over control cycle	(CT).					
	. ,	eration of the tag access FB is executed in each coner execution cycles (\triangle T), hold the previous value. (• , , ,	out).				
Engineering	When the cont	trol mode is CAS/CSV, the set value (%) from the pri	mary loop is converted to	engineering value.				
value conversion	$SV = \frac{RH}{10}$	$\frac{-RL}{00}$ $ imes$ Set value (%) from the primary loop +RL						
CONVENSION	RH: Engine	eering value high limit, RL: Engineering value low lim	nit, SV: Set value					
Inverse	The set value ((SV) of engineering value is converted to percentage	e SV (%).					
engineering value	$SV (\%) = \frac{100}{RH - RL} \times (SV - RL)$							
conversion	RH: Engin	eering value high limit, RL: Engineering value low lin	nit, SV: Set value					
Disable Alarm Detection	Set whether Enable Alarm Detection or not in deviation check. (1) Disable Alarm Detection with the setting of "Disable Alarm Detection" tag data: If the following items of Disable Alarm Detection (INH) of tag data are TRUE, alarm (ALM) of DVLA will not be detected. • ERRI, DVLI							
	` '	larm Detection" by loop stop processing: er to loop stop processing in the following contents.						

7 - 197 7 - 197

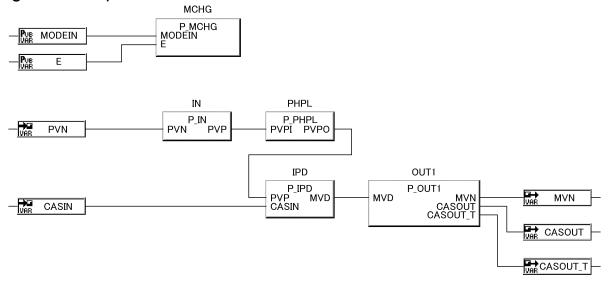
Other Functions

Item	Content
Loop stop processing	The following processing is executed if the stop alarm (SPA) is TRUE. 1) Set △MV to 0. 2) Change the control mode automatically to MANUAL. 3) Reset DLVA when DLVA of alarm (ALM) occurs. 4) Alarm is not detected in deviation check.

Processing Operation

Processing Control mode	Deviation check	IPD operation	Engineering value conversion	Inverse engineering value conversion	Alarm
MAN, CMV, AUT	0	0	×	0	○ (*1)
CAS, CSV	0	0	0	0	○ (*1)

○: Execute ×: Not execute


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

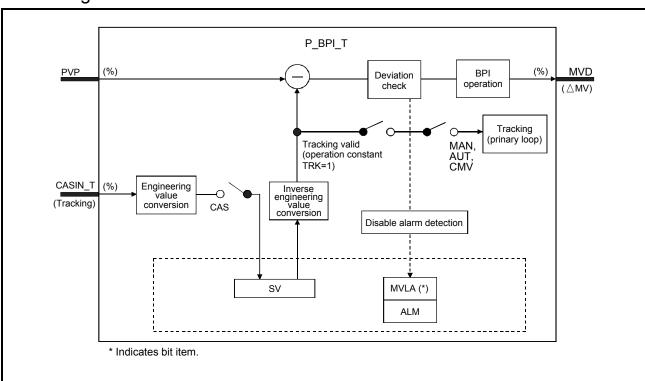
Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with program in the FB property window.

^{*1} When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.

7.6.17 Blend PI Control (With Tracking to primary loop) (P_BPI_T)


FB	FBD parts
P_BPI_T	P_BPI_T PVP MVD CASIN_T

	Corresponding tag type						
BPI							
	Control mode						
MAN	AUT	CAS	CMV	CSV			
0	0	0	0	0			

Functions overview: The control when the control volume is stable during a long period even if it vibrates in a short period.

Function/FB classification name: Tag access FB _ Loop control operation FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Content	Range
lt	PVP	Input variable	REAL	PV input (unit: %)	0 to 100
Input	CASIN_T	Input variable	ADR_REAL	Cascade SV input (unit: %)(tracking)	0 to 100
Output	MVD	Output variable	REAL	△MV output (unit: %)	-999999 to 999999

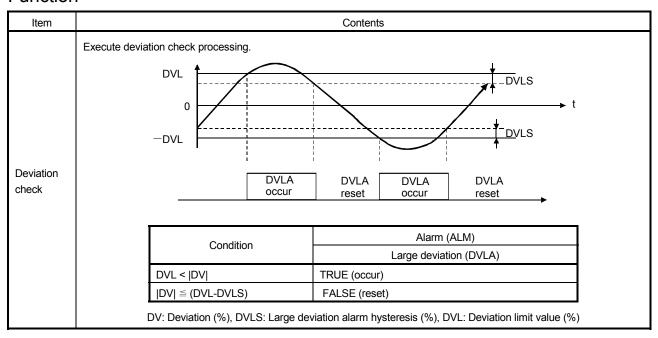
7 - 199 7 - 199

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Content	Range	Initial value	Storage
	DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
Operation processing	SVPTN_B0	Public variable	· · · IROOL	Set value (SV) used (TRUE: Not used, FALSE: Use)	TRUE, FALSE	TRUE	User
	SVPTN_B1	Public variable	BOOL	Set value (SV) pattern (TRUE: Not upper MV, FALSE: Upper MV)	TRUE, FALSE	TRUE	User
	RST_SDV_ON _CHGMODE	Public variable	BOOL	DV cumulative value reset in control mode change TRUE: Resets DV cumulative value (SDV) in control mode change (MAN/CMV → AUT/CAS/CSV) FALSE: Not reset DV cumulative value (SDV)	TRUE, FALSE	FALSE	User

Public Variables (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation processing	RST_SDV	Public variable	BOOL	DV cumulative value reset FALSE → TRUE: DV cumulative value (SDV) reset	TRUE, FALSE	FALSE	User


^{*1} Please read and write them with program.

It will not be displayed in FB property window of PX Developer.

Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

Function

7 - 200 7 - 200

Item		Contents					
	(1) Gain (Kp) is calculated as follows:						
	Kp=K×P						
	K: Output gain, P: Gain						
	(2) Output gain (K) is calculated as follow						
	(a) When gap width (GW) = 0, the v		Output gain (K)				
	corresponding to deviation (DV)		K=1				
	(b) When gap width (GW) > 0, the	DV ≦ GW	K=GG				
	corresponding to deviation (DV)		K=1- <u>(1-GG) ×GW</u> DV				
	DV: Deviation (%), GW: Gap width (%	6)=Rate of gap width corresponding	g to deviation, GG: Gap gain				
	In case of (a) DV'(Positive)	In case of (b)	DV'(Positive)				
BPI operation	DV(Negative) DV(Negative) DV(Negative) DV'(Negative) DV'(Negative) DV'(Negative) O DV'(Negative)						
	Condition	Deviation for	r PID operation (DV')				
	DV < - GW	$DV' = -(GG \times GW) + (DV + GW)$					
	DV ≦ GW	DV'=GG×DV					
	DV > GW	$DV'=GG \times GW+(DV-GW)$					
	DV': Deviation for PID operation (%), DV: Deviation (%), GW: Gap width (%), GG: Gap gain (4) Deviation for direct/reverse action (DV) is calculated as follows.						
	Condition	De	viation (DV)				
	Direct action (PN=1)	DV (%) = PVP (%) –SV (%)					
	Reverse action (PN=0)	DV (%) = SV (%) -PVP (%)					
	DV: Deviation (%), PVP (%): PV input RH: Engineering value high limit, RL:	· ··· · · -					

7 - 201 7 - 201

Item			Contents					
_	(5) BPI operation is executed	as follows.						
			ct action	Reverse action				
	Deviation (DVn)		PVn – SVn	DVn=SVn-PVn				
	Output variation (△MV)		△MV=Kp×△1	$T \times \{DV_n + \frac{CT}{Ti} \times \Sigma DV_i\}$				
	Kp: Gain, Ti: Integral time, △T: Execution cycle, CT: Control cycle, Σ DVi: The cumulative value of DVn, DV Deviation, PVn: Process value, SVn: The processing result of engineering value conversion							
BPI	(a) Integral item and derivat	1	low corresponding t					
operation (continued from previous page)	Either of 1), 2). 1) Ti=0 2) MLA or MHA is TRUE		$\frac{\text{CT}}{\text{T i}} \times \Sigma \text{DV}_{i} = \text{Ho}$	Processing Id the previous value				
	Ti ≠ 0		$\frac{\text{CT}}{\text{T i}} \times \Sigma \text{DV}_{i} = \frac{\text{CT}}{\text{T i}}$	$\Sigma \times (\Sigma DV_i + DV_n)$				
	Ti: Integral time, CT: Cont value, MHA: Output high l	•	cumulative value of	DVn, DVn: Deviation, MLA: Output low limit				
	(b) Control cycle (CT) should be set to be integral multiple of execution cycle (△T).(c) Integral constant should be set to be 0.0 or over control cycle (CT).							
	 (d) PID operation of the tag access FB is executed in every control cycle (CT), (△MV output). For other execution cycle (△T), the previous value shall be held. (△MV=0) 							
Engineering	Convert the set value (%), which is from primary loop control when the control mode is CAS or CSV, to engineering value.							
value conversion	SV = $\frac{RH-RL}{100}$ × set value (%) from the primary loop +RL							
00.110.010.	RH: High limit of engineer	ing value, RL: Low lii	mit of engineering v	alue, SV: Set value				
Inverse	Convert the set value SV of er	ngineering value to pe	ercentage SV (%).					
engineering value	$SV (\%) = \frac{100}{RH - RL} \times (S')$	V–RL)						
conversion	13.1.732	n limit of engineering value, RL: Low limit of engineering value, SV: Set value						
	Tracking operation for input va	ariable CASIN_T is ex	xecuted as follows:					
		Condition						
Tracking	Tracking flag (TRK)	Set value (SV) us	age (SCPTN_B0)	Result				
processing	1	FALSE		Input variable CASIN_T performs tracking.				
		TRUE		Input variable CASIN_T does not perform				
	0	FALSE or TRUE		tracking.				
Disable Alarm Detection	Set whether Enable Alarm Detection or not in deviation check. (1) Disable Alarm Detection with the setting of "Disable Alarm Detection" tag data: If the following items of Disable Alarm Detection (INH) of tag data are TRUE, alarm (ALM) of DVLA will not be detected. • ERRI, DVLI (2) "Disable Alarm Detection" by loop stop processing: Please refer to loop stop processing in the following contents.							

7 - 202 7 - 202

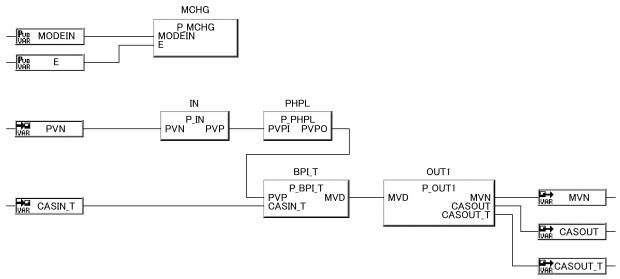
Other Functions

Item	Content
processing	The following processing is executed if the stop alarm (SPA) is TRUE. 1) Set △MV to 0. 2) Change the control mode automatically to MANUAL. 3) Reset DLVA when DLVA of alarm (ALM) occurs. 4) Alarm is not detected in deviation check.

Processing Operation

Processing Control mode	Deviation check	BPI operation	Engineering value conversion	Inverse engineering value conversion	Tracking	Alarm
MAN, CMV, AUT	0	0	×	0	○ (*1)	O (*2)
CAS, CSV	0	0	0	0	×	○ (*2)

O: Execute X: Not execute


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with program in the FB property window.

7 - 203 7 - 203

^{*1} Tracking is executed when the tracking flag (TRK) is 1.

^{*2} When the bit of "Disable Alarm Detection" (INH) which corresponding to an alarm is TRUE, the alarm is not detected.

7.6.18 Blend PI Control (Without Tracking to primary loop) (P_BPI)


FB	FBD parts
P_BPI	P_BPI PVP MVD CASIN

Corresponding tag type								
BPI								
	Control mode							
MAN								
0	0	0	0	0				

Functions overview: The control when the control volume is stable during a long period even if it vibrates in a short period.

Function/FB classification: Tag access FB $_$ loop control operation FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Content	Range
Input	PVP	Input variable	REAL	PV input (unit: %)	0 to 100
iliput	CASIN	Input variable	REAL	Cascade SV input (unit: %)	0 to 100
Output	MVD	Output variable	REAL	△MV output (unit: %)	-999999 to 999999

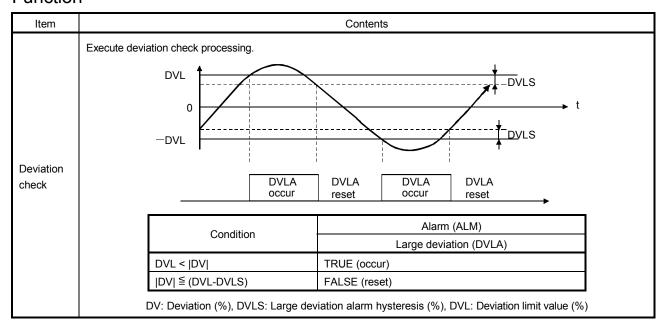
7 - 204 7 - 204

Public Variable (Operation constant)

	Variable name	Variable type	Data type	Content		Initial value	Storage
	DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PN	Public variable	INT	Reverse action · direct action (0: Reverse action, 1:Direct action)	0 to 1	0	User
Operation processing	SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)		TRUE	User
	RST_SDV_ON _CHGMODE	Public variable	BOOL	DV cumulative value reset in control mode change TRUE: Resets DV cumulative value (SDV) in control mode change (MAN/CMV → AUT/CAS/CSV) FALSE: Not reset DV cumulative value (SDV)	TRUE, FALSE	FALSE	User

Public Variables (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation processing	RST_SDV	Public variable	BOOL	DV cumulative value reset FALSE → TRUE: DV cumulative value (SDV) reset	TRUE, FALSE	FALSE	User


^{*1} Please read and write them with program.

It will not be displayed in FB property window of PX Developer.

Tag Data

For details about the tag data that is read/written by this tag access FB, please refer to tag data list of various tag types in Appendix 1.1.

Function

Item		Contents	
	(1) Gain (Kp) is calculated as follows:		
	Kp=K×P		
	K: Output gain, P: Gain		
	(2) Output gain (K) is calculated as follows:		
	Condition		Output gain (K)
	(a) When gap width (GW) = 0, the value corresponding to deviation (DV).	of K	K=1
		$ DV \leq W$	K=GG
	(b) When gap width (GW) > 0, the value corresponding to deviation (DV).	of K DV > GW	K=1- <u>(1-GG) × GW</u> DV
	DV: Deviation (%), GW: Gap width (%)= the		nding to deviation, GG: Gap gain
	In case of (a) DV'(Positive)	In case of (b)	DV' (Positive)
BPI operation	DV(Negative) 0 DV(Posit		GG=1.0 GG=0.5 GG=0.0 DV(Positive) DV' (Negative)
	(3) Deviation for PID operation (DV') is calculate	ted as follows.	
	Condition	+	for PID operation (DV')
	DV < -GW	DV'=-(GG × GW)+(DV+G	W)
	DV ≤ GW	DV'=GG × DV	<u> </u>
	DV > GW DV': Deviation for PID operation (%), DV: D	DV'=GG × GW+(DV-GW)	
	(4) Deviation (DV) for direct/reverse action is c		л (<i>/v)</i> , оо. оар уаш
	Condition		Deviation (DV)
	Direct action (PN=1)	DV (%) = PVP (%) -SV (%	(b)
	Reverse action (PN=0)	DV (%) = SV (%) -PVP (%	(a)
	DV: Deviation (%), PVP (%): PV input value RH: Engineering value high limit, RL: Engir		

7 - 206 7 - 206

Item	Contents						
	(5) BPI operation is cond	ucted as follows.					
		Direct action	Reverse action				
	Deviation (DVn)	$DV_n = PV_n - SV_n$	$DV_n = SV_n - PV_n$				
	Output variation (△MV)	△MV=Kp×△T>	$\times \{DV_n + \frac{CT}{T_i} \times \Sigma DV_i\}$				
		time, $\triangle T$: Execution cycle, CT: Control cycle as value, SVn: The processing result of engine A	$_{\rm e}$, Σ DVi: The cumulative value of DVn, DVn: ineering value conversion				
BPI	(a) Integral items and d	erivative items are listed below corresponding	g to each condition.				
operation		Condition	Processing				
operation (continued from previous page)	Either of 1), 2). 1) Ti=0 2) MLA or MHA is T	RUE	$\frac{CT}{T \ i} \times \Sigma \ DV_i$ = Hold the previous value				
	Ti ≠ 0		$\frac{CT}{Ti} \times \Sigma DV_i = \frac{CT}{Ti} \times (\Sigma DV_i + DV_n)$				
	 Ti: Integral time, CT: Control cycle, Σ DVi: The cumulative value of DVn, DVn: Deviation, MLA: Output low limit value, MHA: Output high limit value (b) Control cycle (CT) shall be set to be integral multiple of execution cycle (ΔT). (c) Integral constant shall be set to be 0.0 or over control cycle (CT). (d) PID operation of the tag access FB is executed in every control cycle (CT), (ΔMV output). 						
	For other execution	cycle (\triangle T), the previous value shall be held	l. (△MV=0)				
Engineering	Convert the set value (%), which is from primary loop control when the control mode is CAS or CSV, to engineering value.						
value	SV = $\frac{RH-RL}{100}$ × set value (%) from the primary loop +RL						
conversion	RH: High limit of engineering value, RL: Low limit of engineering value, SV: Set value						
Inverse	Convert the set value SV	of engineering value to percentage SV (%).					
engineering value	$SV (\%) = \frac{100}{RH - RL} \times (SV - RL)$						
conversion	RH: High limit of engineering value, RL: Low limit of engineering value, SV: Set value						
Disable Alarm Detection	(1) Disable Alarm Detecti If the following items of detected. ■ ERRI, DVLI (2) "Disable Alarm Detections"	n Detection or not in deviation check. on with the setting of " Disable Alarm Detecti of Disable Alarm Detection (INH) of tag data tion" by loop stop processing: top processing in the following contents.					

Other Functions

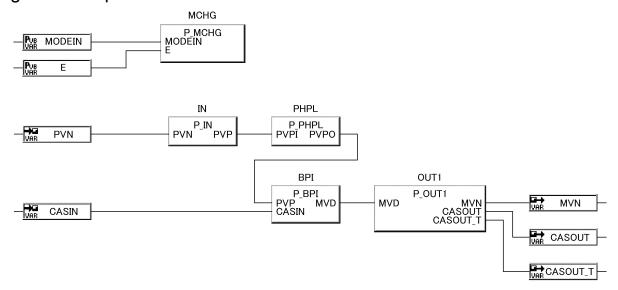
Item	Contents
Loop stop processing	The following processing is executed if the stop alarm (SPA) is. 1) Set △ MV to 0. 2) Change the control mode automatically to MANUAL. 3) Reset DLVA when DLVA of alarm (ALM) occurs. 4) Alarm is not detected in deviation check.

7 - 207 7 - 207

Processing Operation

Processing Control mode	Deviation check	BPI operation	Engineering value conversion	Inverse engineering value conversion	Alarm
MAN, CMV, AUT	0	0	×	0	○ (*1)
CAS, CSV	0	0	0	0	○ (*1)

O: Execute X: Not execute


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

POINT

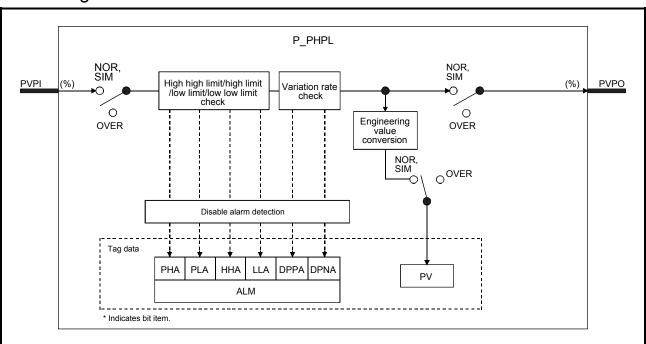
It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with program in the FB property window.

^{*1} When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.

7.6.19 High/Low Limit Alarm Check (P_PHPL)

FB	FBD parts
P_PHPL	P_PHPL PVPI PVPO

Corresponding tag type						
BPI, IPD, MONI, MWM, ONF2 PID, PIDP, R, SPI, 2PID, 2PIDH	ONF3,					

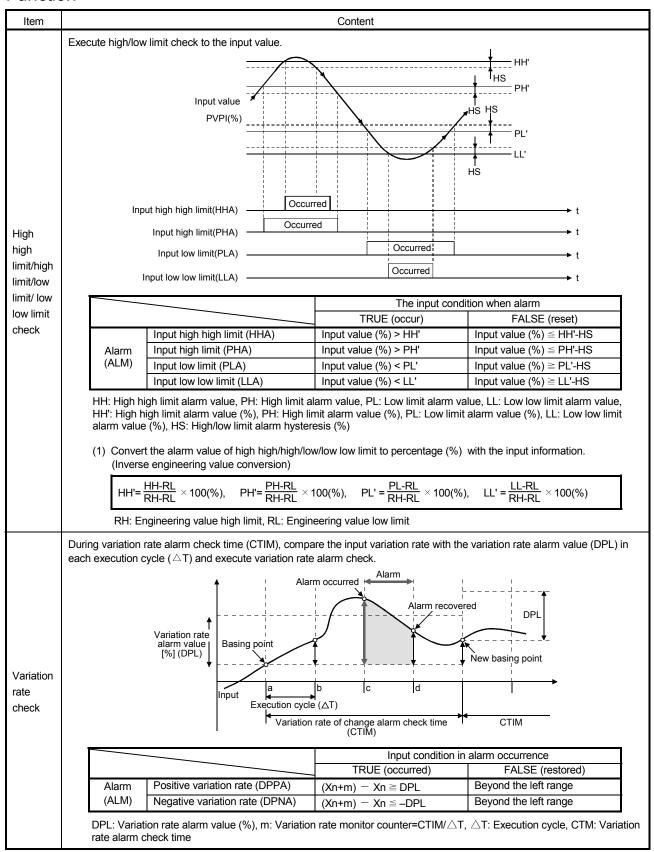

Control mode							
MAN	IAN AUT CAS CMV CSV						
0	0	0*1	0	0			

^{*1} Transition to CASDR is possible.

Functions overview: Execute high high/high/low/low low limit check and variation rate check to the input (PVPI) and output. Alarm occurs if check range is exceeded.

Function/FB classification: Tag access FB _ Loop control operation FB

Block Diagram


Input and Output Pins

Pin	Variable name	Variable type	Data type	Content	Range
Input	PVPI	Input variable	REAL	PV input (unit: %)	0 to 100
Output	PVPO	Output variable	REAL	PV output (unit: %)	0 to 100

Tag Data

For details about the tag data that is read/written by this tag access FB, please refer to tag data list of various tag types in Appendix 1.1.

Function

7 - 210 7 - 210

Item	Contents					
Engineering value conversion	Convert the process value (%) to engineering value.					
	$PV = \frac{RH - RL}{100} \times Input value (\%) + RL$					
	RH: High limit of engineering value, RL: Low limit of engineering value, PV: Process value					
	Set whether Enable Alarm Detection or not in high high/high/low/low low and variation rate check.					
	(1) Disable Alarm Detection with the setting of "Disable Alarm Detection" tag data:					
Disable Alarm	If the following items of Disable Alarm Detection (INH) of tag data are TRUE, alarm (ALM) of HHA, LLA, PHA,					
Disable Alarm Detection	PLA, DPPA, DPNA will not be detected.					
Detection	● ERRI, HHI, LLI, PHI, PLI, DPPI, DPNI					
	(2) "Disable Alarm Detection" by loop stop processing:					
	Please refer to loop stop processing in the following contents.					

Other Function

Item	Content
Loop stop	The following processes are executed when either the stop alarm (SPA) of alarm (ALM) or the tag stop (TSTP) of monitor output buffer (DOM) is TRUE. 1) Output (PVPO)= RV-RL/RH-RL × 100 (%)
processing	2) Automatically switches the control mode to MANUAL.
	3) Reset HHA, LLA, PHA, PLA, DPPA and DPNA when alarm (ALM) HHA, LLA, PHA, PLA, DPPA and DPNA of alarm (ALM) occur.
	4) Alarm is not detected in high high/high/low/low low limiter check.

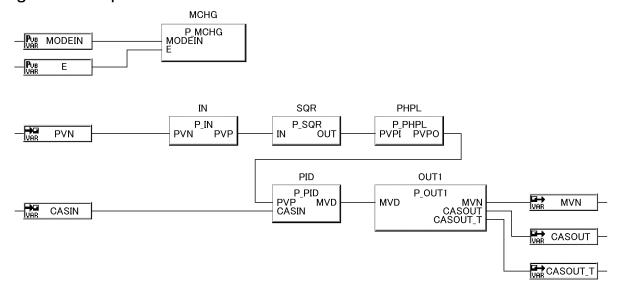
Processing Operation

Processing Control mode	High high/high/low/ low low limit check	Variation rate check	Engineering value conversion	Alarm
MAN, CMV, AUT	0	0	×	0
CAS, CSV, CASDR	0	0	0	0

○: Execute ×: Not execute

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.


Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

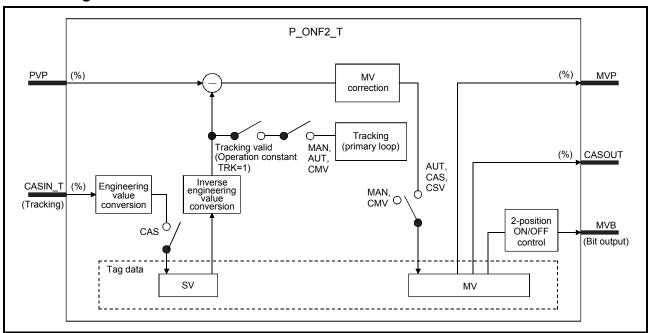
• When overflow occurs during operation. (Error code: 4100)

7 - 211 7 - 211

^{*1} When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.

Program Example

POINT


It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with program in the FB property window.

7 - 212 7 - 212

7.6.20 2-Position ON/OFF (With Tracking to primary loop) (P_ONF2_T)

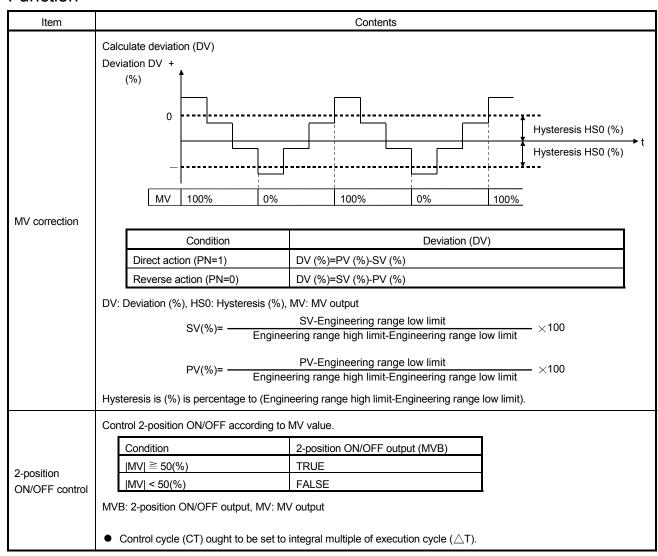
FB	FBD parts			Corresponding tag type				
	P ONF2 T		ONF2					
D ONES T	PVP MVP	Control mode						
P_ONF2_T	CASIN_T CASOUT		MAN	AUT	CAS	CMV	CSV	
	MVB		0	0	0	0	0	
Function overview: Execute 2-position ON/OFF control.								
unction/FB classification name: Tag access FB_Loop control operation FB								

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	PVP	Input variable	REAL	PV input (unit: %)	0 to 100
Input	CASIN_T	Input variable	AR_REAL	Cascade input (unit: %) (Tracking)	0 to 100
	MVP	Output variable	REAL	MV output (unit: %)	0 to 100
Output	CASOUT	Output variable	REAL	Cascade output (unit: %)	0 to 100
Output	MVB	Output variable	BOOL	ON/OFF output (ON if MV \geq 50%) (TRUE: ON, FALSE: OFF)	TRUE, FALSE

7 - 213 7 - 213


Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
Operation	TRK	Public variable	INT	Tracking flag (0:Not execute, 1:Execute)	0 to 1	0	User
processing	SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	SVPTN_B1	Public variable	BOOL	Set value (SV) pattern (TRUE: Not upper, MV FALSE: Upper MV)	TRUE, FALSE	TRUE	User

Tag Data

For details about the tag data that is read/written by this tag access FB, please refer to tag data list of various tag types in Appendix 1.1.

Function

7 - 214 7 - 214

Item		Contents								
	Con	Convert set value (%) from the primary loop in CAS or CSV mode (control mode) into engineering value.								
Engineering value conversion		$SV = \frac{RH - RL}{100} \times set v$	SV = $\frac{RH-RL}{100}$ × set value (%) from the primary loop + RL							
CONVENSION	RH:	High limit of engineering	value, RL: Low limit of engineering va	lue SV: Set value						
Inverse	Con	vert set value SV of engi	neering value into percentage SV (%)							
engineering value		$SV (\%) = \frac{100}{RH - RL} \times (SV - RL)$								
conversion	RH:	H: High limit of engineering value, RL: Low limit of engineering value SV: Set value								
	Whe	ther the tracking process	sing is executed to the input variable C	CASIN_T is described as follows:						
			Condition	Down!!						
Tracking	Trac		Set value (SV) used (SVPTN_B0)	Result						
processing		1	FALSE	Input variable CASIN_T performs tracking.						
		ı	TRUE	Input variable CASIN_T does not perform						
		0	FALSE or TRUE	tracking.						

Other Functions

Item	Contents
Loop stop processing	The following processing is exceeded if the stop alarm (SPA) is TRUE. 1) Hold output (MVP). 2) Change the control mode automatically to MAUNAL.

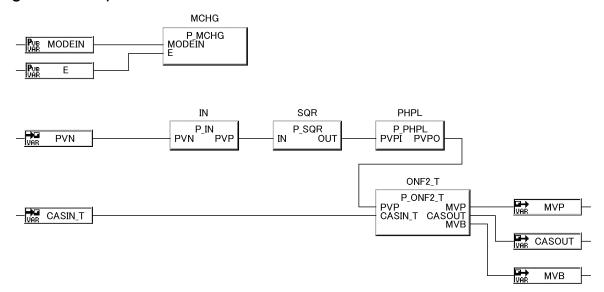
Processing Operation

Processing Control mode	MV correction	2-position ON/OFF control	Engineering value conversion	Inverse engineering value conversion	Tracking
MAN, CMV, AUT	0	0	0	0	○ (*1)
CAS, CSV	0	0	0	0	×

○: Execute ×: Not execute

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.


Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

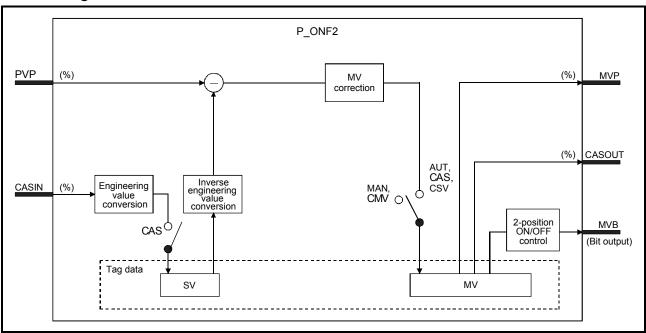
• When overflow occurs during operation. (Error code: 4100)

7 - 215 7 - 215

^{*1} Tracking is executed when the tracking flag (TRK) is 1.

Program Example

POINT


It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 216 7 - 216

7.6.21 2-Position ON/OFF (Without Tracking to primary loop) (P_ONF2)

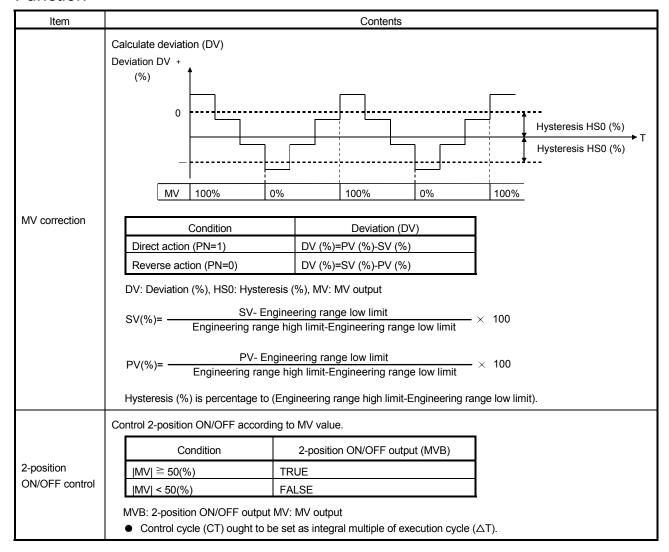
FB	FBD parts	Corresponding tag type								
	P_ONF2				ONF2					
P_ONF2	PVP MVP	Control mode								
	CASIN CASOUT MVB		AUT	CAS	CMV	CSV				
	5	0	0	0	0	0				
Function overview: Execute 2-position ON/OFF control.										
Function/FB classification name: Tag access GB_Loop control operation FB										

Block Diagram

Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range
	PVP	Input variable	REAL	PV input (unit: %)	0 to 100
Input CASIN Input variate		Input variable	REAL	Cascade input (unit: %) (Tracking)	0 to 100
	MVP	Output variable	REAL	MV output (unit: %)	0 to 100
Output	CASOUT	Output variable	REAL	Cascade output (unit: %)	0 to 100
Output	MVB	Output variable	BOOL	ON/OFF output (ON if MV ≥ 50%) (TRUE: ON, FALSE: OFF)	TRUE, FALSE

7 - 217 7 - 217


Public Variable (Operation constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation processing	PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User

Tag Data

For details about the tag data that is read/written by this tag access FB, please refer to tag data list of various tag types in Appendix 1.1.

Function

7 - 218 7 - 218

Item	Contents						
	Convert set value (%) from the primary loop in CAS or CSV mode (control mode) into engineering value.						
Engineering value conversion	$SV = \frac{RH - RL}{100} \times Set \text{ value (\%) from primary loop + RL}$						
	RH: High limit of engineering value, RL: Low limit of engineering value SV: Set value						
	Convert set value SV of engineering value into percentage SV (%)						
Inverse engineering value conversion	$SV (\%) = \frac{100}{RH - RL} \times (SV - RL)$						
	RH: High limit of engineering value, RL: Low limit of engineering value SV: Set value						

Other Functions

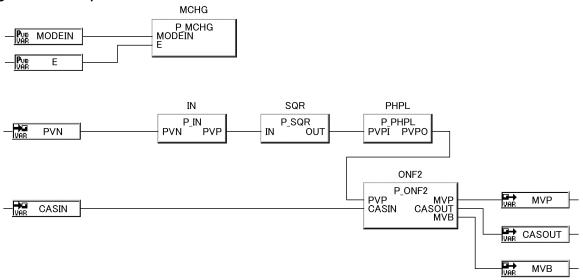
Item	Contents				
Loop stop processing	The following processing is exceeded if the stop alarm (SPA) is TRUE. 1) Hold output (MVP). 2) Change the control mode automatically to MAUNAL.				

Processing Operation

Processing Control mode	MV correction	2-position ON/OFF control	Engineering value conversion	Inverse engineering value conversion
MAN, CMV, AUT	0	0	×	0
CAS, CSV	0	0	0	0

○: Execute ×: Not execute

Error


Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

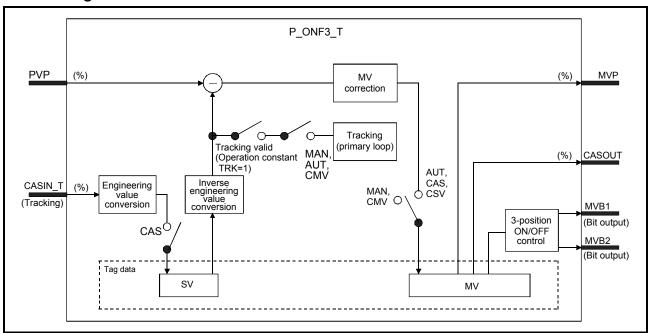
• When overflow occurs during operation. (Error code: 4100)

7 - 219 7 - 219

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.


7 - 220 7 - 220

7.6.22 3-Position ON/OFF (With Tracking to primary loop) (P_ONF3_T)

FB	FBD parts	Corresponding tag type							
	P_ONF3_T	ONF3							
P_ONF3_T	PVP MVP	Control mode							
	CASIN_T CASOUT WVB1 WVB2 WVB2	MAN	AUT	CAS	CMV	CSV			
		0	0	0	0	0			
Function overview: Execute 3-position ON/OFF control.									

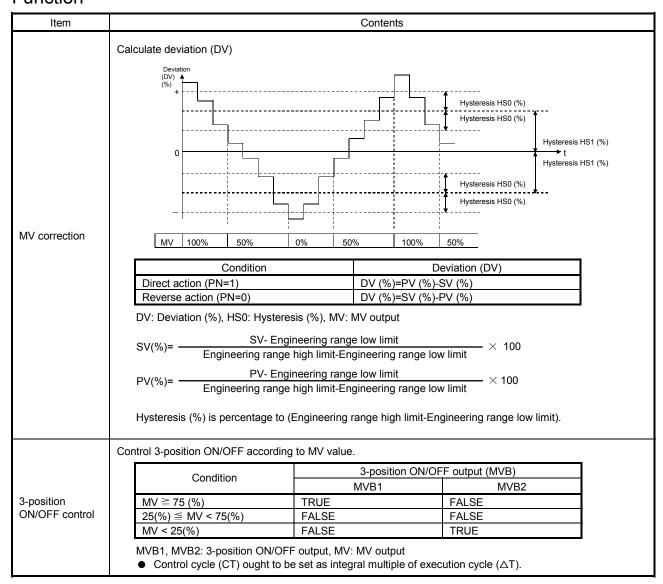
Function/FB classification name: Tag access FB_Loop control operation FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Innut	PVP	Input variable	REAL	PV input (unit: %)	0 to 100
Input	CASIN_T	Input variable	ADR_REAL	Cascade input (unit: %) (Tracking)	0 to 100
	MVP	Output variable	REAL	MV output (unit: %)	0 to 100
	CASOUT	Output variable	REAL	Cascade output (unit: %)	0 to 100
Output	MVB1	Output variable	BOOL	ON/OFF output (ON if MV ≥ 75%) (TRUE: ON, FALSE: OFF)	TRUE, FALSE
	MVB2	Output variable	BOOL	ON/OFF output (ON if MV < 25%) (TRUE: ON, FALSE: OFF)	TRUE, FALSE

7 - 221 7 - 221


Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation processing	PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: direct action)	0 to 1	0	User
	TRK	Public variable	INT	INT Tracking flag (0:Not execute, 1:Execute)		0	User
	SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TURE	User
	SVPTN_B1	Public variable	BOOL	Set value (SV) pattern (TRUE: Not upper MV, FALSE: Upper MV)	TRUE, FALSE	TRUE	User

Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

Function

7 - 222 7 - 222

ue.				
$SV (\%) = \frac{100}{RH - RL} \times (SV - RL)$				

Other Functions

Item	Contents
Loop stop processing	The following processing is exceeded if the stop alarm (SPA) is TRUE. 1) Hold output (MVP). 2) Change the control mode automatically to MAUNAL.

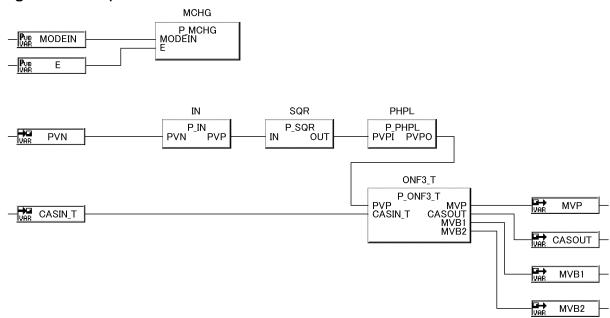
Processing Operation

Processing Control mode	MV correction	3-position ON/OFF control	Engineering value conversion	Inverse engineering value conversion	Tracking
MAN, CMV, AUT	0	0	0	0	○ (*1)
CAS, CSV	0	0	0	0	×

○: Execute ×: Not execute

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.


Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

7 - 223 7 - 223

^{*1} Tracking is executed when the tracking flag (TRK) is 1.

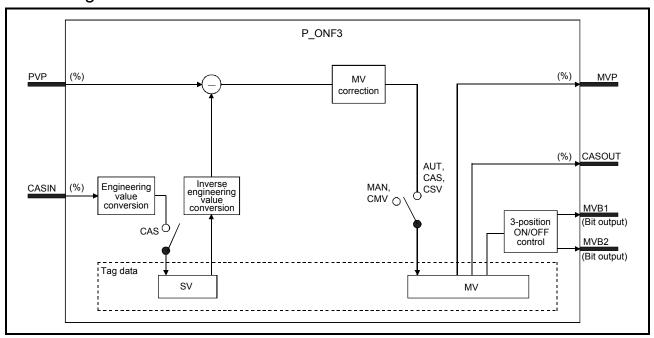
Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 224 7 - 224

CSV


7.6.23 3-Position ON/OFF (Without Tracking to primary loop) (P_ONF3)

FB	FBD parts		Corresponding tag type				
	P_ONF3	ONF3					
P_ONF3	PVP MVP CASIN CASOUT	Control r					
5 6	MVB1 — MVB2 —	MAN	AUT	CAS	CM		

Function overview: Execute 3-poisition ON/OFF control.

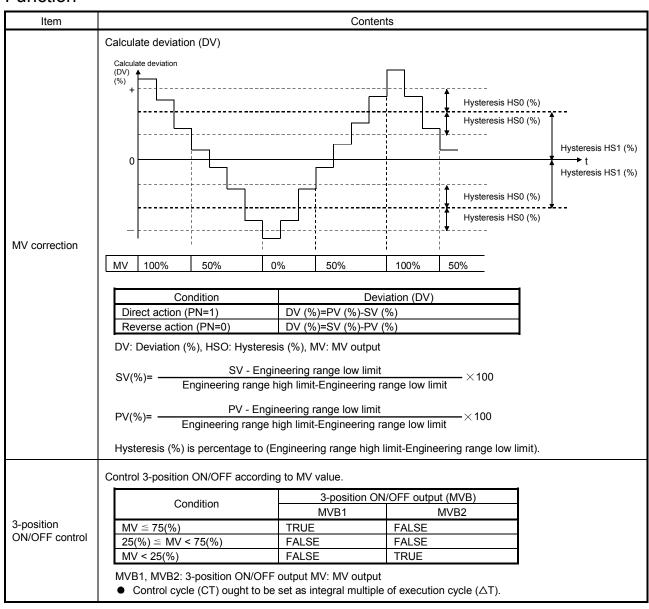
Function/FB classification name: Tag access FB_loop control operation FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Innut	PVP	Input variable	REAL	PV input (unit: %)	0 to 100
Input	CASIN	Input variable	REAL	Cascade input (unit: %) (Tracking)	0 to 100
	MVP	Output variable	REAL	MV output (unit: %)	0 to 100
	CASOUT	Output variable	REAL	Cascade output (unit: %)	0 to 100
Output	MVB1	Output variable	BOOL	ON/OFF output (ON if MV ≥ 75%) (TRUE: ON, FALSE: OFF)	TRUE, FALSE
	MVB2	Output variable	BOOL	ON/OFF output (ON if MV < 25%) (TRUE: ON, FALSE: OFF)	TRUE, FALSE

7 - 225 7 - 225


Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation processing	PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User

Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

Function

7 - 226 7 - 226

Item	Contents	
Foodsoodso	Convert set value (%) from the primary loop in CAS or CSV mode (control mode) into engineering value.	
Engineering value conversion	$SV = \frac{RH - RL}{100} \times Set \text{ value (\%) from primary loop + RL}$	
	RH: high limit of engineering value, RL: low limit of engineering value SV: set value	
Inverse	Convert set value SV of engineering value into percentage SV (%)	
engineering value	$SV (\%) = \frac{100}{RH - RL} \times (SV - RL)$	
conversion	RH: High limit of engineering value, RL: Low limit of engineering value SV: Set value	

Other Functions

Item	Contents
Loop stop processing	The following processing is exceeded if the stop alarm (SPA) is TRUE. 1) Hold output (MVP). 2) Change the control mode automatically to MAUNAL.

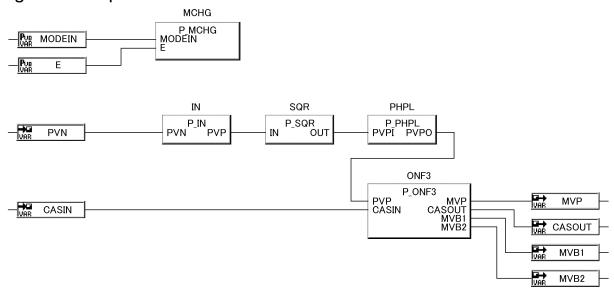
Processing Operation

Processing Control mode	MV correction	3-position ON/OFF control	Engineering value conversion	Inverse engineering value conversion	Tracking
MAN, CMV, AUT	0	0	0	0	O (*1)
CAS, CSV	0	0	0	0	×

○: Execute ×: Not execute

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.


Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

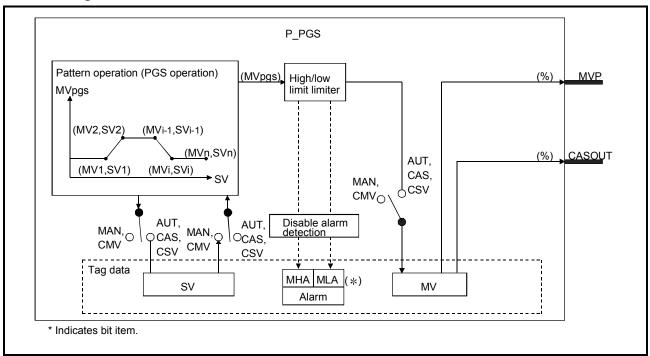
7 - 227 7 - 227

^{*1} Tracking is executed when the tracking flag (TRK) is 1.

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.


7 - 228 7 - 228

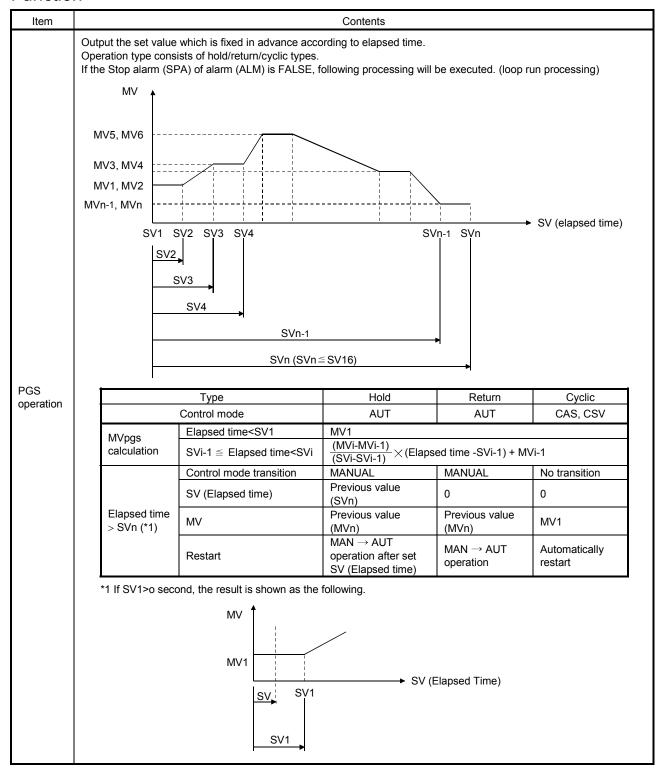
7 PROCESS FB ______ MELSOFT

7.6.24 Program Setter (P_PGS)

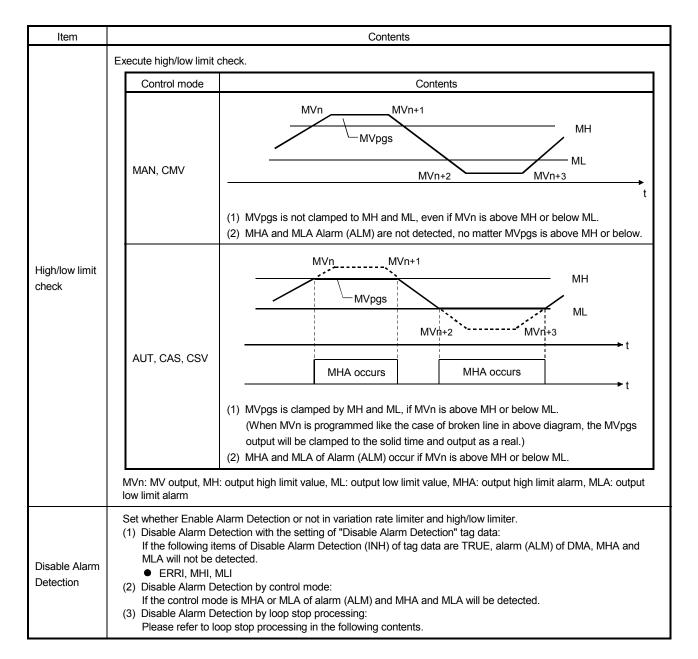
FB	FBD parts		Corresponding tag type				
		PGS					
	P_PGS		С	ontrol mo	de		
P_PGS	MVP —	MAN	AUT	CAS	CMV	CSV	
	CASOUT	0	0	0	0	0	
Function overview: Set slope and set value to time and control the program.							
Function/FB classification name: Tag access FB_Loop control operation							

Block Diagram

Input and Output Pins


Pin	Variable name	Variable type	Data type	Contents	Range
Output	MVP	Output variable	REAL	MV output (unit: %)	0 to 100
Output CASOUT Output variable		REAL	Cascade output (unit: %)	0 to 100	

Tag Data


For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

7 - 229 7 - 229

Function

7 - 230 7 - 230

Other Functions

Item	Contents
Loop stop processing	The following processing is executed if the stop alarm (SPA) of alarm (ALM) is TRUE. 1) Hold the output (MVN). 2) Change the control mode automatically to MANUAL. 3) Reset MHA and MLA when MHA, and MLA of alarm (ALM) occurs. 4) Alarm is not detected in variation rate limiter and high/ low limiter.

POINT

If operation constant "number of points" (PTNO) of tag data is 0, the same processing as loop stop processing is executed.

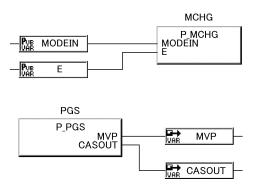
7 - 231 7 - 231

Processing Operation

Processing Control mode	PGS mode operation	High/low limit detection	Alarm
MAN (*1), CMV	×	×	× (*2)
AUT,CAS,CSV	0	0	○ (*3)

○: Execute ×: Not execute

- *1 If operation constant number of points (PTNO) is 0, the same processing as loop stop processing is executed and control mode changes to MANUAL.
- *2 When the bit of alarm (ALM) is reset to TRUE (occurred), the alarm cannot be detected.
- *3 When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

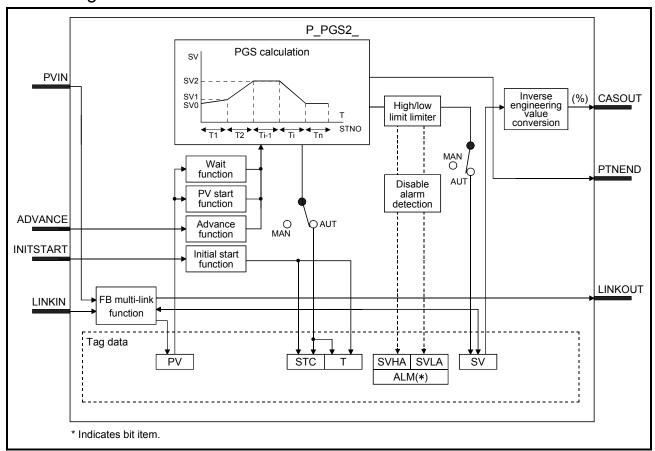
Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 232 7 - 232

7.6.25 Multi-Point Program Setter (P_PGS2_)


FB	FBD parts		
15		PGS2	Corre
	P_PGS2_ — PVIN CASOUT—		(
P_PGS2_	ADVANCE PTNEND — INITSTART LINKOUT —	MAN	AUT
	- LINKIN	0	0

	Corresponding tag type					
PGS2						
	Control mode					
MAN	AUT	CAS	CMV	CSV		
0	0	_	_	_		

Function overview: Registers up to 32 steps specified with the time span and the set value program, and calculates the set values correspond to the passing time for each step in linear interpolation.

Function/FB classification name: Tag access FB_Loop control operation

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVIN	Input variable	REAL	Process input (Engineering value)	-32768 to 32767
Input	ADVANCE	Input variable	BOOL	Advance command	TRUE, FALSE
Input	INITSTART	Input variable	BOOL	Initial start command	TRUE, FALSE
	LINKIN	Input variable	ADR_REAL	Link input	
	CASOUT	Output variable	REAL	Cascade output (unit: %)	0 to 100
Output	PTNEND	Output variable	BOOL	Pattern end output	TRUE, FALSE
	LINKOUT	Output variable	ADR_REAL	Link output	_

7 - 233 7 - 233

Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	PVSTARTNO	Public variable	INT	PV start search start step	1 to 32	1	User
Operation	PVENDNO	Public variable	INT	PV start search end step	1 to 32	32	User
processing	PRIMARY	Public variable	BOOL	Lead FB specified (TRUE: Lead, FALSE: Following)	TRUE, FALSE	TRUE	User

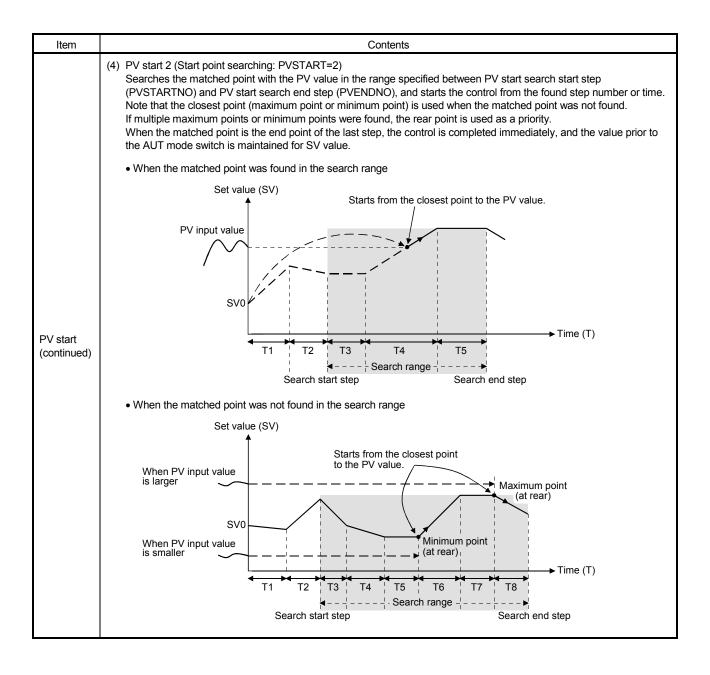
Public Variable (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
P_PGS2_	TCNT	Public variable	INT	Second counter for minute mode	0 to 59	0	System
processing	TMCNT	Public variable	INT	Millisecond counter for second mode	0 to 999	0	System

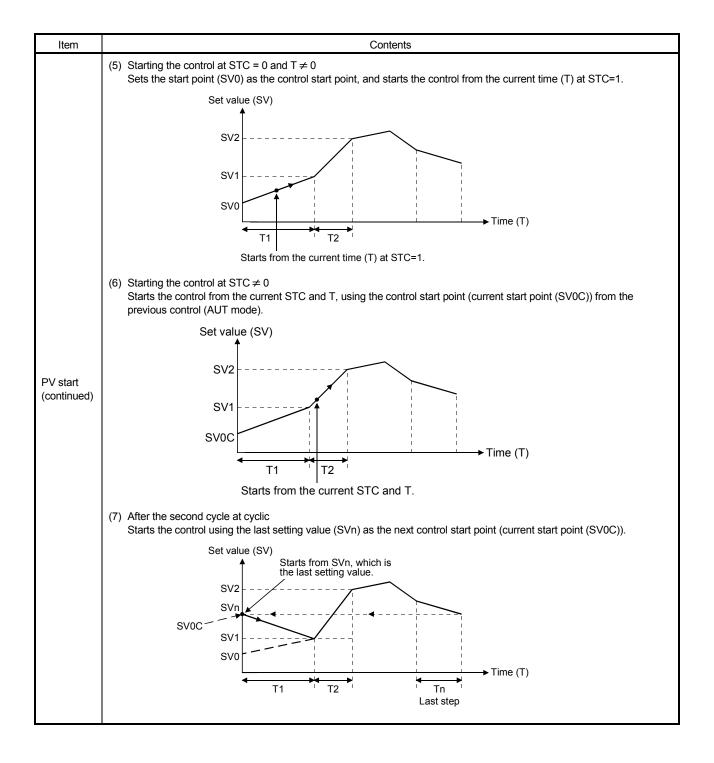
^{*1:} Read and write them with a program.

It will not be displayed on FB property window of PX Developer.

Tag data


For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

7 - 234 7 - 234

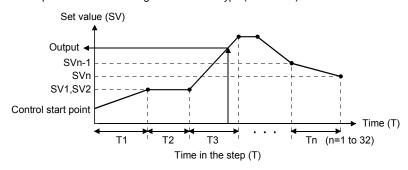

Function

Item	Contents						
			le switch), the difference fro point. The adjusted control				
			C	ontrol start condition			
	PV start type	CTNO-0		STNO≠0			
		STNO=0	STC = 0 and T= 0	STC = 0 and T \neq 0	STC≠0	After the second cycle at cyclic	
	PVSTART=0 PVSTART=1 PVSTART=2	Refer to (1).	SV0 start (refer to (2)). PV start 1 (refer to (3)). PV start 2 (refer to (4)).	Refer to (5).	Refer to (6).	Refer to (7).	
	(1) When the Number Since step setting i completion output	s empty, whe	en switching to AUT mode,	the system switches it	t to MAN mode	and turns pattern	
	(2) SV0 start (Fixed sta	art point: PV	-	ontrol start point, witho	out referring the	PV value.	
		Set value (S	V)				
PV start	_	SV0 T1	rts from SV0.	74 T5	→ Time	(T)	
		3) PV start 1 (Start point correction: PVSTART = 1) Starts the control with setting PV value as the control start point.					
		Set value (S	V)				
		Start	s from PV value.				
	PV input	value SV0			Time	(T)	
	_	▼ T1	T2 T3 T	T4 T5	——→ Time	:(1)	

7 - 235

7 - 236 7 - 236

7 - 237 7 - 237


Item Contents

Outputs the set values correspond to the time specified for each step in advance according to the passing time in AUT mode.

The operation type has three types: HOLD, RETURN, and CYCLIC.

Can register time spans and set values in (Tn, Svn) format for each step up to 32 points.

Note that the control start point follows the setting of the PV start type (PVSTART).

(1) Executing step specification

In AUT mode, the set value jumps to the head of the specified step (T = 0), if the executing step number (STC) is changed.

Additionally, changing the time in the step (T) jumps the set value to the time in the same step.

(2) Step management

Processes the progress of the time in the step (T) and the executing step number (STC) in AUT mode.

Condition		Processing result		
		Time in the step (T)	Executing step number (STC)	
STC ≦ 0		0	1	
	T<0	0	Previous value	
STC>0	0 ≦ T < Ti	T + △T *1	Previous value	
	Ti ≦ T *2	0	Transition to next step (STC + 1)	

PGS calculation

- △T: Execution cycle, i: Executing step number (STC)
- *1: The addition of the execution cycle for the time in the step (T) is calculated in real numbers by the resolution to the units of milliseconds when the second is specified for the Unit of time (TUNIT), and to the units of seconds when the minute is specified for the Unit of time (TUNIT).
- *2: For using the enabled wait function, refer to the Wait function.
- (3) SV_{PGS} calculation

Calculates the SV value corresponds to the executing step number (STC) and the time in the step (T) in AUT mode.

Condition	Processing result
Ti ≦ 0	SV _i
0 < T ≦ Ti	$\frac{SV_{i} - SV_{i-1}}{T_{i}} \times T + SV_{i-1}^{*}$

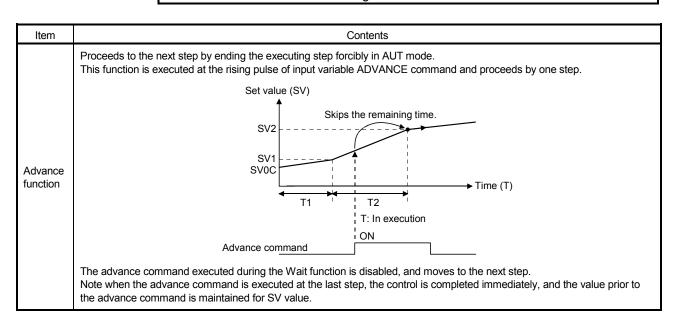
- i: Executing step number (STC)
- *1: SV_{PGS} calculation is calculated in real numbers.
- (4) Processing at the completion of the last step

Turns ON the pattern end outputs shown in the following table (output variable PTNEND) for one cycle, when the pattern is executed throughout and the last step is ended in AUT mode.

		Operation type			
	HOLD	RETURN	CYCLIC		
Control mode transition	Transition to MAN	Transition to MAN	No transition		
Time in the step (T)	Last value	0	0		
Executing step number (STC)	Last value	0	1		
SV _{PGS} calculation	SV output value of last step (SVn)	SV output value of last step (SVn)	Restarts from step 1 with setting SV output value of last step (SVn) as the control start point.		

7 - 238 7 - 238

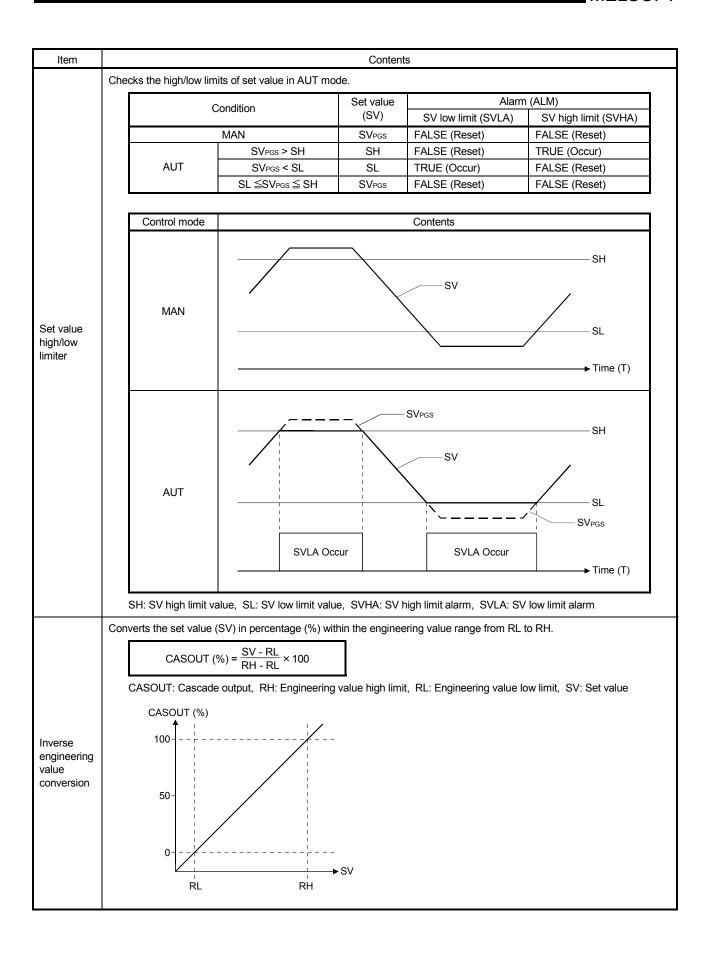
POINT


Setting the time span from T1 to Tn in PGS calculation
 Set the number of seconds or minutes to the loop tag in only integer for time span.

Units of time is common to all steps and is specified by Units of time (TUNIT) in tag data.

The maximum set value of the time span is 32767 seconds (approximately 8.9 hours) or 32767 minutes (approximately 22 days) for each step.

Setting the time span from SV1 to SVn in PGS calculation
 The set values are set with engineering values. The available setting range is from -32768 to 32767, and the values are set as engineering values. A real number cannot be specified.


When the setting after the decimal point is required depending on the engineering value range, for example, when the set value is 1.5 MPa, convert its unit to 1500 kPa to fit in the range from -32768 to 32767.

7 - 239 7 - 239

Item	Contents							
	Checks if the process in AUT mode. The setting of wait bar		to all steps.	and controls the process of steps when each step is completed				
	Control mode	Wait band	Process value	Processing result				
	MAN			The wait function does not operate.				
		WAIT ≦ 0	_	·				
	AUT	WAIT > 0	PV – SV > WAIT	Stops the transition to the next step. Maintains the set value (SV) at the last value of the step.				
			PV – SV ≦ WAIT	Moves to the next step.				
Wait function	Waits until PV valuwithin wait band w	PV input val	Set value (SV)					
Disable alarm detection		items in Disab LI	le alarm detection (INH)	m detection (INH) setting of tag data: of tag data are TRUE, the SVHA and SLVA of the alarm (ALM)				
	Refer to loop stop	processing in	the following contents.					

7 - 240 7 - 240

7 - 241 7 - 241

Item	Contents								
	Initializes the executing step number (STC) and the time in the step (T) at the rising pulse of INITSTART command, an switches to AUT mode in MAN mode.								
	Туре	Variable name	Data type	Contents	Value to be initialized				
Initial start	Loop tag	STC	INT	Executing step number	0				
function	Loop tag	Т	INT	Time in the step	0				
	Public variable	TCNT	INT	Second counter for minute mode	0				
		TMCNT	INT	Millisecond counter for second mode	0				
FB multi- link function									

Other Functions

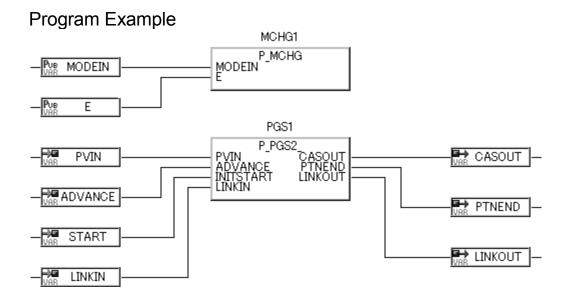
Item	Contents								
		The loop process is executed when either the stop alarm (SPA) of alarm (ALM) or the tag stop (TSTP) of monitor output buffer (DOM) is TRUE.							
		Loop stop processing result							
Loop stop processing		Input (PV)	Executing step number (STC) /Time in the step (T)	Output (SV)	Mode	Alarm reset *1	Alarm detection *2		
		Hold	Hold	Hold	MAN	Reset	No detection		

Processing Operation

Processing Control mode	PV start	PGS calculation	Advance function	Wait function	Alarm	Set value high/low limiter	Inverse engineering value conversion	Initial start function	FB multi-link function
MAN	×	×	×	×	×	×	0	0	0
AUT	0	0	0	0	O (*1)	0	0	×	0

^{○:} Execute ×: Not execute

Error


Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

A process control error code is displayed in the Process Control Error Detailed Information on the screen. For process control error codes, refer to Appendix 2.

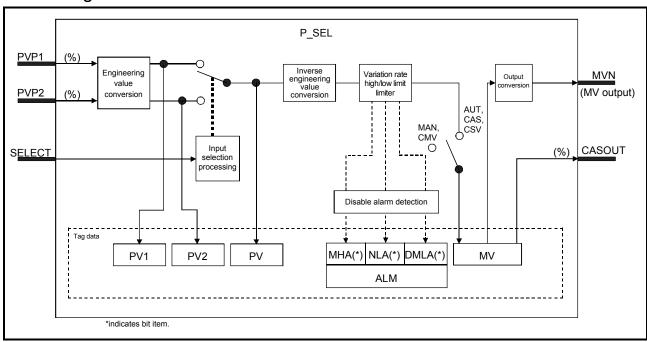
• When an overflow occurs during operation. (Error code: 4100)

7 - 242 7 - 242

^{*1:} The detection of the alarm whose corresponding bit of Disable alarm detection (INH) is TRUE (Enabled) is disabled.

7 - 243

7.6.26 Loop Selector (Without Tracking to primary loop) (P_SEL)


FB	FBD parts
P_SEL	P_SEL PVP1 MVN PVP2 CASOUT SELECT

	Corresponding tag type							
SEL								
	Control mode							
MAN	MAN AUT CAS CMV CSV							
0	0	0	0	0				

Function overview: Select input value with selection signal and output it.

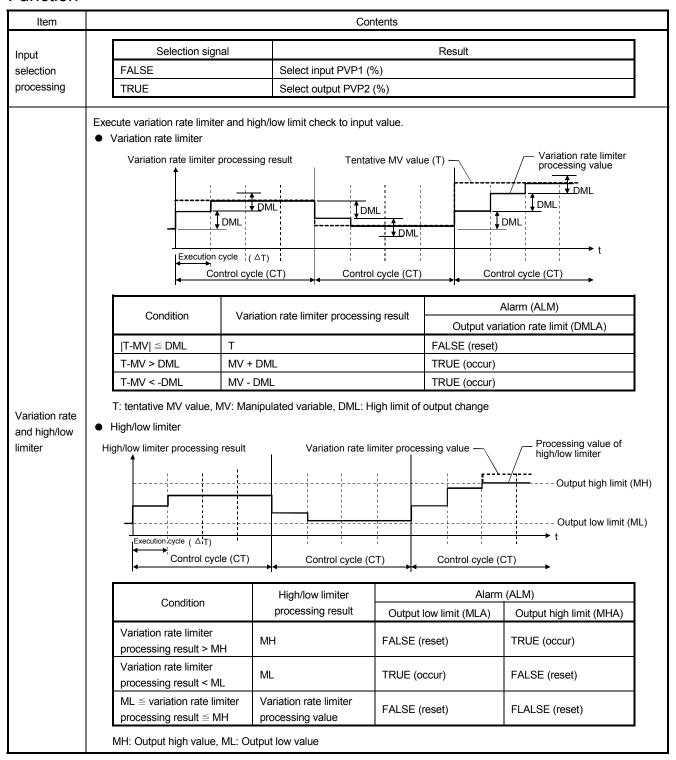
Function/FB classification name: Tag access GB_Loop control operation FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVP1	Input variable	REAL	PV input (unit: %)	0 to 100
Input	PVP2	Input variable	REAL	PV input (unit: %)	0 to 100
	SELECT	Input variable	BOOL	Selection signal (TRUE: PVP2, FALSE: PVP1)	TRUE, FALSE
Cutout	MVN	Output variable	REAL	MV output to module FB	NMIN to NMAX
Output	CASOUT	Output variable	REAL	Cascade output (unit: %)	0 to 100

Public Variable (Operation Constant)


	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
processing	TRK	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

7 - 244 7 - 244

Tag Data

For details about the tag data that is read/written by this tag access FB, please refer to tag data list of various tag types in Appendix 1.1.

Function

7 - 245 7 - 245

Item	Contents					
Engineering value conversion	Convert the input value (%) into engineering value. $PV_{n} = \frac{RH - RL}{100} \times PV_{n} \text{ (%)} + RL$ RH: Engineering value high limit, RL: Engineering value low limit, PVPn: PV input value (%), PVn: PV1,PV2					
Inverse engineering value conversion	Convert the selected PV value into percentage PV (%). $ PV (\%) = \frac{100}{RH - RL} \times (PV - RL) $ RH: Engineering value high limit, RL: Engineering value low limit, PV: Selected PV value, PV (%): Selected PV value (%)					
Output conversion	Perform output conversion processing. Converted output (MVN) NMAX $(-10(\%))$ 0(%) Converted output (MVN) = { (NMAX -NMIN) × $\frac{MV}{100}$ } + NMIN NMAX: High limit value of output conversion, NMIN: Low limit value of output conversion, MV: Manipulated					
Disable Alarm Detection	variable (%), MVN: output value of output conversion Set whether Enable Alarm Detection or not in deviation check. (1) Disable Alarm Detection with the setting of "Disable Alarm Detection" tag data: If the following items of Disable Alarm Detection (INH) of tag data are TRUE, alarm (ALM) of DMLA, MHA and MLA will not be detected. • ERRI, DMLI, MHI, MLI (2) Disable Alarm Detection by loop stop processing: Please refer to loop stop processing in the following contents.					

Other Functions

Item	Contents
Loop stop processing	The following processing is executed if the stop alarm (SPA) of alarm (ALM) is TRUE. 1) Hold the output (MVN). 2) Change the control mode automatically to MANUAL. 3) Reset DMLA, MHA, and MLA when DMLA, MHA, and MLA of alarm (ALM) occurs. 4) Alarm is not detected in variation rate limiter and high/ low limiter.

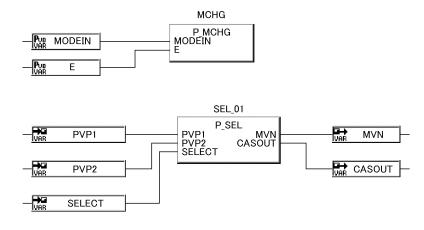
Processing Operation

Processing Control mode	Engineering value conversion	Inverse engineering value conversion	Variation rate and high/low limiter	Output conversion	Alarm
MAN, CMV	0	×	×	0	O (*1)
AUT, CAS, CSV	0	0	0	0	O (*1)

○: Execute ×: Not execute

7 - 246

^{*1} When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

When overflow occurs during operation. (Error code: 4100)

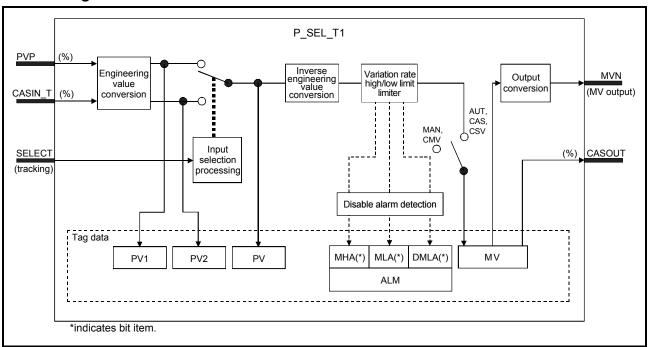
Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 247 7 - 247

7.6.27 Loop Selector (With Tracking to primary loop) (P_SEL_T1)


FB	FBD parts		Corresp
		SEL	
	P_SEL_T1	-	
P_SEL_T1	PVP MVN		Co
	CASIN_T CASOUT	MAN	AUT
	- SELECT	0	0

Corresponding tag type							
SEL							
	Control mode						
MAN	AUT	CAS	CMV	CSV			
0	0	0	0	0			

Function overview: Select input value according to selection signal and output. (With tracking)

Function/FB classification name: Tag access FB_loop control operation FB

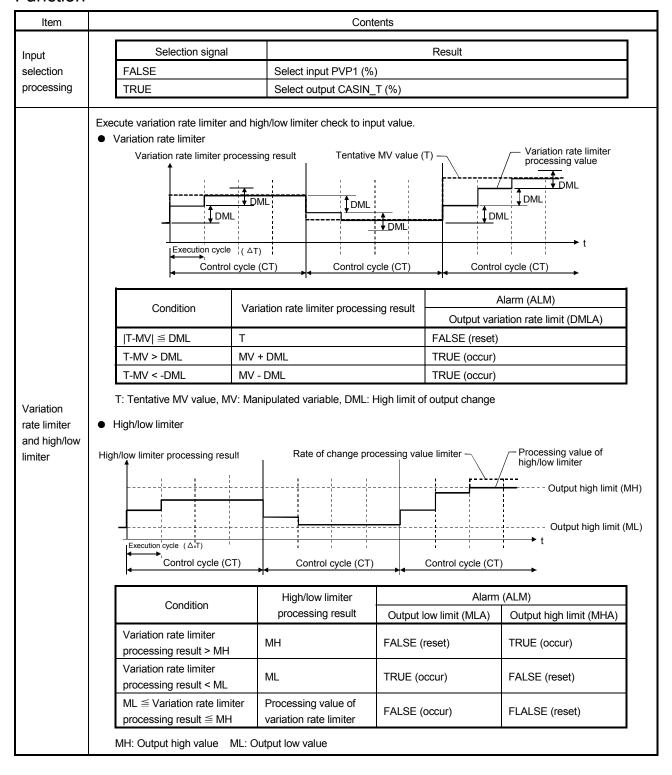
Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVP	Input variable	REAL	PV input (unit: %)	0 to 100
Input	CASIN_T	Input variable	ADR_REAL	PV input (unit: %) (Tracking)	0 to 100
	SELECT	Input variable	BOOL	Selection signal (TRUE: CASIN_T, FALSE: PVP)	TRUE, FALSE
Output	MVN	Output variable	REAL	Output to unit FB	NMIN to NMAX
Output	CASOUT	Output variable	REAL	Cascade output (unit: %)	0 to 100

7 - 248 7 - 248

Public Variable (Operation Constant)


	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	NMAX	Public variable	REAL	Converted output high limit	-999999 to 999999	100.0	User
Operation	NMIN	Public variable	REAL	Converted output low limit	-999999 to 999999	0.0	User
processing	TRK	Public variable	INT	Tracking flag (0:Not execute, 1:Execute)	0 to 1	0	User
	SVPTN_B4	Public variable	BOOL	CASIN_T pattern (TRUE: Not upper MV, FALSE: Upper MV)	TRUE, FALSE	TURE	User

Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

7 - 249

Function

7 - 250 7 - 250

Item	Contents						
Engineering value conversion	Convert the input value (%) to engineering value. $PV_{n} = \frac{RH - RL}{100} \times PVP_{n} \text{ (%)} + RL$ RH: Engineering value high limit, RL: Engineering value low limit, PVPn: PV input value (%), PVn: PV1, PV2						
Inverse engineering value conversion	Convert the selected PV value to percentage PV (%). $ PV \text{ (\%)} = \frac{100}{\text{RH} - \text{RL}} \times \text{ (PV-RL)} $						
Output conversion	Perform output conversion processing. Converted output (MVN) NMAX NMIN (-10(%)) 0(%) 100(%) (110(%)) Converted output (MVN) = { (NMAX -NMIN) × MV/100 } + NMIN NMAX: High limit value of output conversion, NMIN: Low limit value of output conversion, MV: Manipulated variable (%), MVN: Output value of output conversion						
Disable Alarm Detection	• • • • • • • • • • • • • • • • • • • •						

Other Functions

Item		Contents							
Loop stop processing	1) F 2) C 3) F	e following processing is executed if the stop alarm (SPA) of alarm (ALM) is TRUE. Hold the output (MVN). Change the control mode automatically to MANUAL. Reset DMLA, MHA, and MLA when DMLA, MHA, and MLA of alarm (ALM) occurs. Alarm is not detected in variation rate limiter and high/ low limiter.							
	Whe	ether to execute tracking processing on input	variable CASIN_T is described in the following table:						
		Condition	Result						
Tracking processing		Tracking flag (TRK)	Result						
	1		Input variable CASIN_T performs tracking.						
		0	Input variable CASIN_T does not perform tracking.						

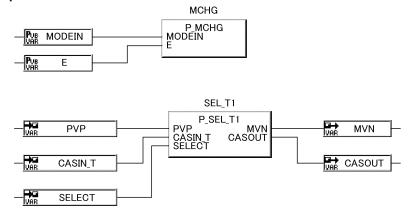
7 - 251 7 - 251

7 PROCESS FB _____ MELSOFT

Processing Operation

Processing Control mode	Engineering value conversion	Inverse engineering value conversion	Variation rate limiter and high/low limiter	Output conversion	Tracking	Alarm
MAN, CMV	0	×	×	0	O (*1)	O (*3)
AUT, CAS, CSV	0	0	0	0	○ (*2)	O (*3)

O: Execute X: Not execute


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 252 7 - 252

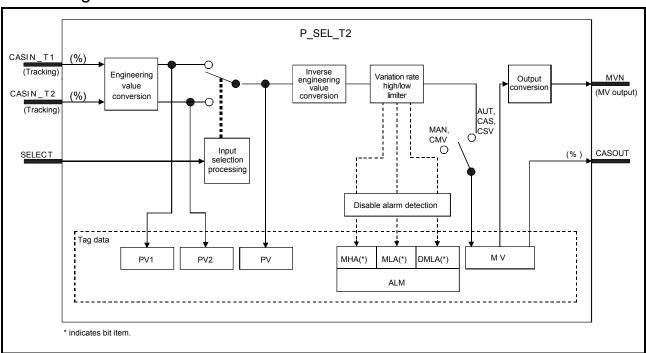
^{*1} Tracking is executed when the tracking flag (TRK) is 1.

^{*2} Tracking is executed when the tracking flag (TRK) is 1 and DMLA, MHA and MLA of alarm (ALM) occur.

^{*3} When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.

CSV

0


7.6.28 Loop Selector (With Tracking to primary loop) (P_SEL_T2)

FB	FBD parts		Corres	ponding t	ag type
		SEL			
P_SEL_T2	P_SEL_T2 — CASIN_T1 MVN — — CASIN_T2 CASOUT —	MAN	Control mode N AUT CAS CMV		
	SELECT	0	0	0	0

Function overview: Select input value according to selection signal and output. (With tracking)

Function/FB classification name: Tag access FB_loop control operation FB

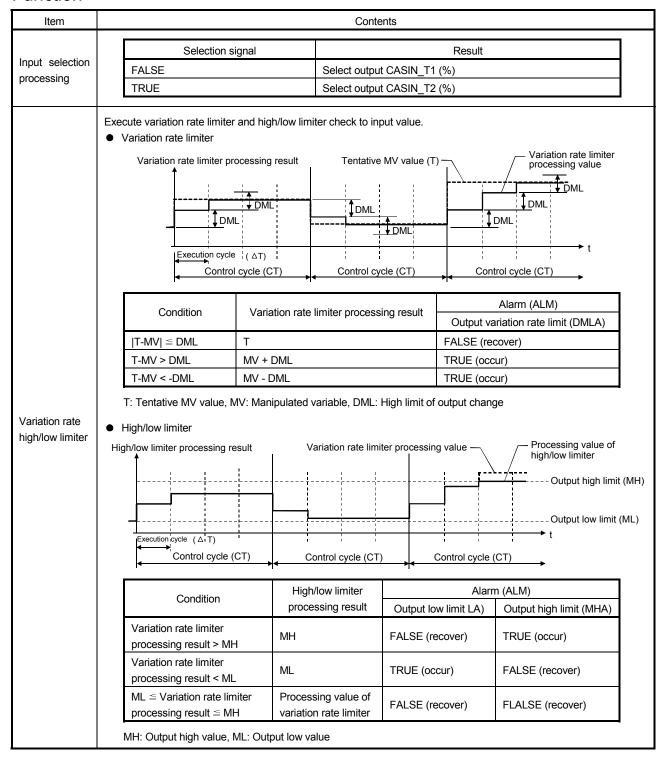
Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	CASIN_T1	Input variable	ADR_REAL	PV input (unit: %) (tracking)	0 to 100
Input	CASIN_T2	Input variable	ADR_REAL	PV input (unit: %) (tracking)	0 to 100
	SELECT	Input variable	BOOL	Selection signal (TRUE: CASIN_T2, FALSE: CASIN_T1)	TRUE, FALSE
O. 14m. 14	MVN	Output variable	REAL	Output MV to module FB	NMIN to NMAX
Output	CASOUT	Output variable	REAL	Cascade output (unit: %)	0 to 100

7 - 253 7 - 253

Public Variable (Operation Constant)


	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User
	TRK	Public variable	INT	Tracking flag (0:Not execute, 1:Execute)	0 to 1	0	User
Operation processing	SVPTN_B1	Public variable	BOOL	CASIN_T1 use (TRUE: Not use, FALSE: Use)	TRUE, FALSE	TRUE	User
	SVPTN_B2	Public variable	BOOL	CASIN_T2 use (TRUE: Not use, FALSE: Use)	TRUE, FALSE	TRUE	User
	SVPTN_B3	Public variable	BOOL	CASIN_T1 pattern (TRUE: Not upper MV, FALSE: Upper MV)	TRUE, FALSE	TRUE	User
	SVPTN_B4	Public variable	BOOL	CASIN_T2 pattern (TRUE: Not upper MV, FALSE: Upper MV)	TRUE, FALSE	TRUE	User

Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

7 - 254

Function

7 - 255 7 - 255

Item	Contents						
Engineering	Convert the input value (%) to engineering value.						
value conversion	$PV_n = \frac{RH - RL}{100} \times PV_n (\%) + RL$						
CONVENSION	RH: Engineering value high limit, RL: Engineering value low limit, PVPn: PV input value (%), PVn: PV1, PV2						
Inverse	Convert the selected PV value into percentage PV (%).						
Inverse engineering value conversion	$PV (\%) = \frac{100}{RH - RL} \times (PV - RL)$						
	RH: Engineering value high limit, RL: Engineering value low limit, PV: Selected PV value, PV (%): Selected PV value (%)						
Output conversion	Execute output conversion processing. Converted output (MVN) NMIN (-10(%)) 0(%) 100(%) (110(%)) Converted output (MVN) = {(NMAX – NMIN) × MV / 100} } + NMIN NMAX: High limit value of output conversion, NMIN: Low limit value of output conversion, MV: Manipulated variable (%) MVN: Output value of converted output						
Disable Alarm Detection							

Other Functions

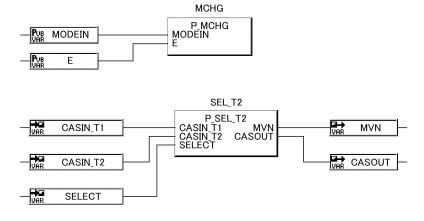
		Contents e following processing is executed if the stop alarm (SPA) of alarm (ALM) is TRUE.								
Loop stop processing	1) F 2) C 3) F	Hold the output (MVN) Change the control mo Reset DMLA, MHA, ar		MLA of alarm (ALM) occurs.						
	Whether to execute tracking processing on input variables CASIN_T1, CASIN_T2 is described in the following table: (1) Tracking of input variable CASIN_T1									
		Tracking flag (TRK)	Condition CASIN_T1 used (SVPTN_B1)	Result						
					1	FALSE TRUE	Input variable CASIN_T1 performs tracking.			
Tracking		g 0		FALSE or TRUE	Input variable CASIN_T1 does not perform tracking.					
processing	(2) Tracking of input variable CASIN_T2									
			Condition	Result						
		Tracking flag (TRK) CASIN_T2 used (SVP		result						
		1	FALSE TRUE	Input variable CASIN_T2 performs tracking.						
		0	FALSE or TRUE	Input variable CASIN T2 does not perform tracking.						

7 PROCESS FB _____ MELSOFT

Processing Operation

Processing Control mode	Engineering value conversion	Inverse engineering value conversion	Variation rate and high/low limiter	Output conversion	Tracking	Alarm
MAN, CMV	0	×	×	0	O (*1)	○ (*3)
AUT, CAS, CSV	0	0	0	0	O (*2)	○ (*3)

○: Execute ×: Not execute


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

When overflow occurs during operation. (Error code: 4100)

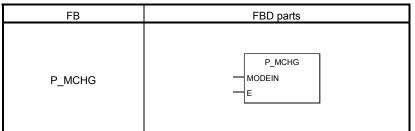
Program Example

POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 257 7 - 257

^{*1} Tracking is executed when the tracking flag (TRK) is 1.


^{*2} Tracking is executed when the tracking flag (TRK) is 1 and DMLA, MHA and MLA of alarm (ALM) occur.

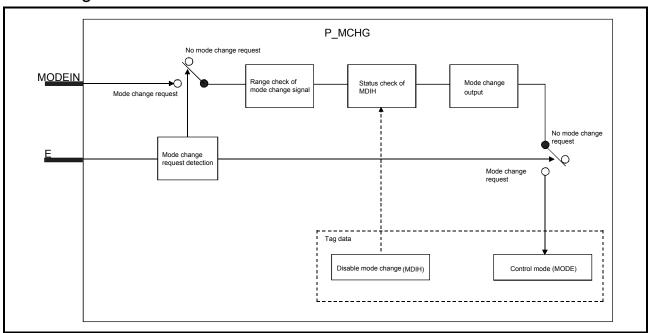
^{*3} When the bit of Disable Alarm Detection (INH) which corresponding to an alarm is TRUE, the alarm is not detected.

7 PROCESS FB ______ MELSOFT

7.7 Tag Access FB_Tag Special FB

7.7.1 Control Mode Change (P_MCHG)

Corresponding tag type
PID, SPI, IPD, BPI, R, ONF2, ONF3, PGS,
PID, SPI, IPD, BPI, R, ONF2, ONF3, PGS, PGS2, MOUT, MWM, PIDP, SEL, 2PID, 2PIDH
Control made


Control mode								
MAN	AUT	CAS*1	CMV	CSV				
0	0	0	0	0				

^{*1} Transition to CASDR is possible.

Function overview: Change MAN/AUT/CAS/CMV/CSV/CASDR mode corresponding to mode selection signal.

Function/FB classification name: Tag access FB_tag special FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
lanut	MODEIN	Input variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV, 6: CASDR)	1 to 6
Input	E	Input variable	BOOL	Mode change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE

Tag Data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

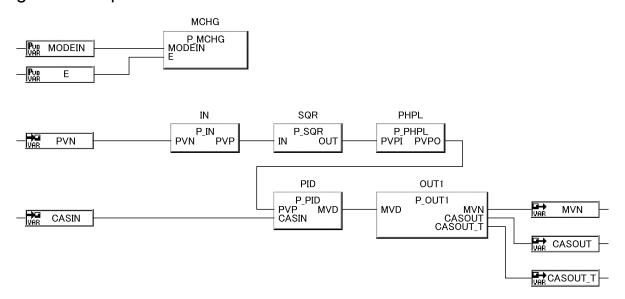
7 - 258 7 - 258

Function

Item				Con	tents					
	Check mode change signal range. (1) The mode change signal is only valid in 1 to 6. Match table of mode selection signal/mode output									
	MO	DDEIN (mode selection	n signal)	6	5	4	3	2	1	
		MODE (control mod		CASDR	CSV	CMV	CAS	AUT	MAN	
Mode selection signal range check	CASDR: CASCADE DIRECT CSV: Computer SV setting CMV: Computer MV setting CAS: Cascade AUT: Automatic MAN: Manual (2) The mode selection transition disabled check and mode selection output processing will not be performed if MODEIN is not within the range of 1 to 6. The tag data control mode (MODE) holds the previous value. (3) When "Change the control mode to MANUAL" is checked in the < <i control="" o="">> tab of the project parameter setting, the control mode changes to MANUAL if a sensor error or output open alarm occurs. However, the control mode does not change when the disable manual bit is ON.</i>									
Mode selection transition disabled check		If the corresponding bit of control mode inhibition (MDIH) of tag data is TRUE (valid), execute mode selection disabled on it. (not execute mode selection output processing).								
	If the selection request (E) is TRUE and the corresponding mode of mode selection signal is changed, the corresponding bit of the control mode (MODE) of tag data is set as TRUE. (For details of the corresponding bit, refer to Appendix 1.2.)									
Selection request and mode	Mod select reque (E)	ion signal (MODEIN)	Mode selection signal range check	trai	selection nsition ed check	Mode selection output		ol mode (M tag data	<i>'</i>	
selection output	FALS	1 to 6	Valid		Stop	Stop	Hold p	revious val	ue	
	FALS	Beyond 1 to 6	Invalid	- 5	Stop	Stop	Hold p	revious val	ue	
	TRU	1 to 6	Valid	Ex	ecute	Execute	The co	orrespondir UE.	ng bit will	
		Beyond 1 to 6	Invalid	9	Stop	Stop	Hold p	revious val	ue	

Processing Operation

Processing Control mode	Range check of mode change signal	Status check of "Disable Mode Change" (MDIH)	Change request detection	Mode change output
MAN, CMV, AUT, CAS, CSV, CASDR	0	0	0	0


○: Execute ×: Not execute

Error

There is no error caused by P_MCHG.

7 PROCESS FB MELSOFT

Program Example

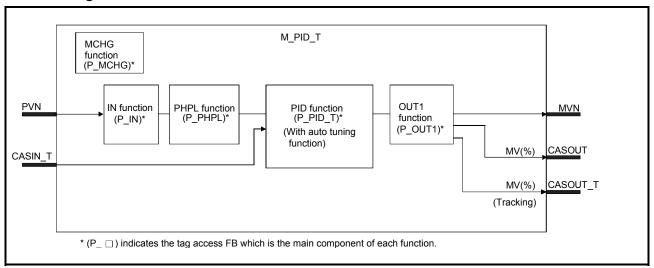
POINT

It is necessary to refer to public variable on user-defined FB/Tag FB in order to read/write the initial values of public variables of the general process FB which is arranged on user-defined FB/Tag FB with the FB property window or programs.

7 - 260 7 - 260

7.8 Tag FB_Loop Tag FB

7.8.1 Velocity Type PID Control (With Tracking to primary loop) (M_PID_T)


FB	FBD parts
M_PID_T	M_PID_T PVN MVN CASIN_T CASOUT CASOUT_T

Corresponding tag type									
PID									
Control mode									
MAN AUT CAS CMV CSV									
0	0	0	0						
	Co	Control mod	Control mode						

Function overview: Execute velocity type basic PID control taking function of P_IN+P_PHPL+P_PID_T+P_OUT1 as a single FB.

Function/FB classification name: Tag FB_Loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
Input	CASIN_T	Input variable	ADR_REAL	Primary loop SV input (Unit: %) (With tracking)	0 to 100
	MVN	Output variable	REAL	Module FB output	OUT1_NMIN to OUT1_NMAX
Output	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
	CASOUT_T	Output variable	ADR_REAL	Cascade MV output (Unit: %) (With tracking)	0 to 100

7 - 261 7 - 261

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
Operation	PID_MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
processing	PID_DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
p. cooog	PID_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	PID_TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
	PID_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	PID_SVPTN_B1	Public variable	BOOL	Set value (SV) pattern TRUE: Not upper MV FALSE: Upper MV	TRUE, FALSE	TRUE	User
	OUT1_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	OUT1_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

Public Variable (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM processing*2	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System
MCHG processing*3	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

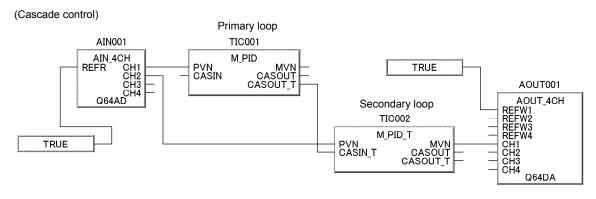
Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
PID function	P_PID_T	Section 7.6.3
OUT1 function	P_OUT1	Section 7.5.2
MCHG function	P_MCHG	Section 7.7.1

It will not be displayed on FB property window of PX Developer.

^{*2} It means simulation processing.


^{*3} This abbreviation means control mode change processing.

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

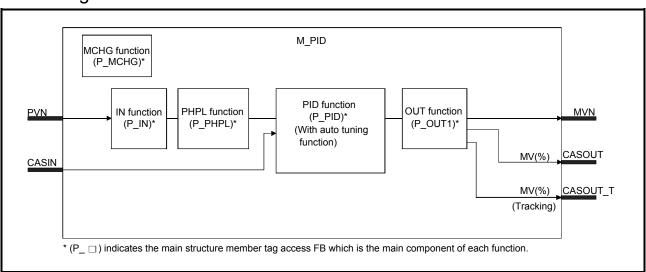
Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

7 - 263 7 - 263

7.8.2 Velocity Type PID Control (Without Tracking to primary loop) (M_PID)


FB	FBD parts		
P_PID	M_PID PVN MVN CASIN CASOUT CASOUT_T		

Corresponding tag type								
PID								
	Control mode							
MAN	AUT	CAS	CMV	CSV				
0	0	0	0	0				

Function overview: Execute velocity type basic PID control taking function of P_IN+P_PHPL+P_PID+P_OUT1 as a single FB.

Function/FB classification name: Tag FB _ loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	PVN	Input variable	REAL	Module FB input	-999999 to 999999
	CASIN	Input variable	REAL	Primary loop SV input (Unit: %) (Without tracking)	0 to 100
	MVN	Output variable	REAL	Module FB output	OUT1_NMIN to OUT1_NMAX
Output	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
	CASOUT_T	Output variable	ADR_REAL	Cascade MV output (Unit: %) (With tracking)	0 to 100

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
Operation processing	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
	PID_MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	PID_DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PID_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	PID_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	OUT1_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	OUT1_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

Public Variable (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM processing*2	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System
MCHG processing*3	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

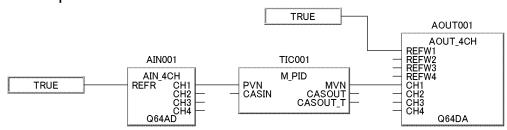
Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
PID function	P_PID	Section 7.6.4
OUT1 function	P_OUT1	Section 7.5.2
MCHG function	P_MCHG	Section 7.7.1

It will not be displayed on FB property window of PX Developer.

^{*2} It means simulation processing.


^{*3} The abbreviation means control mode change processing.

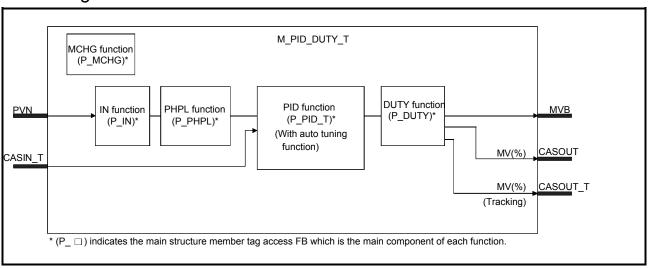
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

7.8.3 Velocity Type PID Control and DUTY Output (With Tracking to primary loop) (M PID DUTY T)


FB	FBD parts		
M_PID_DUTY_T	M_PID_DUTY_T PVN MVB CASIN_T CASOUT CASOUT_T		

Corresponding tag type							
PID							
Control mode							
MAN	AUT	CAS	CMV	CSV			
0	0	0	0	0			

Function overview: Execute velocity type basic PID control taking function of P_IN+P_PHPL+P_PID_T+P_DUTY as a single FB.

Function/FB classification name: Tag FB _ loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	PVN	Input variable	REAL	Module FB input	-999999 to 999999
	CASIN_T	Input variable	ADR_REAL	Primary loop SV input (Unit: %) (With tracking)	0 to 100
	MVB	Output variable	REAL	Bit output to module FB	TRUE, FALSE
Output	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
·	CASOUT_T	Output variable	ADR_REAL	Cascade MV output (Unit: %) (With tracking)	0 to 100

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
Operation processing	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
processing	PID_MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	PID_DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PID_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	PID_TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
	PID_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	PID_SVPTN_B1	Public variable	BOOL	Set value (SV) pattern TRUE: Not upper MV FALSE: Upper MV	TRUE, FALSE	TRUE	User

Public Variable (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM processing*2	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*3	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

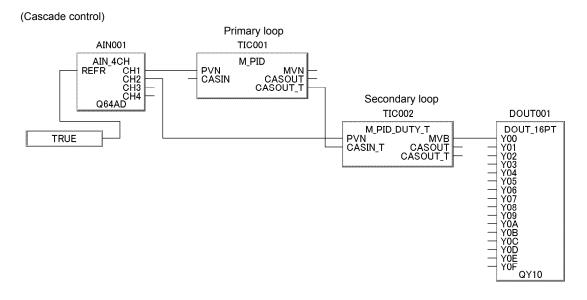
Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
PID function	P_PID_T	Section 7.6.3
DUTY function	P_DUTY	Section 7.5.6
MCHG function	P_MCHG	Section 7.7.1

It will not be displayed on FB property window of PX Developer.

^{*2} It means simulation processing.


^{*3} The abbreviation means control mode change processing.

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

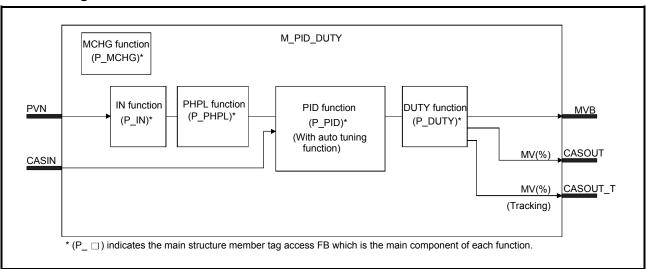
Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

7 - 269 7 - 269

7.8.4 Velocity Type PID Control and DUTY Output (Without Tracking to primary loop) (M PID DUTY)


FB	FBD parts
M_PID_DUTY	M_PID_DUTY PVN MVB CASIN CASOUT CASOUT_T

	Corresponding tag type										
PID	PID										
	Control mode										
MAN	MAN AUT CAS CMV CSV										
0	0	0	0	0							

Function overview: Execute velocity type basic PID control taking function of P_IN+P_PHPL+P_PID +P_DUTY as a single FB.

Function/FB classification name: Tag FB _ loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
Input	CASIN	Input variable	REAL	Primary loop SV input (Unit: %) (Without tracking)	0 to 100
	MVB	Output variable	BOOL	Bit output to module FB	TRUE, FALSE
Output	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
	CASOUT_T	Output variable	ADR_REAL	Cascade MV output (Unit: %) (With tracking)	0 to 100

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
Operation	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
processing	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
	PID_MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	PID_DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PID_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	PID_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User

Public Variable (Others)(*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM processing*2	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*3	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

It will not be displayed on FB property window of PX Developer.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
PID function	P_PID	Section 7.6.4
DUTY function	P_DUTY	Section 7.5.6
MCHG function	P_MCHG	Section 7.7.1

7 - 271 7 - 271

^{*2} It means simulation processing.

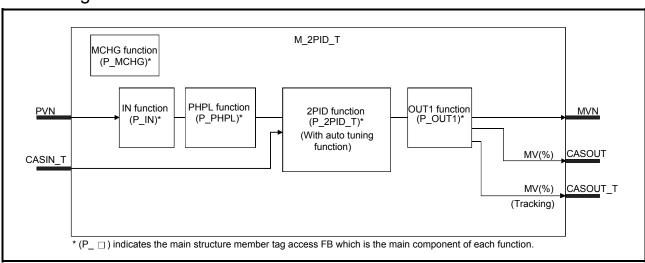

^{*3} The abbreviation means control mode change processing.

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example


7.8.5 2-Degree-of-Freedom PID Control (With Tracking to primary loop) (M_2PID_T)

FB	FBD parts		Corresponding tag type				
	M_2PID_T	2PID					
	PVN MVN		(Control m	ode		
M_2PID_T	- CASIN_T CASOUT -	MAN	AUT	CAS	CMV	CSV	
	CASOUT_T —	0	0	0	0	0	

Function overview: Execute 2-degree-of-freedom PID control taking function of P_IN+P_PHPL+P_2PID_T+P_OUT1 as a single FB.

Function/FB classification name: Tag FB_loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
Input	CASIN_T	Input variable	ADR_REAL	Primary loop SV input (Unit: %) (With tracking)	0 to 100
	MVN	Output variable	REAL	Module FB output	OUT1_NMIN to OUT1_NMAX
Output	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
	CASOUT_T Output variable ADR_R		ADR_REAL	Cascade MV output (Unit: %) (With tracking)	0 to 100

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
Operation	PID2_MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
processing	PID2_DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PID2_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	PID2_TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
	PID2_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	PID2_SVPTN_B1	Public variable	BOOL	Set value (SV) pattern TRUE: Not upper MV FALSE: Upper MV	TRUE, FALSE	TRUE	User
	OUT1_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	OUT1_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

Public Variable (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM processing*2	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*3	E	Public variable	BOOL	Change request (TRUE: Execute FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

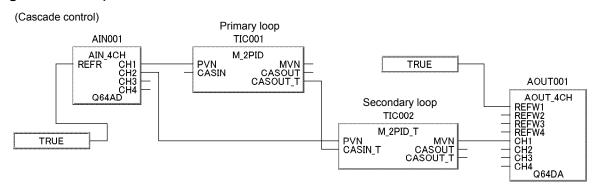
Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
2PID function	P_2PID_T	Section 7.6.5
OUT1 function	P_OUT1	Section 7.5.2
MCHG function	P_MCHG	Section 7.7.1

It will not be displayed on FB property window of PX Developer.

^{*2} It means simulation processing.


^{*3} The abbreviation means control mode change processing.

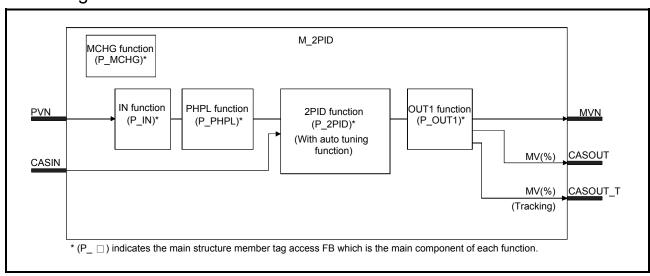
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

7.8.6 2-Degree-of-Freedom PID Control (Without Tracking to primary loop) (M_2PID)


FB	FBD parts
M_2PID	M_2PID PVN MVN CASIN CASOUT CASOUT_T

Corresponding tag type								
2PID								
	Control mode							
MAN	AUT	CAS	CMV	CSV				
0	0	0	0	0				

Function overview: Execute 2-degree-of-freedom PID control taking function of P_IN+P_PHPL+P_2PID+P_OUT1 as a single FB.

Function/FB classification name: Tag FB _ loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-99999 to 999999
Input	CASIN	Input variable	REAL	Primary loop SV input (Unit: %) (Without tracking)	0 to 100
	MVN	Output variable	REAL	Module FB output	OUT1_NMIN to OUT1_NMAX
Output	CASOUT Output variable		REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
	CASOUT_T	Output variable	ADR_REAL	Cascade MV output (Unit: %) (With tracking)	0 to 100

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
Operation	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
processing	PID2_MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	PID2_DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PID2_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	PID2_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	OUT1_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	OUT1_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

Public Variable (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
processing*2	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System
MCHG processing*3	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

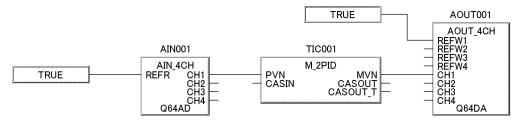
Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
2PID function	P_2PID	Section 7.6.6
OUT1 function	P_OUT1	Section 7.5.2
MCHG function	P_MCHG	Section 7.7.1

It will not be showed on FB property window of PX Developer.

^{*2} It means simulation processing.


^{*3} The abbreviation means control mode change processing.

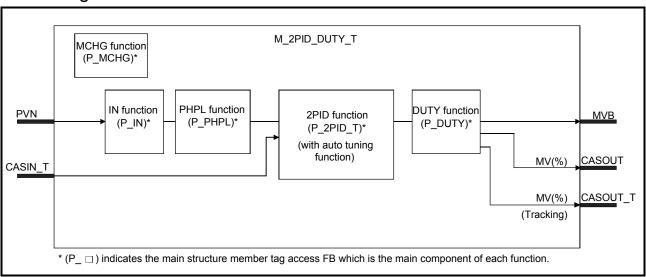
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

7.8.7 2-Degree-of-Freedom PID Control and DUTY Output (With Tracking to primary loop) (M_2PID_DUTY_T)


FB	FBD parts
M_2PID_DUTY_T	M_2PID_DUTY_T — PVN MVB — CASIN_T CASOUT — CASOUT_T

Corresponding tag type								
2PID								
	Control mode							
MAN	N AUT CAS CMV CSV							
0	0	0	0	0				

Function overview: Execute 2-degree-of-freedom PID control and DUTY output taking function of P_IN+P_PHPL+P_2PID_T+P_DUTY as a single FB.

Function/FB classification name: Tag FB_loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
Input	CASIN_T	Input variable	ADR_REAL	Primary loop SV input (Unit: %) (With tracking)	0 to 100
	MVB	Output variable	BOOL	Bit output to module FB	TRUE, FALSE
Output	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
·	CASOUT_T	Output variable	ADR_REAL	Cascade MV output (Unit: %) (With tracking)	0 to 100

7 - 279 7 - 279

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
Operation	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
processing	PID2_MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	PID2_DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PID2_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	PID2_TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
	PID2_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	PID2_SVPTN_B1	Public variable	BOOL	Set value (SV) pattern TRUE: Not upper MV FALSE: Upper MV	TRUE, FALSE	TRUE	User

Public Variable (Others)(*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM processing *2	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing *3	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

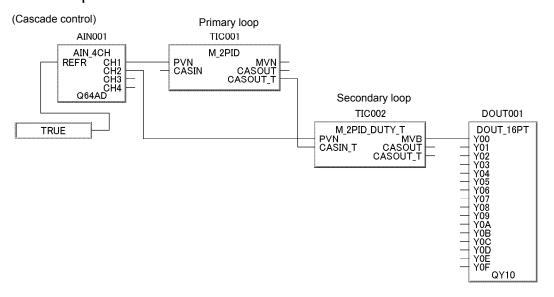
This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
2PID function	P_2PID_T	Section 7.6.5
DUTY function	P_DUTY	Section 7.5.6
MCHG function	P_MCHG	Section 7.7.1

7 - 280 7 - 280

It will not be displayed on FB property window of PX Developer.

^{*2} It means simulation processing.


^{*3} The abbreviation means control mode change processing.

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

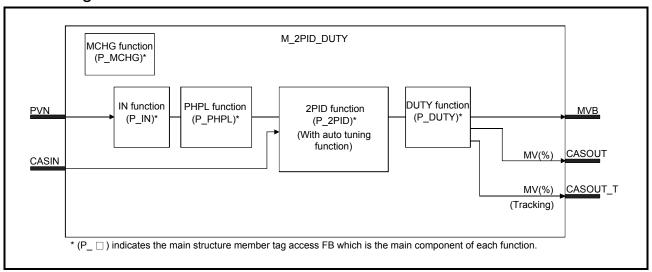
Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Examples

7 - 281 7 - 281

7.8.8 2-Degree-of-Freedom PID Control and DUTY Output (Without Tracking to primary loop) (M 2PID DUTY)


FB	FBD parts
M_2PID_DUTY	M_2PID_DUTY PVN MVB CASIN CASOUT CASOUT_T

	Corresponding tag type									
	2PID									
1	Control mode									
Ì	MAN	AUT	CAS	CMV	CSV					
	0	0	0	0	0					

Function overview: Execute 2-degree-of-freedom PID control and DUTY output taking function of P_IN+P_PHPL+P_2PID +P_DUTY as a single FB.

Function/FB classification name: Tag FB_loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	PVN	Input variable	REAL	Module FB input	-999999 to 999999
	CASIN Input variable R		REAL	Primary loop SV input (Unit: %) (Without tracking)	0 to 100
	MVB	Output variable	BOOL	Bit output to module FB	TRUE, FALSE
Output	CASOUT	T Output variable REA		Cascade MV output (Unit: %) (Without tracking)	0 to 100
	CASOUT_T	Output variable	ADR_REAL	Cascade MV output (Unit: %) (With tracking)	0 to 100

7 - 282 7 - 282

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
Operation	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
processing	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
	PID2_MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	PID2_DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PID2_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	PID2_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User

Public Variable (Others)(*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM processing*2	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
MCHG processing*3	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

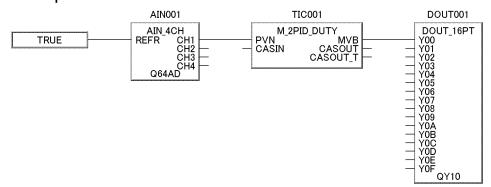
Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
2PID function	P_2PID	Section 7.6.6
DUTY function	P_DUTY	Section 7.5.6
MCHG function	P_MCHG	Section 7.7.1

It will not be displayed on FB property window of PX Developer.

^{*2} It means simulation processing.


^{*3} The abbreviation means control mode change processing.

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

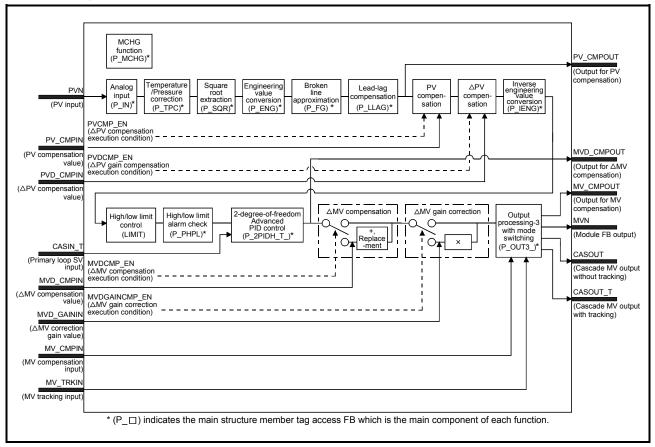
Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

7.8.9 2-Degree-of-Freedom Advanced PID Control (With Tracking to primary loop) (M_2PIDH_T_)

FB	FBD parts
M_2PIDH_T_	M_2PIDH_T_ MVN — CASIN_T CASOUT — PV_CMPIN CASOUT_T — PV_CMPIN PV_CMPOUT — MVD_CMPIN MVD_CMPOUT — MVD_GAININ MV_CMPOUT — MV_CMPIN MV_CMPOUT — MV_TRKIN


Corresponding tag type								
2PIDH								
	Control mode							
MAN	AUT	CAS*1	CMV	CSV				
0	0	0	0	0				

^{*1} Transition to CASDR is possible.

Function overview: Executes 2-degree-of-freedom PID control taking function of P_IN+P_PHPL+P_2PIDH_T_+P_OUT3_ as a single FB and with PV/MV Correction.

Function/FB classification name: Tag FB _ loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
	CASIN_T	Input variable	ADR_REAL	Primary loop SV input (Unit: %) (With tracking)	0 to 100
	PV_CMPIN	Input variable	REAL	PV compensation value	-999999 to 999999
Input	PVD_CMPIN	Input variable	REAL	△PV compensation value	-999999 to 999999
	MVD_CMPIN	Input variable	REAL	△MV compensation value (Unit: %)	-100 to 100
	MVD_GAININ	Input variable	REAL	△MV correction gain value	-999999 to 999999
	MV_CMPIN	Input variable	REAL	MV compensation value (Unit: %)	-999999 to 999999
	MV_TRKIN	Input variable	REAL	MV tracking input (Unit: %)	0 to 100
	MVN	Output variable	REAL	Module FB output	OUT3_NMIN to OUT3_NMAX
	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
Output	CASOUT_T	Output variable	ADR_REAL	Cascade MV output (Unit: %) (With tracking)	0 to 100
	PV_CMPOUT	Output variable	REAL	Output for PV compensation	-999999 to 999999
	MVD_CMPOUT	Output variable	REAL	Output for △MV compensation (Unit: %)	-100 to 100
	MV_CMPOUT	Output variable	REAL	Output for MV compensation (Unit: %)	0 to 100

Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
	TPC_SQR	Public variable	INT	Temperature/pressure correction pattern 0: None 1: Square root extraction 2: Temperature correction+ Square root extraction 3: Pressure correction + Square root extraction 4: Temperature/pressure correction + Square root extraction	0 to 4	0	User
Operation	TPC_PVTEMP	Public variable	REAL	Temperature/pressure correction: Measured temperature (engineering value)	-999999 to 999999	0.0	User
processing	TPC_PVPRES	Public variable	REAL	Temperature/pressure correction: Measured pressure (engineering value)	-999999 to 999999	0.0	User
	TPC_TEMP	Public variable	REAL	Temperature/pressure correction: Design temperature	-999999 to 999999	0.0	User
	TPC_B1	Public variable	REAL	Temperature/pressure correction: Bias temperature	-999999 to 999999	273.15	User
	TPC_PRES	Public variable	REAL	Temperature/pressure correction: Design pressure	-999999 to 999999	0.0	User
	TPC_B2	Public variable	REAL	Temperature/pressure correction: Bias pressure	-999999 to 999999	10332.0	User
	SQR_OLC	Public variable	REAL	Square root extraction: Output low cut-off value	0 to 999999	0.0	User
	SQR_K	Public variable	REAL	Square root extraction: Coefficient	0 to 999999	10.0	User
	SQR_DENSITY	Public variable	REAL	Square root extraction: Density correction value	0 to 999999	1.0	User
	FG_SN	Public variable	INT	Function generator: Number of points	0 to 48	0	User
	FG_X1 to FG_X48	Public variable	REAL	Function generator: Input coordinates (X-coordinates)	-999999 to 999999	0.0	User
	FG_Y1 to FG_Y48	Public variable	REAL	Function generator: Output coordinates (Y-coordinates)	-999999 to 999999	0.0	User

	Madala a a a a	Variable	Data	Qtt-	Danasa	Initial	04
	Variable name	type	type	Contents	Range	value	Storage
	LLAG_EN	Public variable	BOOL	First order lag: Execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	LLAG_T1	Public variable	REAL	First order lag: Lag time (second)	0 to 999999	1.0	User
	PVCMP_EN	Public variable	BOOL	PV compensation execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	PVCMP_MODE	Public variable	INT	PV compensation mode (0: Addition, 1: Replacement)	0 to 1	0	User
	PVDCMP_EN	Public variable	BOOL	△PV compensation execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	PID2H_MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	PID2H_DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PID2H_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	PID2H_TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
	PID2H_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Use)	TRUE, FALSE	TRUE	User
	PID2H_SVPTN_B1	Public variable	BOOL	Set value (SV) pattern (TRUE: Not upper MV, FALSE: Upper MV)	TRUE, FALSE	TRUE	User
	PID2H_PVTRK_EN	Public variable	BOOL	PV tracking execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	PID2H_ISTP	Public variable	BOOL	Integration stop signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	PID2H_DSTP	Public variable	BOOL	Derivation stop signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	PID2H_LMT_ISTP	Public variable	BOOL	Stop Integration, when MV variation rate limiter alarm occurred (TRUE: Stop, FALSE: Not stop)	TRUE, FALSE	FALSE	User
Operation	PID2H_SVLMT_EN	Public variable	BOOL	SV high/low limiter (TRUE: Execute, FALSE: Not execute)	TRUE, FALSE	FALSE	User
processing (continued	MVDCMP_EN	Public variable	BOOL	△MV compensation execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
from previous	MVDCMP_MODE	Public variable	INT	△MV compensation mode (0: Addition, 1: Replacement)	0 to 1	0	User
page)	MVDGAINCMP_EN	Public variable	BOOL	△MV gain correction execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	OUT3_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	OUT3_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User
	OUT3_MVCMP_EN	Public variable	BOOL	MV compensation execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	OUT3_MVCMP_MODE	Public variable	INT	MV compensation mode (0: Addition, 1: Replacement)	0 to 1	0	User
	OUT3_PREMV_EN	Public variable	BOOL	Preset MV execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	OUT3_PREMV_V	Public variable	REAL	Preset MV value (Unit: %)	0 to 100	0.0	User
	OUT3_MVHLD_EN	Public variable	BOOL	MV hold execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	OUT3_MVTRK_EN	Public variable	BOOL	MV tracking execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	OUT3_STP_OTYPE	Public variable	INT	Output selection when loop stop/tag stop is executed (0: Hold, 1: Preset value)	0 to 1	0	User
	OUT3_SEA_OTYPE	Public variable	INT	MV output selection when SEA occurred (0: Hold, 1: Preset MV output, 2: Do not hold and output Preset MV)	0 to 2	0	User
	OUT3_ARW_EX_EN	Public variable	BOOL	Pull MV internal operation value back, when it exceeds MV internal operation high/low limit value (TRUE: Execute, FALSE: Not execute)	TRUE, FALSE	FALSE	User
	OUT3_MVPH	Public variable	REAL	MV internal operation high limit value (Unit: %)	MH to 999999	100.0	User
	OUT3_MVPL	Public variable	REAL	MV internal operation low limit value (Unit: %)	-999999 to ML	0.0	User
	OUT3_MVREV_EN	Public variable	BOOL	MV reverse execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

Public Variable (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
processing*2	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System
MCHG processing*3	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2:AUT, 3:CAS, 4:CMV, 5:CSV, 6: CASDR)	1 to 6	0	User
	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

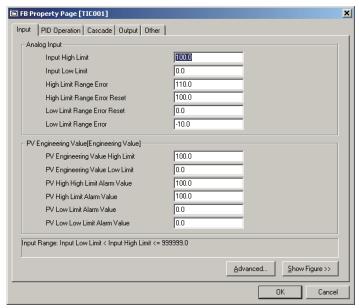
Function

This tag FB consists of the following tag access FB and general process FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
TPC function	P_TPC	Section 7.1.6
SQR function	P_SQR	Section 7.2.5
ENG function	P_ENG	Section 7.1.4
FG function	P_FG	Section 7.1.1
LLAG function	P_LLAG	Section 7.4.1
IENG function	P_IENG	Section 7.1.5
LIMIT function	LIMIT	Section 4.6.3
PHPL function	P_PHPL	Section 7.6.19
2PIDH function	P_2PIDH_T_	Section 7.6.7
OUT3 function	P_OUT3_	Section 7.5.4
MCHG function	P_MCHG	Section 7.7.1

Item	Contents						
	The compensation value from the external is added to or replaces PV value.						
		Condition		Processing result			
PV compensation		PVCMP_EN = TRUE	PVCMP_MODE = 0 (Addition)	IN + PV_CMPIN			
			PVCMP_MODE = 1 (Replacement)	PV_CMPIN			
		PVCMP_EN = FALSE	_	IN			
		N: Input value (PV value), PV_CMPIN: Compensation value, PVCMP_MODE: Compensation mode					
ΔPV compensation	Add \triangle PV compensation value (PVD_CMPIN) to internal addition value (Σ PVD_CMPIN) when PVDCMP_EN is valid. Add Σ PVD_CMPIN to PV value.						

It will not be displayed on FB property window of PX Developer.


^{*2} It means simulation processing.

^{*3} The abbreviation means control mode change processing.

Item	Contents						
	The compensation value from the external is added to or replaces △MV.						
			Processing result				
△MV compensation		MVDCMP_EN = TRUE	MVDCMP_MODE = 0 (Addition)	IN + MVD_CMPIN			
			MVDCMP_MODE = 1 (Replacement)	MVD_CMPIN			
		MVDCMP_EN = FALSE	_	IN			
	IN: Input value (△MV value), MVD_CMPIN: Compensation value, MVDCMP_MODE: Compensation mode						
	Multiply △MV by gain correction value.						
△MV gain correction			Processing result				
		MVDGAINCMP_EN = TRUE	IN ×MVD_GAININ				
		MVDGAINCMP_EN = FALS	IN				
		IN: Input value (△MV value), MVD_GAININ: Gain correction value					

Initial setting in FB property page

Initial setting concerning 2-degree-of-freedom Advanced PID control FB (M_2PIDH (_T) _) can be displayed by function on the FB property page of PX Developer programming tool so that the settings are easy. The following explains about the initial value set in public variable and tag data according to the classification on the FB property page.

<FB property page for the setting of 2-degree-of-freedom Advanced PID control FB>

The following shows the function classification in the FB property page.

Tab name	Advanced setting window tab name/Other setting window name	Reference
Input	PV engineering value, Temperature/Pressure correction, Function generator, First order lag, PV Compensation	(1)
PID operation	2-Degree-of-Freedom PID Operation, SV Setting	(2)
Cascade	_	(3)
Output	MV Output, MV Output Selection, MV Compensation	(4)
Other	Mode Disablement, Alarm disregard, Alarm Level, Monitor Tool Display	(5)

7 - 289 7 - 289

(1) Inputs

(a) Basic operations

Set basic items regarding inputs such as the range of A/D conversion value input from an analog input module, PV engineering value scale. The setting details are shown below.

Function	Group	Item	Variable name	Contents
		Input high limit	IN_NMAX	Set high limit value for the range of A/D conversion values (such as 0 to 4000, 0 to 8000) input from an analog input module. (Example) When using the range of 0 to 64000 for Q64AD-GH → Set "64000". After range error check, limiter processing (high limit) is performed with the input high limit value.
		Input low limit	IN_NMIN	Set low limit value for the range of A/D conversion values (such as 0 to 4000, 0 to 8000) input from an analog input module. (Example) When using the range of 0 to 64000 for Q64AD-GH → Set "0". After range error check, limiter processing (low limit) is performed with the input low limit value.
	Analog input	High limit range error	IN_HH	Set reference value of high limit exceeding error (range high limit error) for A/D conversion values input from an analog input module. When AD conversion value is greater than this value, high limit range error (Sensor alarm SEA) occurs.
		High limit range error reset	IN_H	Set reference value of error reset performed after high limit range error occurrence. When A/D conversion value is smaller than this value, the high limit range error (Sensor alarm SEA) is reset.
		Low limit range error reset	IN_L	Set reference value of error reset performed after low limit range error occurrence. When A/D conversion value is greater than this value, the low limit range error (Sensor alarm SEA) is reset.
Input		Low limit range error	IN_LL	Set reference value of low limit exceeding error (range low limit error) for A/D conversion values input from an analog input module. When A/D conversion value is smaller than this value, low limit range error (Sensor alarm SEA) occurs.
	PV engineering value	PV engineering value high limit	RH	Set high limit value for using A/D conversion value inputs from an analog input module as PV engineering values. (Example) When using PV engineering value of 0 to 200°C → Set "200". The PV engineering value high limit corresponds to the input high limit of analog inputs.
		PV engineering value low limit	RL	Set low limit value for using A/D conversion value inputs from an analog input module as PV engineering values. (Example) When using PV engineering value of 0 to 200°C → Set "0". The PV engineering value low limit corresponds to the input low limit of analog inputs.
		PV high high limit alarm value	НН	Set reference value of high high limit exceeding alarm for PV engineering value. When PV engineering value is greater than this value, the input high high limit alarm (HHA) occurs.
		PV high limit alarm value	PH	Set reference value of high limit exceeding alarm for PV engineering value. When PV engineering value is greater than this value, the input high limit alarm (PHA) occurs.
		PV low limit alarm value	PL	Set reference value of low limit exceeding alarm for PV engineering value. When PV engineering value is smaller than this value, the input low limit alarm (PLA) occurs.
		PV low low limit alarm value	LL	Set reference value of low low limit exceeding alarm for PV engineering value. When PV engineering value is smaller than this value, the input low low limit alarm (LLA) occurs.

(b) PV engineering value

Set items as filter coefficient, high/low limit alarm hysteresis, and variation rate check for PV engineering values. The setting details are shown below.

Function	Group	Item	Variable name	Contents	
		PV filter coefficient	ALPHA	Set filter coefficient for digital filtering processing to be performed against input values. Digital filtering processing is a simpler processing compared to the first order lag filtering. When the first order lag filtering is required, enable the first order lag filter on the "First Order Lag setting screen" and set lag time.	
PV engineering value	_	PV high/low limit alarm hysteresis	HS	Set hysteresis width for alarm restoration for the case input high limit, high high limit, low limit or low low limit exceeding alarm occurs. Set it with a percentage value (0 to 100%) of the range from the PV engineering value low limit to the PV engineering value high limit. In the case the input high limit alarm has occurred, for example, the input high limit alarm is restored when PV engineering value becomes smaller than a value obtained by subtracting the hysteresis width from the PV high limit alarm value.	
	Variation rate check	Variation rate alarm check time	CTIM	Set change width for checking the variation rate of PV value. Set it with a percentage value (0 to 100%) of the range from the PV engineering value low limit to the PV engineering value high limit. The PV value will not be restricted even when the variation rate alarm occurs.	
		Variation rate alarm value	DPL	This is used for checking the variation rate or PV value. The variation rate alarm is checked within this period. Specify a period (seconds) with a multiplied (by an integral number) value of the execution cycle ΔT (Execution cycle in unit of FBD program).	

7 - 291 7 - 291

(c) Temperature/pressure correction

Temperature/pressure correction is required when the conditions (temperature, pressure, density) of the fluid, to which the differential pressure is measured with a differential pressure type flow meter, are different from the design conditions. Perform the temperature/pressure correction when measuring gas. Also, perform the square root extraction since the measured differential pressure has the characteristics of the squared flow quantity.

Set items regarding design conditions for performing the temperature/pressure correction. The setting details are shown below.

Function	Group	Item	Variable name	Contents
	-	Temperature/ pressure correction pattern	TPC_SQR	Set correction pattern. 0: None, 1: Square root extraction, 2: Temperature correction + Square root extraction, 3: Pressure correction + Square root extraction, 4: Temperature/pressure correction + Square root extraction
	Tomporatura	Design temperature	TPC_TEMP	Set the temperature specified in the design specification. Use the same unit as measured temperature.
Towns a set use (Temperature correction	Bias temperature	TPC_B1	Set the bias temperature to perform the correction calculation with absolute temperature. Set "273.15" when Celsius is used for the design temperature and measured temperature.
Temperature/ pressure correction	Pressure correction	Design pressure	TPC_PRES	Set the pressure specified in the design specification. Use the same unit as measured pressure.
Correction		Bias pressure	TPC_B2	Set the bias pressure to perform the correction calculation with absolute pressure. Measured values of equipment are input in gauge pressure (The atmosphere pressure is 0.), normally. Set "101.3" when kilo Pascal (kPa) is used for the design pressure and measured pressure.
		Coefficient	SQR_K	For process FB, the input value internal operation is performed in percentage (%). Set "10.0".
		Output low cut- off value	SQR_OLC	Output is cut off when the value becomes unstable due to small input value. When the input value is 1% (When coefficient is "10.0"), the output low cut-off value is "10.0".

When applying density correction, assign the density correction value to the public variable "SQR_DENSITY" in the program. When not applying density correction, set the value to "1.0" on the property window.

Example) In the case of gas flow

Density correction value = Design density / Measured density

The calculation formula to be used when applying all corrections in flow quantity measurement is as follows.

Coefficient x Differential x Design temperature + Bias temperature y Measured pressure + Bias pressure x Density correction Design pressure + Bias pressure x Density correction value

(d) Function generator

Approximate and correct by broken line correction processing when the input value and the actual PV engineering value are not in direct proportion to each other. Also set the items regarding number of points and coordinates of broken line correction processing. The setting details are shown below.

Function	Group	Item	Variable name	Contents
Function		Number of points	FG_SN	Set the number of points used in the broken line correction processing. The correction is not executed when the number of points is 0.
generator	Function generator	Input coordinates (X-coordinates)	FG_X1 to FG_X48	Set the input coordinates (X-coordinates) of the broken line correction processing in engineering value.
		Output coordinates (Y-coordinates)	FG_Y1 to FG_Y48	Set the output coordinates (Y-coordinates) of the broken line correction processing in engineering value.

(e) First order lag

Use the first order lag filter to suppress the sudden change and the noise of input value so that the PV engineering value is stable. And set the items regarding the lag time of the first order lag filter (lag time constant). The setting details are shown below.

ĺ	Function	Group	Item	Variable name	Contents
	E: E:	First order lag	Enable first order lag filter	LLAG_EN	Set the Enable/Disable setting of first order lag filter function.
	First order lag	First order lag	Lag time (second)	LLAG_T1	Set the lag time (second) of the first order lag filter (lag time constant).

(f) PV compensation

The compensation value from the external (e.g. Smith's dead time compensation

method) is added to or replaces PV engineering value. Also the compensation value to be added is input as the velocity type in Δ PV compensation. Set the items regarding Enable/Disable of PV compensation and Δ PV compensation. The setting details are shown below.

Function	Group	Item	Variable name	Contents
	PV	Enable PV compensation	PVCMP_EN	Set the Enable/Disable setting of PV compensation function.
	compensation	PV compensation mode	PVCMP_MODE	Set the mode to execute PV compensation. Select either the addition or the replacement.
PV compensation	_	Enable △PV compensation	PVDCMP_EN	Set the Enable/Disable setting of $\triangle PV$ compensation function. If $\triangle PV$ compensation is enabled, internally estimate the compensation value input in velocity type. Then, add the integration value to PV engineering value. Therefore, even if compensation value becomes 0 due to the effect of break, the sudden change of PV engineering value can be avoided. When $\triangle PV$ compensation is set Disable, the internal integration value of the compensation value is reset (set to 0).

7 - 293 7 - 293

(2) PID operation

(a) Basic operations

Set the items regarding 2-degree-of-freedom PID operation. The setting details are shown below.

Function	Group	Item	Variable name	Contents
	2-degree-of- freedom PID	Reverse action/ direct action	PID2H_PN	Set PID operation pattern. Reverse action increases the manipulated value (MV) when the process value (PV) decreases more than the set value (SV). Direct action increases the manipulated value (MV) when the process value (PV) increases more than the set value (SV).
	operation	Control cycle	СТ	Indicate PID operation cycle and set the time (second) that is the integral number multiple of execution cycle △T (The default is 200ms in the execution cycle of FBD program).
DID or costing	PID constant	Proportional gain	Р	Set the proportional gain in P operation. Set in not proportional band but proportional gain. Proportional gain equals 100/proportional band (%). When it is 0, proportioning, integral and derivative controls are not executed.
PID operation		Integral time	I	Set the integral time in I operation. Integral control is not executed if the integral time is 0.
		Derivative time	D	Set the derivative time in D operation. Derivative control is not executed if the derivative time is 0.
	SV high/low limit	SV high limit value	SH	Set the high limit value of high/low limiter processing to SV value (target). SV high/low limiter processing is executed when "Enable SV high/low limiter" in the SV setting screen is selected.
		SV low limit value	SL	Set the low limit value of high/low limiter processing to SV value (target). SV high/low limiter processing is executed when "Enable SV high/low limiter" in the SV setting screen is selected.

(b) 2-degree-of-freedom PID operation

2-degree-of-freedom PID operation is a method for optimizing simultaneously the control of disturbance response and target tracking using the 2-degree-of-freedom PID parameter α and β .

PID control with gap is a method for reducing deviation used in PID operation by increasing the gap width.

The deviation between PV engineering value and SV value (current) is examined in deviation check and raise a large deviation alarm if the deviation exceeds the limit value.

The items regarding parameters, PID control with gap and large deviation alarm in 2-degree-of-freedom PID operation are set. The setting details are shown below.

Function	Group	Item	Variable name	Contents
		2-degree-of- freedom parameter Alpha	ALPHA2	Set the value of 2-degree-of-freedom PID parameter α (feed forward proportional). If α is tuned up, the manipulated variable in relation to set value changing will become smaller, and it will take a time to be stable.
		2-degree-of- freedom parameter Beta	BETA2	Set the value of 2-degree-of-freedom PID parameter β (feed forward derivative). If β is tuned down, the derivative effect in relation to set value changing will become bigger, and short-time period oscillation will occur, sometimes the system will be unstable.
		Derivative gain	PID2H_MTD	Derivative gain is a constant to determine the characteristics of imperfect derivative. The number is normally needless to change (change only when imperfect derivative characteristics should be adjusted strictly).
2-degree-of-		Gap width	GW	Set the gap width (0 to 100%) when executing PID control with gap. PID control with gap will be executed if Actual deviation ≤ Gap width.
freedom PID operation	-	Gap gain	GG	Set gap gain when executing PID control with gap. Also set the gain in relation to the actual deviation (0 to 100%) for executing PID control with gap. Actual deviation × Gap gain is the deviation used in PID operation.
		Large deviation alarm hysteresis	PID2H_DVLS	Set hysteresis width for recovering alarm after large deviation alarm (DVLA) occurred. Set it with a percentage value (0 to 100%) that is to the value subtracts PV engineering value low limit from PV engineering value high limit. Large deviation alarm will be recovered when Actual deviation ≤ (Deviation limit value - Large deviation alarm hysteresis) is established after large deviation alarm occurred.
		Deviation limit value	DVL	Set the allowable variation width of deviation in deviation check. Set the variation width with a percentage value (0 to 100%) that is to the value subtracts PV engineering value low limit from PV engineering value high limit. Although large deviation alarm (DVLA) occurs when Deviation > Deviation limit value is established, deviation value limit will not be executed.

(c) SV setting

Set the items to SV value (target) such as initial value, variation rate high limit, high/low limiter Enable/Disable and PV tracking Enable/Disable. The setting details are shown below.

Function	Group	Item	Variable name	Contents
		Initial SV value	SV	Set the initial value of SV value (target).
		SV variation rate high limit value	DSVL	Set the high limit value of variation rate limiter processing to SV value (target). Set it with a percentage value (0 to 100%) of the range from the PV engineering value low limit to the PV engineering value high limit.
SV setting	/ setting Enable SV high/low limiter PID2H	PID2H_SVLMT_EN	Set Enable/Disable of SV high/low limiter processing. If the processing is enabled, the SV value (current) is limited within the range between the SV high limit value and the SV low limit value.	
		Enable PV tracking	PID2H_PVTRK_EN	Set Enable/Disable of PV tracking processing. PV tracking is the function that matches SV value (target) and PV value when the control mode is either manual or computer MV to avoid the sudden change of MV value in mode switching (Manual — Auto).

(3) Cascade

Set the items regarding cascade connection. The setting details are shown below.

Function	Group	Item	Variable	Contents
		Do not use/Use as	PID2H_SVPTN_B0	Set whether or not to use as the secondary loop.
		the secondary loop	PID2H_SVPTN_B1	Set whether of not to use as the secondary loop.
Cascade	Cascade connection	Enable to execute tracking*1	PID2H_TRK	Set whether or not to execute tracking (transfer) of the SV value in the secondary loop to the MV value of primary loop if the control mode is other than cascade and cascade direct mode. This setting avoids the sudden change of the SV value of secondary loop in switching the control mode to cascade.

^{*1} Settable only when the tag type is M_2PIDH_T_.

(4) Output

(a) Basic operations

Set the range of D/A conversion value to be written to an analog output module as the basic items regarding outputs. The setting details are shown below.

Function	Group	Item	Variable name	Contents
Output Analog	Output conversion high limit	OUT3_NMAX	Set the high limit value for the range of D/A conversion values (such as 0 to 4000, 0 to 8000) for writing to an analog output module. (Example) When using the range of 0 to 12000 for Q64DA → Set "12000".	
	output	Output conversion low limit	OUT3_NMIN	Set the low limit value for the range of D/A conversion values (such as 0 to 4000, 0 to 8000) for writing to an analog output module. (Example) When using the range of 0 to 12000 for Q64DA → Set "0".

(b) MV output

Set the items regarding MV high/low limit, MV value instantaneous pullback and MV variation rate. The setting details are shown below.

Function	Group	Item	Variable name	Contents
		Initial MV value	MV	Set the initial MV value.
	MV high/low	MV high limit value	МН	Set the high limit value for MV high/low limiter processing. When MV value after output variation rate limit > MV high limit value is established, output high limit alarm (MHA) occurs and the MV value is limited by the MV high limit value (output high limiter). Output high limit alarm (MHA) recovers when MV value ≦ MV high limit value.
	limit	MV low limit value	ML	Set the low limit value for MV high/low limiter processing. When MV value after output variation rate limit < MV low limit value is established, output low limit alarm (MLA) occurs and the MV value is limited by the MV low limit value (output low limiter). Output low limit alarm (MLA) recovers when MV value ≧ MV low limit value.
		Pull MV internal operation value back, when it exceeds MV internal operation high/low limit value	OUT3_ARW _EX_EN	Set whether or not to enable pull MV internal operation value back, when it exceeds MV internal operation high/low limit value. Use when considerably increasing proportional gain value. Set to disabled in normal control.
MV output	MV value instantane- ous pullback	MV internal operation high limit value	OUT3_MVPH	Set the high limit for MV internal operation value. Set the value so as to exceed MV high limit value. If MV internal operation value (MVP) is set enabled for MV value instantaneous pullback, execute limiter processing (high limit).
Japan		MV internal operation low limit value	OUT3_MVPL	Set the low limit for MV internal operation value. Set the value so as not to exceed MV low limit value. If MV internal operation value (MVP) is set enabled for MV value instantaneous pullback, execute limiter processing (low limit).
	MV variation rate	Output variation rate high limit value	DML	Set MV allowable variation width as output variation rate high limit value. Set it with a percentage value (0 to 100%) that is to MV (%). MV variation width is checked in every execution cycle △T. When MV variation width > Output variation rate high limit value, output variation rate limit alarm (DMLA) occurred and MV variation width is limited by output variation rate high limit value (After △T, previous MV value + Output variation rate high limit value = Current MV value is established). This enables to convert MV into ramp status when SV is rapidly changed and not to output rapid variation manipulated variable. Output variation rate limit alarm (DMLA) recovers when MV variation width ≤ DML.
		Stop integration, when MV variation rate limiter alarm occurred	PID2H_LMT _ISTP	Set whether or not to stop integration when MV variation rate limiter alarm occurred. Difference exists between MV internal operation value and MV value when the alarm occurs, stop integral operation as countermeasures against reset windup.

(c) MV output selection

Set the items regarding preset MV value, output selection in abnormal occasions and MV reverse output. The setting details are shown below.

Function	Group	Item	Variable name	Contents
		Preset MV value OUT3_PREMV_V		When selecting preset MV, set MV value when outputting preset MV in abnormal occasions.
		Output selection when loop stop/tag stop is executed	OUT3_STP_OTYPE	Set the method for MV output in loop stop or tag stop. Select either hold or preset value.
MV output selection	_	MV output selection when sensor error occurred	OUT3_SEA_OTYPE	Set the method for MV output in the occurrence of sensor alarm (SEA). Select from "Hold", "Preset MV output", and "Do not hold and output preset MV". When selecting "Do not hold and output preset MV", the result of PID operation + Output addition processing is output.
		Enable MV reverse output	OUT3_MVREV_EN	Set whether or not to output MV reverse. When selecting MV reverse output, output conversion processing is executed by the MV value after interval processing (100 - MV).

(d) MV compensation

Combine feedforward control when variation of an operation is clear since time lag occurs when responding to disturbance in feedback control. Set output quantity of feedforward control to the compensation value of ΔMV compensation or MV compensation. Set the items regarding ΔMV compensation and MV compensation related to MV compensation. The setting details are shown below.

Function	Group	Item	Variable name	Contents
		Enable △MV compensation	MVDCMP_EN	Set Enable/Disable of △MV compensation. Assign velocity type compensation value to input variable MVD_CMPIN.
	△MV compensation	△MV compensation mode	MVDCMP_MODE	Set the mode for \triangle MV compensation execution. Select either addition or replacement. Addition or replacement operation is executed to \triangle MV that will be input for P_OUT3
MV compensation	_	Enable △MV gain correction	MVDGAINCMP_EN	Set Enable/Disable of gain correction to △MV. Assign gain correction value to △MV to input variable MVD_GAININ.
	NA /	Enable MV compensation	OUT3_MVCMP_EN	Set Enable/Disable of MV compensation. Assign position type compensation value to input variable MV_CMPIN.
	MV compensation	MV compensation mode	OUT3_MVCMP_MODE	Set the mode for MV compensation execution. Select either addition or replacement. Addition or replacement operation is executed to MV internal operation result of P_OUT3

(5) Other

Set the items regarding mode disablement, disable alarm detection, alarm level and monitor tool display setting.

(a) Mode disablement

The setting details are shown below.

Function	Group	ltem	Variable name	Contents
		Change to MANUAL mode	MANI	Set the transition to MANUAL mode as "Disable". When disabling transition, transition operation to MANUAL mode in faceplate and mode change FB (P_MCHG type FB) is inhibited.
		Change to AUTO mode	AUTI	Set the transition to AUTO mode as "Disable". When disabling transition, transition operation to AUTO mode in faceplate and mode change FB (P_MCHG type FB) is inhibited.
	Diagble	Change to CASCADE mode	CASI	Set the transition to CASCADE mode as "Disable". When disabling transition, transition operation to CASCADE mode in faceplate and mode change FB (P_MCHG type FB) is inhibited.
	Disable control mode changing	ontrol Change to COMPUTER		Set the transition to COMPUTER MV mode as "Disable". When disabling transition, transition operation to COMPUTER MV mode in faceplate and mode change FB (P_MCHG type FB) is inhibited.
Mode disablement		Change to COMPUTER SV mode	CSVI	Set the transition to COMPUTER SV mode as "Disable". When disabling transition, transition operation to COMPUTER SV mode in faceplate and mode change FB (P_MCHG type FB) is inhibited.
disablement		Change to CASCADE DIRECT mode	CASDRI	Set the transition to CASCADE DIRECT mode as "Disable". When disabling transition, transition operation to CASCADE DIRECT mode in faceplate and mode change FB (P_MCHG type FB) is inhibited.
		Change to TAG STOP mode	TSTPI	Set the transition to TAG STOP mode as "Disable". When disabling transition, transition operation to TAG STOP mode in faceplate is inhibited.
	Disable I/O mode changing	Change to OVERRIDE mode	OVRI	Set the transition to OVERRIDE mode as "Disable". When disabling transition, transition operation to OVERRIDE mode in faceplate is inhibited.
		Change to SIMULATION mode	SIMI	Set the transition to SIMULATION mode as "Disable". When disabling transition, transition operation to SIMULATION mode in faceplate is inhibited.
	_	Change to AUTO TUNING mode	ATI	Set the transition to AUTO TUNING mode as "Disable". When disabling transition, auto tuning operation in tuning mode screen of monitor tool is inhibited.

(b) Alarm Disregard

The setting details are shown below.

Function	Group	Item	Variable name	Contents
	-	Disregard all alarms	ERRI	Make disable detection setting of all alarms. When disabling detection, all alarms are not detected without relation to individual setting of disable alarm detection.
		Input high high limit alarm	HHI	Make disable detection setting of input high high limit alarm. When disabling detection, input high high limit alarm (HHA) is not detected.
		Input high limit alarm	PHI	Make disable detection setting of input high limit alarm. When disabling detection, input high limit alarm (PHA) is not detected.
		Input low limit alarm	PLI	Make disable detection setting of input low limit alarm. When disabling detection, input low limit alarm (PLA) is not detected.
		Input low low limit alarm	LLI	Make disable detection setting of input low low limit alarm. When disabling detection, input low low limit alarm (LLA) is not detected.
		rate alarm		Make disable detection setting of sensor error alarm. When disabling detection, sensor error alarm (SEA) is not detected.
l				Make disable detection setting of positive variation rate alarm. When disabling detection, positive variation rate alarm (DPPA) is not detected.
Alarm Disregard	Alarm			Make disable detection setting of negative variation rate alarm. When disabling detection, negative variation rate alarm (DPNA) is not detected.
	disregard items	Large deviation alarm	DVLI	Make disable detection setting of large deviation alarm. When disabling detection, large deviation alarm (DVLA) is not detected.
		SV high limit alarm	SVLI	Make disable detection setting of SV high limit alarm. When disabling detection, SV high limit alarm (SVHA) is not detected.
		SV low limit alarm	SVHI	Make disable detection setting of SV low limit alarm. When disabling detection, SV low limit alarm (SVLA) is not detected.
		SV variation rate limit alarm	DSVLI	Make disable detection setting of SV variation rate limit alarm. When disabling detection, SV variation rate limit alarm (DSVLA) is not detected.
		Output high limit alarm	MHI	Make disable detection setting of output high limit alarm. When disabling detection, output high limit alarm (MHA) is not detected.
		Output low limit alarm	MLI	Make disable detection setting of output low limit alarm. When disabling detection, output low limit alarm (MLA) is not detected.
		Output variation rate limit alarm	DMLI	Make disable detection setting of output variation rate limit alarm. When disabling detection, output variation rate limit alarm (DMLA) is not detected.

(c) Alarm level

The setting details are shown below.

Function	Group	Item	Variable name	Contents
		Stop alarm level	SPL	Set alarm level of stop alarm. Select major alarm or minor alarm.
		Input high high limit alarm level	HHL	Set alarm level of input high high limit alarm. Select major alarm or minor alarm.
		Input high limit alarm level	PHL	Set alarm level of input high limit alarm. Select major alarm or minor alarm.
		Input low limit alarm level	PLL	Set alarm level of input low limit alarm. Select major alarm or minor alarm.
		Input low low limit alarm level	LLL	Set alarm level of input low low limit alarm. Select major alarm or minor alarm.
		Sensor error alarm level	SENL	Set alarm level of sensor error alarm. Select major alarm or minor alarm.
		Positive variation rate alarm level	DPPL	Set alarm level of positive variation rate alarm. Select major alarm or minor alarm.
Alarm level setting	_	Negative variation rate alarm level	DPNL	Set alarm level of negative variation rate alarm. Select major alarm or minor alarm.
		Large deviation alarm level	DVLL	Set alarm level of large deviation alarm. Select major alarm or minor alarm.
		SV high limit alarm level	SVHL	Set alarm level of SV high limit alarm. Select major alarm or minor alarm.
		SV low limit alarm level	SVLL	Set alarm level of SV low limit alarm. Select major alarm or minor alarm.
		SV variation rate limit alarm level	DSVLL	Set alarm level of SV variation rate limit alarm. Select major alarm or minor alarm.
		Output high limit alarm level	MHL	Set alarm level of output high limit alarm. Select major alarm or minor alarm.
		Output low limit alarm level	MLL	Set alarm level of output low limit alarm. Select major alarm or minor alarm.
		Output variation rate limit alarm level	DMLL	Set alarm level of output variation rate limit alarm. Select major alarm or minor alarm.

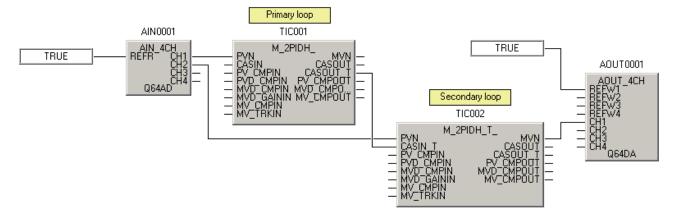
(d) Monitor tool display

The setting details are shown below.

Function	Group	Item	Variable name	Contents
	Unit setting	Index number		Set the index Number of Engineering Values displayed in Monitor Tool. Please fill the same number set in the "Unit Setting" window of monitor tool.
	No. of digits after the decimal point setting	No. of digits after the decimal point	N	Set the number of digits after decimal point of Engineering Values displayed on monitor tool.

7 - 301 7 - 301

Error


Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

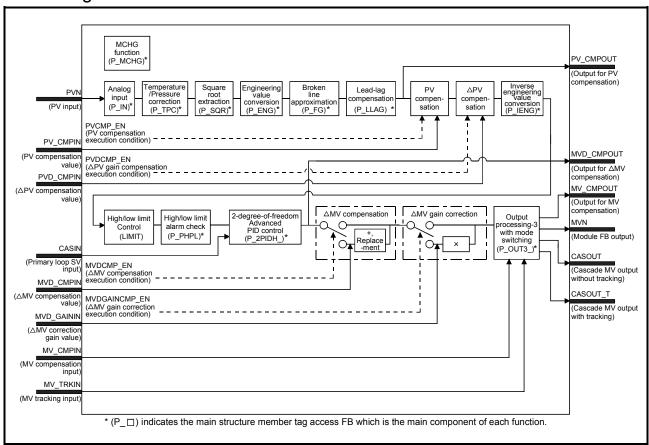
• When overflow occurs during operation. (Error code: 4100)

Program Example

(Cascade control)

7.8.10 2-Degree-of-Freedom Advanced PID Control (Without Tracking to primary loop) (M 2PIDH)

FB	FBD parts
M_2PIDH_	PVN M_2PIDH_ MVN — CASIN CASOUT — PV_CMPIN CASOUT_T — PV_CMPIN PV_CMPOUT — MVD_CMPIN MVD_CMPOUT — MVD_GAININ MV_CMPOUT — MV_CMPIN — MV_CMPIN — MV_TRKIN


	Corresponding tag type							
	2PIDH							
i								
		C	ontrol mo	de				
	MAN AUT CAS*1 CMV CSV							
	0	0	0	0	0			
	*1 Transition to CASDB is possible							

^{*1} Transition to CASDR is possible.

Function overview: Executes 2-degree-of-freedom PID control taking function of P_IN+P_PHPL+P_2PIDH_+P_OUT3_ as a single FB and with PV/MV Correction.

Function/FB classification name: Tag FB _ loop tag FB

Block Diagram

7 - 303 7 - 303

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
	CASIN_T	Input variable	ADR_REAL	Primary loop SV input (Unit: %) (With tracking)	0 to 100
	PV_CMPIN	Input variable	REAL	PV compensation value	-999999 to 999999
Input	PVD_CMPIN	Input variable	REAL	△PV compensation value	-999999 to 999999
	MVD_CMPIN	Input variable	REAL	△MV compensation value (Unit: %)	-100 to 100
	MVD_GAININ	Input variable	Input variable REAL △MV correction gain value		-999999 to 999999
	MV_CMPIN	Input variable	REAL	MV compensation value (Unit: %)	-999999 to 999999
	MV_TRKIN	Input variable	REAL	MV tracking input (Unit: %)	0 to 100
	MVN	Output variable	REAL	Module FB output	OUT3_NMIN to OUT3_NMAX
	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
Output	CASOUT_T	Output variable	ADR_REAL	Cascade MV output (Unit: %) (With tracking)	0 to 100
	PV_CMPOUT	Output variable	REAL	Output for PV compensation	-999999 to 999999
	MVD_CMPOUT	Output variable	REAL	Output for △MV compensation (Unit: %)	-100 to 100
	MV_CMPOUT	Output variable	REAL	Output for MV compensation (Unit: %)	0 to 100

Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
	TPC_SQR	Public variable	INT	Temperature/pressure correction pattern 0: None 1: Square root extraction 2: Temperature correction+ Square root extraction 3: Pressure correction + Square root extraction 4: Temperature/pressure correction + Square root extraction	0 to 4	0	User
Operation	TPC_PVTEMP	Public variable	REAL	Temperature/pressure correction: Measured temperature (engineering value)	-999999 to 999999	0.0	User
processing	TPC_PVPRES	Public variable	REAL	Temperature/pressure correction: Measured pressure (engineering value)	-999999 to 999999	0.0	User
	TPC_TEMP	Public variable	REAL	Temperature/pressure correction: Design temperature	-999999 to 999999	0.0	User
	TPC_B1	Public variable	REAL	Temperature/pressure correction: Bias temperature	-999999 to 999999	273.15	User
	TPC_PRES	Public variable	REAL	Temperature/pressure correction: Design pressure	-999999 to 999999	0.0	User
	TPC_B2	Public variable	REAL	Temperature/pressure correction: Bias pressure	-999999 to 999999	10332.0	User
	SQR_OLC	Public variable	REAL	Square root extraction: Output low cut-off value	0 to 999999	0.0	User
	SQR_K	Public variable	REAL	Square root extraction: Coefficient	0 to 999999	10.0	User
	SQR_DENSITY	Public variable	REAL	Square root extraction: Density correction value	0 to 999999	1.0	User
	FG_SN	Public variable	INT	Function generator: Number of points	0 to 48	0	User
	FG_X1 to FG_X48	Public variable	REAL	Function generator: Input coordinates (X-coordinates)	-999999 to 999999	0.0	User
	FG_Y1 to FG_Y48	Public variable	REAL	Function generator: Output coordinates (Y-coordinates)	-999999 to 999999	0.0	User

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	LLAG_EN	Public variable	BOOL	First order lag: Execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	LLAG_T1	Public variable	REAL	First order lag: Lag time (second)	0 to 999999	1.0	User
	PVCMP_EN	Public variable	BOOL	PV compensation execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	PVCMP_MODE	Public variable	INT	PV compensation mode (0: Addition, 1: Replacement)	0 to 1	0	User
	PVDCMP_EN	Public variable	BOOL	ΔPV compensation execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	PID2H_MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	PID2H_DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PID2H_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	PID2H_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Use)	TRUE, FALSE	TRUE	User
	PID2H_PVTRK_EN	Public variable	BOOL	PV Tracking execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	PID2H_ISTP	Public variable	BOOL	Integration stop signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	PID2H_DSTP	Public variable	BOOL	Derivation stop signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	PID2H_LMT_ISTP	Public variable	BOOL	Stop Integration, when MV variation rate limiter alarm occurred (TRUE: Stop, FALSE: Not stop)	TRUE, FALSE	FALSE	User
	PID2H_SVLMT_EN	Public variable	BOOL	SV high/low limiter (TRUE: Execute, FALSE: Not execute)	TRUE, FALSE	FALSE	User
	MVDCMP_EN	Public variable	BOOL	△MV compensation execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
Operation	MVDCMP_MODE	Public variable	INT	△MV compensation mode (0: Addition, 1: Replacement)	0 to 1	0	User
processing	MVDGAINCMP_EN	Public variable	BOOL	△MV gain correction execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	OUT3_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	OUT3_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User
	OUT3_MVCMP_EN	Public variable	BOOL	MV compensation execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	OUT3_MVCMP_MODE	Public variable	INT	MV compensation mode (0: Addition, 1: Replacement)	0 to 1	0	User
	OUT3_PREMV_EN	Public variable	BOOL	Preset MV execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	OUT3_PREMV_V	Public variable	REAL	Preset MV value (Unit: %)	0 to 100	0.0	User
	OUT3_MVHLD_EN	Public variable	BOOL	MV hold execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	OUT3_MVTRK_EN	Public variable	BOOL	MV tracking execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
	OUT3_STP_OTYPE	Public variable	INT	Output selection when loop stop/tag stop is executed (0: Hold, 1: Preset value)	0 to 1	0	User
	OUT3_SEA_OTYPE	Public variable	INT	MV output selection when SEA occurred (0: Hold, 1: Preset MV output, 2: Do not hold and output Preset MV)	0 to 2	0	User
	OUT3_ARW_EX_EN Public variable BOOL		Pull MV internal operation value back, when it exceeds MV internal operation high/low limit value (TRUE: Execute, FALSE: Not execute)	TRUE, FALSE	FALSE	User	
	OUT3_MVPH	Public variable	REAL	MV internal operation high limit value (Unit: %)	MH to 999999	100.0	User
	OUT3_MVPL	Public variable	REAL	MV internal operation low limit value (Unit: %)	-999999 to ML	0.0	User
	OUT3_MVREV_EN	Public variable	BOOL	MV reverse execution condition (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

Public Variable (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
processing*2	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System
MCHG processing*3	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2:AUT, 3:CAS, 4:CMV, 5:CSV, 6: CASDR)	1 to 6	0	User
	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

This tag FB consists of the following tag access FB and general process FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
TPC function	P_TPC	Section 7.1.6
SQR function	P_SQR	Section 7.2.5
ENG function	P_ENG	Section 7.1.4
FG function	P_FG	Section 7.1.1
LLAG function	P_LLAG	Section 7.4.1
IENG function	P_IENG	Section 7.1.5
LIMIT function	LIMIT	Section 4.6.3
PHPL function	P_PHPL	Section 7.6.19
2PIDH function	P_2PIDH_T_	Section 7.6.7
OUT3 function	P_OUT3_	Section 7.5.4
MCHG function	P_MCHG	Section 7.7.1

Item		Contents					
	The compensation value from the external is added to or replaces PV value.						
			Processing result				
PV		PVCMP_EN = TRUE	PVCMP_MODE = 0 (Addition)	IN + PV_CMPIN			
compensation			PVCMP_MODE = 1 (Replacement)	PV_CMPIN			
		PVCMP_EN = FALSE	_	IN			
	IN: Input value (PV value), PV_CMPIN: Compensation value, PVCMP_MODE: Compensation mode						
ΔPV compensation	Add \triangle PV compensation value (PVD_CMPIN) to internal addition value (Σ PVD_CMPIN) when PVDCMP_EN is valid. Add Σ PVD_CMPIN to PV value.						

It will not be displayed on FB property window of PX Developer.

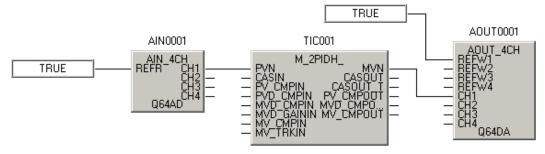
^{*2} It means simulation processing.

^{*3} The abbreviation means control mode change processing.

Item		Contents						
	The	compensation value from the e	xternal is added to or replaces △MV.					
			Condition	Processing result				
△MV		MVDCMD EN - TDUE	MVDCMP_MODE = 0 (Addition)	IN + MVD_CMPIN				
compensation		MVDCMP_EN = TRUE	MVDCMP_MODE = 1 (Replacement)	MVD_CMPIN				
		MVDCMP_EN = FALSE		IN				
	ı	IN: Input value (△MV value), MVD_CMPIN: Compensation value, MVDCMP_MODE: Compensation mode						
	Multi	iply △MV by gain correction va	lue.					
A B 40 /			Processing result					
△MV gain correction		MVDGAINCMP_EN = TRUE	IN ×MVD_GAININ					
00.100.1011		MVDGAINCMP_EN = FALSE	IN					
	ı	IN: Input value (△MV value), M	Input value (△MV value), MVD_GAININ: Gain correction value					

Initial setting in FB property page

The setting is the same with the 2-degree-of-freedom Advanced PID control (with tracking to primary loop) (M_2PIDH_T_) (refer to Section 7.8.9).


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

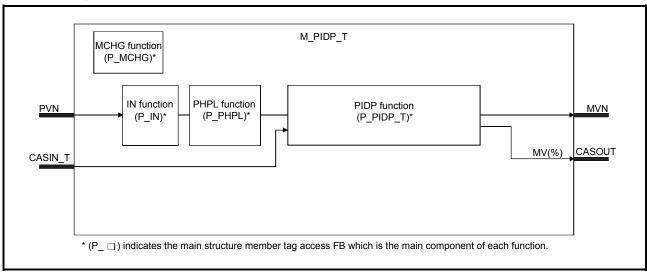
Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

7 - 307 7 - 307

7.8.11 Position Type PID Control (With Tracking to primary loop, Without Tracking from secondary loop) (M_PIDP_T)


FB	FBD parts		
M_PIDP_T	M_PIDP_T PVN MVN CASIN_T CASOUT		

	Corresponding tag type							
PIDP								
	Control mode							
MAN	AUT	CAS	CMV	CSV				
0	0	0	0	0				

Function overview: Execute position type basic PID control taking function of P_IN+P_PHPL+P_PIDP_T as a single FB.

Function/FB classification name: Tag FB _ loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
Input	CASIN_T	Input variable	ADR_REAL	Primary loop SV input (Unit: %) (With tracking)	0 to 100
	MVN	Output variable	REAL	Module FB output	PIDP_NMIN to PIDP_NMAX
Output	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100

Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
Operation	PIDP_MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
processing	PIDP_DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PIDP_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	PIDP_TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
	PIDP_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	PIDP_SVPTN_B1	Public variable	BOOL	Set value (SV) pattern TRUE: Not upper MV FALSE: Upper MV	TRUE, FALSE	TRUE	User
	PIDP_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	PIDP_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

Public Variable (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
processing*2	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*3	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

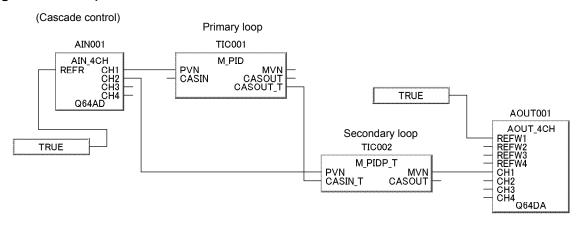
This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
PIDP function	P_PIDP_T	Section 7.6.9
MCHG function	P_MCHG	Section 7.7.1

It will not be displayed on FB property window of PX Developer.

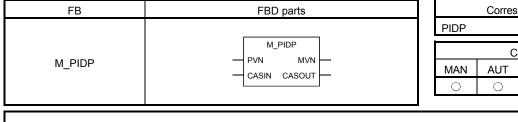
^{*2} It means simulation processing.

^{*3} The abbreviation means control mode change processing.


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

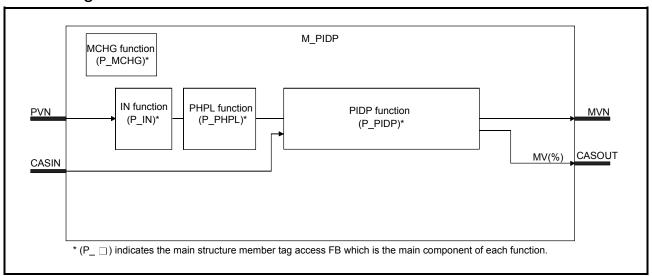
Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.


• When overflow occurs during operation. Error code: 4100)

Program Example

7 - 310 7 - 310

7.8.12 Position Type PID Control (Without Tracking to primary loop, Without Tracking from secondary loop) (M_PIDP)



Corresponding tag type							
PIDP							
	Control mode						
MAN AUT CAS CMV CSV							
0	0	0	0	0			

Function overview: Execute position type basic PID control taking function of P_IN+P_PHPL+P_PIDP as a single FB.

Function/FB classification name: Tag FB_loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
Input	CASIN	Input variable	REAL	Primary loop SV input (Unit: %) (Without tracking)	0 to 100
	MVN	Output variable	REAL	Module FB output	PIDP_NMIN to PIDP_NMAX
Output	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100

7 - 311 7 - 311

Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
Operation processing	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
	PIDP_MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	PIDP_DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PIDP_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	PIDP_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	PIDP_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	PIDP_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

Public Variable (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM processing*2	SIMIN	Public variable	REAL	Simulation input	NMIN to MAX	0.0	User
	SIMOUT	Public variable	REAL	Simulation output	NMIN to MAX	0.0	System
MCHG processing*3	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
PIDP function	P_PIDP	Section 7.6.10
MCHG function	P_MCHG	Section 7.7.1

It will not be displayed on FB property window of PX Developer.

^{*2} It means simulation processing.

^{*3} The abbreviation means control mode change processing.


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

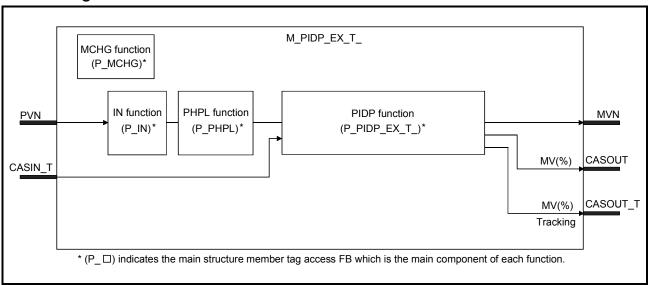
• When overflow occurs during operation. (Error code: 4100)

Program Example

7 - 313 7 - 313

CSV

7.8.13 Position Type PID Control (With Tracking to primary loop, With Tracking from secondary loop) (M_PIDP_EX_T_)


FB	FBD parts			Corres	ponding t	ag type
	M_PIDP_EX_T_		PIDP			
M_PIDP_EX_T_	PVN MVN — CASIN_T CASOUT —	Į	MANI		ontrol mo	
	CASOUT_T —		MAN	AUT	CAS	CMV
	3.6551		0	0	0	0

Function overview: Execute position type basic PID control taking function of P_IN+P_PHPL+P_PIDP_EX_T_ as a single FB.

MV value bumpless switching and tracking from the secondary loop at control mode change are also possible. *1

Function/FB classification name: Tag FB _ loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
Input	CASIN_T	Input variable	ADR_REAL	Primary loop SV input (Unit: %) (With tracking)	0 to 100
	MVN	Output variable	REAL	Module FB output	PIDP_NMIN to PIDP_NMAX
Output	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
	CASOUT_T	Output variable	ADR_REAL	Cascade MV output (Unit: %) (With tracking)	0 to 100

7 - 314 7 - 314

^{*1} Requires Process CPU or Redundant CPU whose upper five digits of serial No. are 07032 or later.

Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
Operation	PIDP_MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
processing	PIDP_DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
proceeding	PIDP_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	PIDP_TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
	PIDP_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	PIDP_SVPTN_B1	Public variable	BOOL	Set value (SV) pattern TRUE: Not upper MV FALSE: Upper MV	TRUE, FALSE	TRUE	User
	PIDP_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	PIDP_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

Public Variable (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
processing*2	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*3	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

It will not be displayed on FB property window of PX Developer.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page	
IN function	P_IN	Section 7.5.1	
PHPL function	P_PHPL	Section 7.6.19	
PIDP function	P_PIDP_EX_T_	Section 7.6.11	
MCHG function	P_MCHG	Section 7.7.1	

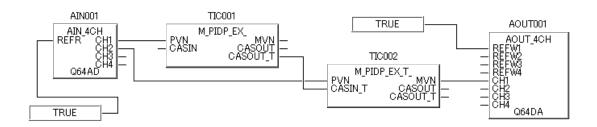
^{*2} It means simulation processing.

^{*3} The abbreviation means control mode change processing.

Restriction

This FB supports the Process CPU and the Redundant CPU whose upper five digits of serial No.s are 07032 or later.

If either of the CPU whose upper five digits of serial No. are 07031 or earlier is used, the MV value bumpless switching and tracking processing from the secondary loop at control mode change will not be executed.


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

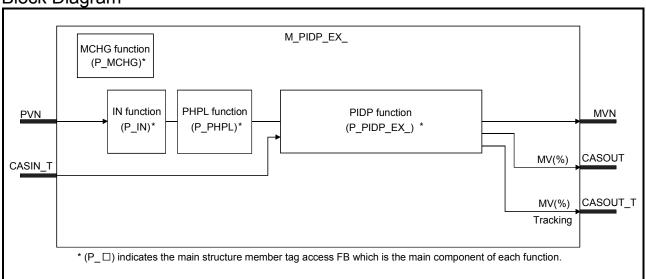
Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. Error code: 4100)

Program Example

7 - 316 7 - 316

7.8.14 Position Type PID Control (Without Tracking to primary loop, With Tracking from secondary loop) (M_PIDP_EX_)


FB	FBD parts		Corresponding tag type			
	M_PIDP_EX_	PIDP				
M PIDP EX	PVN MVN —		С	ontrol mo	de	
M_1 151 _EX_	CASIN CASOUT CASOUT_T	MAN	AUT	CAS	CMV	CSV
		0	0	0	0	0

Function overview: Execute position type basic PID control taking function of P_IN+P_PHPL+P_PIDP_EX_ as a single FB.

MV value bumpless switching and tracking from the secondary loop at control mode change are also possible. *1

Function/FB classification name: Tag FB_loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
Input	CASIN	Input variable	put variable REAL Primary loop SV input (Unit: %) (Without tracking)		0 to 100
	MVN	Output variable	REAL	Module FB output	PIDP_NMIN to PIDP_NMAX
Output	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
	CASOUT_T	Output variable	ADR_REAL	Cascade MV output (Unit: %) (With tracking)	0 to 100

7 - 317 7 - 317

^{*1} Requires Process CPU or Redundant CPU whose upper five digits of serial No. are 07032 or later.

Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
Operation processing	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
	PIDP_MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	PIDP_DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	PIDP_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	PIDP_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	PIDP_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	PIDP_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

Public Variable (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM	SIMIN	Public variable	REAL	Simulation input	NMIN to MAX	0.0	User
processing*2	SIMOUT	Public variable	REAL	Simulation output	NMIN to MAX	0.0	System
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*3	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
PIDP function	P_PIDP_EX_	Section 7.6.12
MCHG function	P_MCHG	Section 7.7.1

It will not be displayed on FB property window of PX Developer.

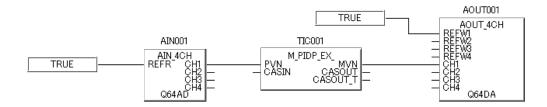
^{*2} It means simulation processing.

^{*3} The abbreviation means control mode change processing.

Restriction

This FB supports the Process CPU and the Redundant CPU whose upper five digits of serial No.s are 07032 or later.

If either of the CPU whose upper five digits of serial No. are 07031 or earlier is used, the MV value bumpless switching and tracking processing from the secondary loop at control mode change will not be executed.


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

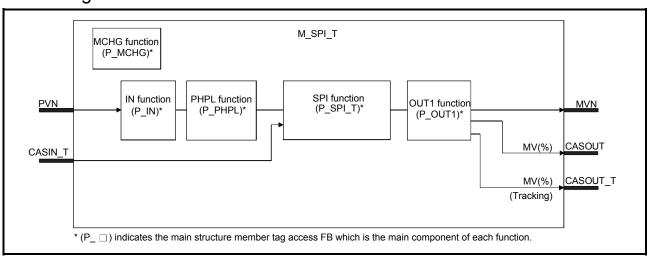
Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

7 - 319 7 - 319

7.8.15 Sample PI Control (With Tracking to primary loop) (M_SPI_T)


FB	FBD parts		Corres	spo
	M_SPI_T	SPI		
			С	or
M_SPI_T	CASIN_T CASOUT —	MAN	AUT	
	CASOUT_T —	0	0	Ī

	Corresponding tag type							
SPI								
	Control mode							
MAN	MAN AUT CAS CMV CSV							
0 0 0 0 0								

Function overview: Execute sample PI control taking function of P_IN+P_PHPL+P_SPI_T+P_OUT1 as a single FB.

Function/FB classification name: Tag FB_loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
Input	CASIN_T	Input variable	ADR_REAL	Primary loop SV input (Unit: %) (With tracking)	0 to 100
	MVN	Output variable	REAL	Module FB output	OUT1_NMIN to OUT1_NMAX
Output	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
·	CASOUT_T	Output variable	ADR_REAL	Cascade MV output (Unit: %) (With tracking)	0 to 100

Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
Operation	SPI_DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
processing	SPI_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	SPI_TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
	SPI_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	SPI_SVPTN_B1	Public variable	BOOL	Set value (SV) pattern TRUE: Not upper MV FALSE: Upper MV	TRUE, FALSE	TRUE	User
	OUT1_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	OUT1_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

Public Variable (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM processing*2	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*3	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

It will not be displayed on FB property window of PX Developer.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

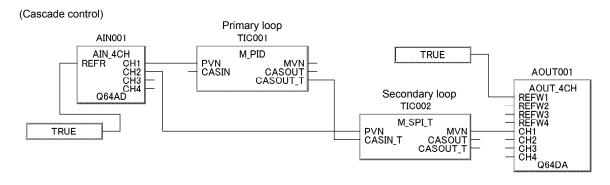
Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page		
IN function	P_IN	Section 7.5.1		
PHPL function	P_PHPL	Section 7.6.19		
SPI function	P_SPI_T	Section 7.6.13		
OUT1 function	P_OUT1	Section 7.5.2		
MCHG function	P_MCHG	Section 7.7.1		

^{*2} It means simulation processing.

^{*3} The abbreviation means control mode change processing.


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

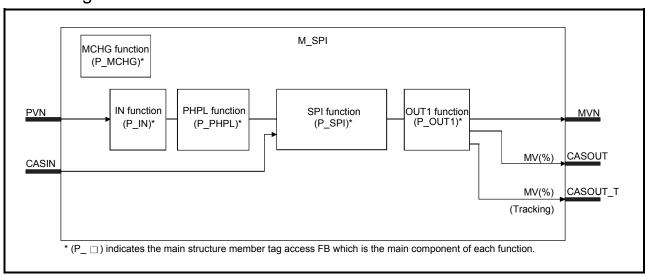
Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

7 - 322 7 - 322

7.8.16 Sample PI Control (Without Tracking to primary loop) (M_SPI)


FB	FBD parts		Corres	por
	L A ODI	SPI		
	M_SPI — PVN MVN—		С	ontr
M_SPI	— CASIN CASOUT —	MAN	AUT	(
	CASOUT_T —	0	0	

	Corresponding tag type						
SPI							
	Control mode						
MAN	AUT	CAS	CMV	CSV			
0	0	0	0	0			

Function overview: Execute sample PI control taking function of P_IN+P_PHPL+P_SPI+P_OUT1 as a single FB.

Function/FB classification name: Tag FB _ loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
Input	CASIN	Input variable	REAL	Primary loop SV input (Unit: %) (Without tracking)	0 to 100
	MVN	Output variable	REAL	Module FB output	OUT1_NMIN to OUT1_NMAX
Output	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
	CASOUT_T	Output variable	ADR_REAL	Cascade MV output (Unit: %) (With tracking)	0 to 100

Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
Operation	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
processing	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
	SPI_DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	SPI_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	SPI_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	OUT1_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	OUT1_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

Public Variable (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM processing*2	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System
MCHG processing*3	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

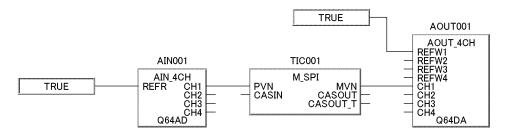
This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page	
IN function	P_IN	Section 7.5.1	
PHPL function	P_PHPL	Section 7.6.19	
SPI function	P_SPI	Section 7.6.14	
OUT1 function	P_OUT1	Section 7.5.2	
MCHG function	P_MCHG	Section 7.7.1	

It will not be displayed on FB property window of PX Developer.

^{*2} It means simulation processing.

^{*3} The abbreviation means control mode change processing.


Error

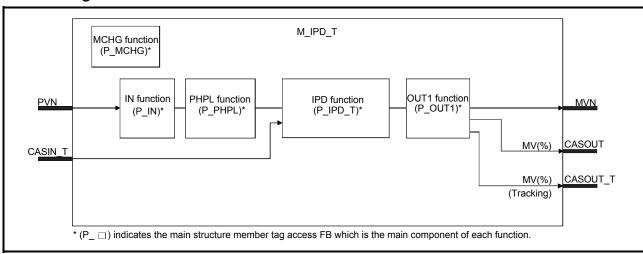
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

7.8.17 I-PD Control (With Tracking to primary loop) (M_IPD_T)


FBD parts		Cor
M_IPD_T	IPD	
PVN MVN		
CASIN_I CASOUI	MAN	AU
CASOUT_T —	0	С
	M_IPD_T	M_IPD_T PVN MVN CASIN_T CASOUT MAN

	Corresponding tag type						
IPD	IPD						
	Control mode						
MAN							
0		0	0	0	0		
0		0	0	0	0		

Function overview: Execute I-PD control taking function of P_IN+P_PHPL+P+IPD_T+P_OUT1 as a single FB.

Function/FB classification name: Tag FB _ loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type Contents		Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
Input	CASIN_T	Input variable	ADR_REAL	Primary loop SV input (Unit: %) (With tracking)	0 to 100
Output	MVN	Output variable	REAL	Module FB output	OUT1_NMIN to OUT1_NMAX
	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
	CASOUT_T	Output variable	ADR_REAL	Cascade MV output (Unit: %) (With tracking)	0 to 100

Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
Onenstien	IPD_MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
Operation processing	IPD _DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
processing	IPD_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	IPD_TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
	IPD_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	IPD _SVPTN_B1	Public variable	BOOL	Set value (SV) pattern TRUE: Not upper MV FALSE: Upper MV	TRUE, FALSE	TRUE	User
	OUT1_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	OUT1_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

Public Variable (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
processing*2	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*3	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

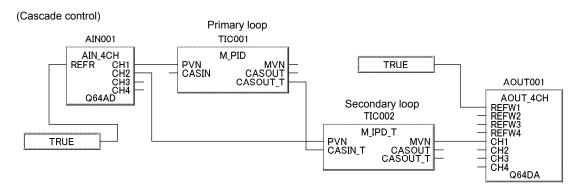
Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page		
IN function	P_IN	Section 7.5.1		
PHPL function	P_PHPL	Section 7.6.19		
IPD function	P_IPD_T	Section 7.6.15		
OUT1 function	P_OUT1	Section 7.5.2		
MCHG function	P_MCHG	Section 7.7.1		

It will not be displayed on FB property window of PX Developer.

^{*2} It means simulation processing.


^{*3} The abbreviation means control mode change processing.

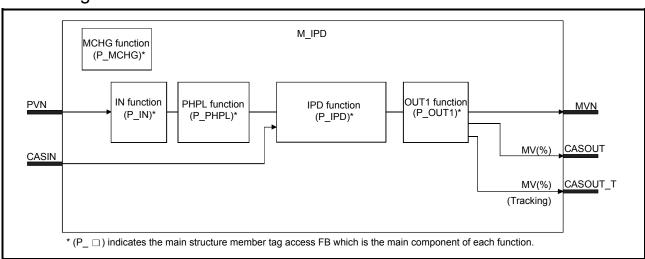
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

7.8.18 I-PD Control (Without Tracking to primary loop) (M_IPD)


FB	FBD parts
M_IPD	M_IPD PVN MVN CASIN CASOUT CASOUT_T

Corresponding tag type							
IPD							
	Control mode						
MAN	AUT	CAS	CMV	CSV			
0	0	0	0	0			

Function overview: Execute I-PD control taking function of P_IN+P_PHPL+P_IPD+P_OUT1 as a single FB.

Function/FB classification name: Tag FB _ loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
Input	CASIN	Input variable	REAL	Primary loop SV input (Unit: %) (Without tracking)	0 to 100
	MVN	Output variable	REAL	Module FB output	OUT1_NMIN to OUT1_NMAX
Output	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
	CASOUT_T	Output variable	ADR_REAL	Cascade MV output (Unit: %) (With tracking)	0 to 100

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
Operation processing	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
	IPD_MTD	Public variable	REAL	Derivative gain	0 to 9999	8.0	User
	IPD_DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	IPD_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	IPD_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	OUT1_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	OUT1_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

Public Variable (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
processing*2	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System
MCHG processing*3	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

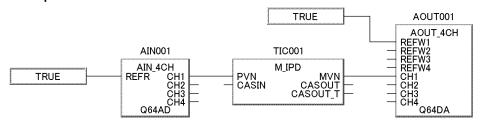
Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
IPD function	P_IPD	Section 7.6.16
OUT1 function	P_OUT1	Section 7.5.2
MCHG function	P_MCHG	Section 7.7.1

It will not be displayed on FB property window of PX Developer.

^{*2} It means simulation processing.


^{*3} The abbreviation means control mode change processing.

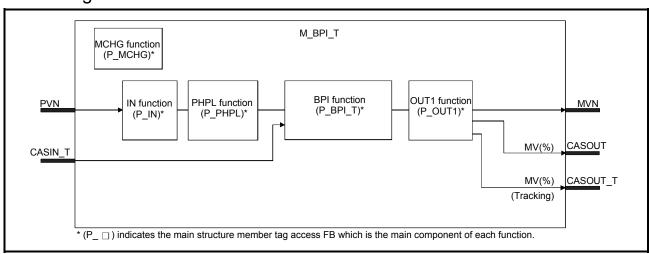
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

7 - 331 7 - 331


7.8.19 Blend PI Control (With Tracking to primary loop) (M_BPI_T)

FB	FBD parts		Corresponding tag type					
	M_BPI_T	BPI						
M_BPI_T	PVN MVN	Control mode						
	CASIN_T CASOUT -	MAN	AUT	CAS	CMV	CSV		
	CASOUT_T —	0	0	0	0	0		

Function overview: Execute blend PI control taking function of P_IN+P_PHPL+P_BPI_T+P_OUT1 as a single FB.

Function/FB classification name: Tag FB_loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
Input	CASIN_T	Input variable	ADR_REAL	Primary loop SV input (Unit: %) (With tracking)	0 to 100
	MVN	Output variable	REAL	Module FB output	OUT1_NMIN to OUT1_NMAX
Output	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
	CASOUT_T	Output variable	ADR_REAL	Cascade MV output (Unit: %) (With tracking)	0 to 100

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
	BPI_DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
	BPI_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
Operation processing	BPI _TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
	BPI_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	BPI_SVPTN_B1	Public variable	BOOL	Set value (SV) pattern TRUE: Not upper MV FALSE: Upper MV	TRUE, FALSE	TRUE	User
	BPI_RST_SDV_ ON_CHGMODE	Public variable	BOOL	DV cumulative value reset in control mode change TRUE: Reset DV cumulative value (SDV) in control mode change (MAN/CMV → AUT/CAS/CSV) FALSE: Not reset DV cumulative value (SDV)	TRUE, FALSE	TRUE	User
	OUT1_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	OUT1_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

Public Variable (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
processing*2	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System
MCHG processing*3	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
Operation processing	BPI_RST_SDV	Public variable	BOOL	DV cumulative value reset FALSE → TRUE: DV cumulative value (SDV) reset	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

It will not be displayed on FB property window of PX Developer.

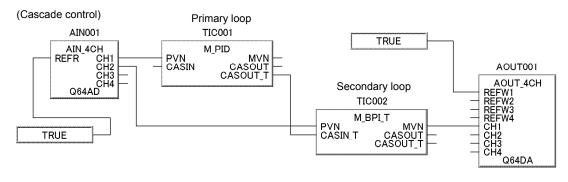
^{*2} It means simulation processing.

^{*3} The abbreviation means control mode change processing.

Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
BPI function	P_BPI_T	Section 7.6.17
OUT1 function	P_OUT1	Section 7.5.2
MCHG function	P_MCHG	Section 7.7.1


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

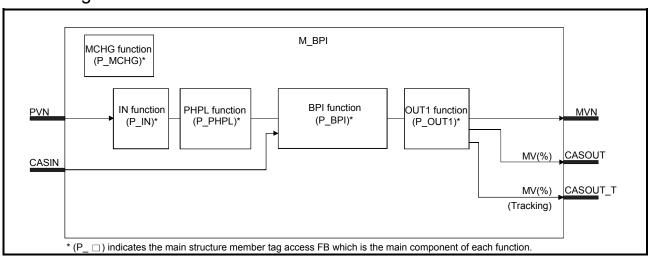
Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

7 - 334 7 - 334

7.8.20 Blend PI Control (Without Tracking to primary loop) (M_BPI)


FB	FBD parts	
М_ВРІ	M_BPI PVN MVN CASIN CASOUT CASOUT_T	

Corresponding tag type								
BPI								
	Control mode							
MAN	MAN AUT CAS CMV CSV							
0 0 0 0 0								

Function overview: Execute blend PI control taking function of P_IN+P_PHPL+P_BPI+P_OUT1 as a single FB.

Function/FB classification name: Tag FB _ loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
Input	CASIN	Input variable	REAL	Primary loop SV input (Unit: %) (Without tracking)	0 to 100
	MVN	Output variable	REAL	Module FB output	OUT1_NMIN to OUT1_NMAX
Output	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
	CASOUT_T	Output variable	ADR_REAL	Cascade MV output (Unit: %) (With tracking)	0 to 100

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
	BPI_DVLS	Public variable	REAL	Large deviation alarm hysteresis	0 to 100	2.0	User
Operation processing	BPI_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	BPI_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	BPI_RST_SDV_ ON_CHGMODE	Public variable	BOOL	DV cumulative value reset in control mode change TRUE: Reset DV cumulative value (SDV) in control mode change (MAN/CMV → AUT/CAS/CSV) FALSE: Not reset DV cumulative value (SDV)	TRUE, FALSE	TRUE	User
	OUT1_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	OUT1_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

Public Variable (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
processing*2	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*3	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User
Operation processing	BPI_RST_SDV	Public variable	BOOL	DV cumulative value reset FALSE → TRUE: DV cumulative value (SDV) reset	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

It will not be displayed on FB property window of PX Developer.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

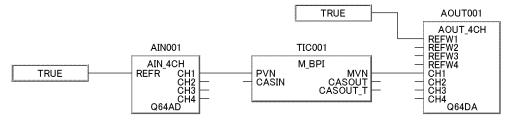
^{*2} It means simulation processing.

^{*3} The abbreviation means control mode change processing.

Function

This tag FB consists of the following tag access FB.

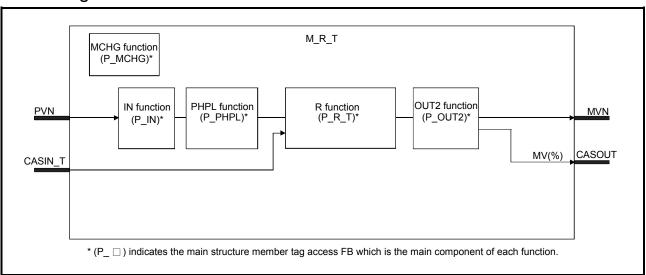
Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
BPI function	P_BPI	Section 7.6.18
OUT1 function	P_OUT1	Section 7.5.2
MCHG function	P_MCHG	Section 7.7.1


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics window of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)


Program Example

7.8.21 Ratio Control (With Tracking to primary loop) (M_R_T)

FB	FBD parts		Corresponding tag type						
		R							
мрт	M_R_TPVN MVN			Co	ontrol mo	de			
M_R_T	CASIN_T CASOUT —	MA	N	AUT	CAS	CMV	CSV		
		С		0	0	0	0		
Function overview: Execute ratio control taking function of P_IN+P_PHPL+P_R_T+P_OUT2 as a single FB.									
Function/FB classification na	Function/FB classification name: Tag FB loop tag FB								

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
Input	CASIN_T	Input variable	ADR_REAL	Primary loop SV input (Unit: %) (With tracking)	0 to 100
	MVN	Output variable	REAL	Module FB output	OUT2_NMIN to OUT2_NMAX
Output	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
Operation processing	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
processing	R_TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
	R_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	R_SVPTN_B1	Public variable	BOOL	Set value (SV) pattern TRUE: Not upper MV FALSE: Upper MV	TRUE, FALSE	TRUE	User
	OUT2_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	OUT2_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

Public Variable (Others)(*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
processing*2	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*3	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

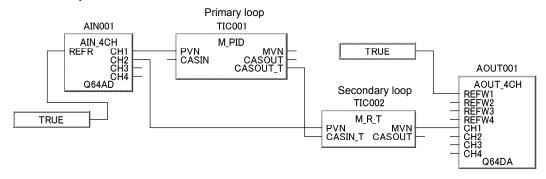
Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
R function	P_R_T	Section 7.6.1
OUT2 function	P_OUT2	Section 7.5.3
MCHG function	P_MCHG	Section 7.7.1

It will not be displayed on FB property window of PX Developer.

^{*2} It means simulation processing.

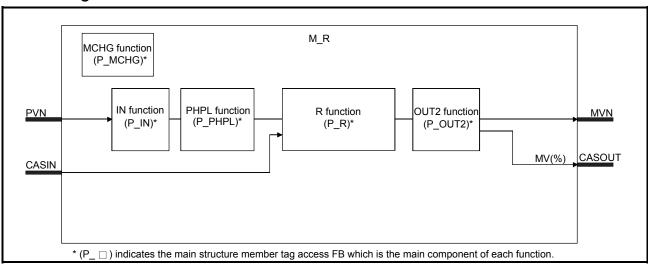

^{*3} The abbreviation means control mode change processing.

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example



7.8.22 Ratio Control (Without Tracking to primary loop) (M_R)

FB	FBD parts		Corres	ponding t	ag type	
		R				
	M_R		Co	ontrol mo	de	
M_R	PVN MVN — CASIN CASOUT —	MAN	AUT	CAS	CMV	CSV
		0	0	0	0	0
Function overview: Execute rat	tio control taking function of P_IN+P_PHPL+P_R+P_OUT2	as a single	FB.			

Block Diagram

Function/FB classification name: Tag FB_loop tag FB

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
Input	CASIN	Input variable	REAL	Primary loop SV input (Unit: %) (Without tracking)	0 to 100
	MVN	Output variable	REAL	Module FB output	OUT2_NMIN to OUT2_NMAX
Output	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (With tracking)	0 to 100

7 - 341 7 - 341

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
Operation processing	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
	R_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	OUT2_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	OUT2_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

Public Variable (Others)(*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM processing*2	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
	SIMOUT	Public variable	REAL	Simulation output	NMIN to NMAX	0.0	System
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*3	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

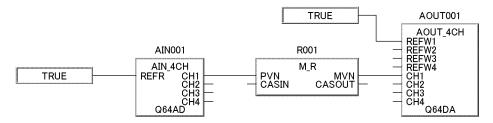
Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
R function	P_R	Section 7.6.2
OUT2 function	P_OUT2	Section 7.5.3
MCHG function	P_MCHG	Section 7.7.1

It will not be displayed on FB property window of PX Developer.

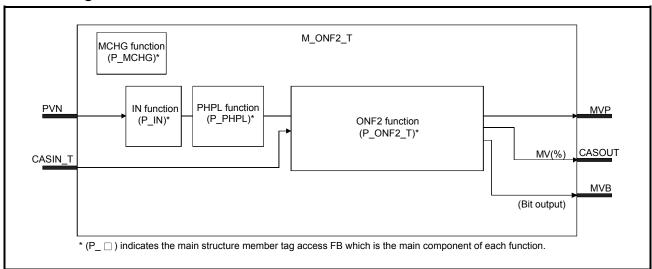
^{*2} Indicates simulation processing.


^{*3} The abbreviation means control mode change processing.

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)


Program Example

7.8.23 2-Position ON/OFF Control (With Tracking to primary loop) (M_ONF2_T)

FB	FBD parts		Corresponding tag type							
	M_ONF2_T	ONF2								
M ONF2 T	PVN MVP		Control mode							
W_ON Z_1	CASIN_T CASOUT	MAN	AUT	CAS	CMV	CSV				
	MVB —	0	0	0	0	0				
Function overview: Execute 2position ON/OFF control taking function of P_IN+P_PHPL+P_ONF2_T as a single FB.										
Function/FB classification na	me: Tag FB_loop tag FB									

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
Input	CASIN_T	Input variable	ADR_REAL	Primary loop SV input (Unit: %) (With tracking)	0 to 100
	MVP	Output variable	REAL	△MV output (unit: %)	0 to 100
Output	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
	MVB	Output variable	BOOL	ON/OFF output (ON if MV≥50%) (TRUE: ON, FALSE: OFF)	TRUE, FALSE

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
Operation	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
processing	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
	ONF2_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	ONF2_TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
	ONF2_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	ONF2_SVPTN_B1	Public variable	BOOL	Set value (SV) pattern TRUE: Not upper MV FALSE: Upper MV	TRUE, FALSE	TRUE	User

Public Variable (Others)(*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM processing*2	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*3	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

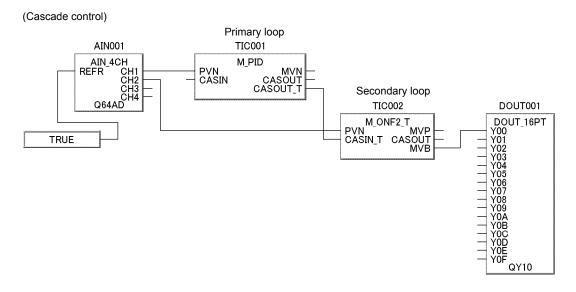
Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
OUT2 function	P_ONF2_T	Section 7.6.20
MCHG function	P_MCHG	Section 7.7.1

It will not be displayed on FB property window of PX Developer.

^{*2} Indicates simulation processing.


^{*3} The abbreviation means control mode change processing.

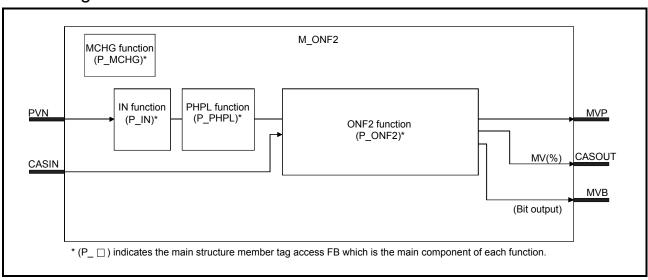
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

7 - 346 7 - 346


7.8.24 2-Position ON/OFF Control (Without Tracking to primary loop) (M_ONF2)

FB	FBD parts		Corresponding tag type			
	M_ONF2	ONF2				
M ONF2	— PVN MVP —		C	ontrol mo	de	
W_ONI Z	CASIN CASOUT	MAN	AUT	CAS	CMV	C
	MVB —	0	0	0	0	(

Function overview: Execute 2 position ON/OFF control taking function of P_IN+P_PHPL+P_ONF2 as a single FB.

Function/FB classification name: Tag FB_loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
Input	CASIN	Input variable	REAL	Primary loop SV input (Unit: %) (Without tracking)	0 to 100
	MVP	Output variable	REAL	△MV output (Unit: %)	0 to 100
Output	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
	MVB	Output variable	BOOL	ON/OFF output (ON if MV≧50%) (TRUE: ON, FALSE: OFF)	TRUE, FALSE

7 - 347 7 - 347

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
Operation	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
processing	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
	ONF2_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	ONF2_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User

Public Variable (others)(*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM processing*2	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*3	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

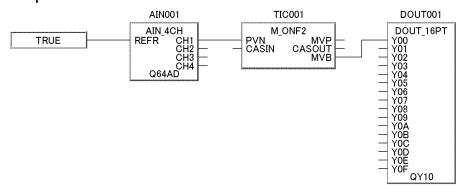
This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
ONF2 function	P_ONF2	Section 7.6.21
MCHG function	P_MCHG	Section 7.7.1

7 - 348 7 - 348

It will not be displayed on FB property window of PX Developer.

^{*2} Indicates simulation processing.


^{*3} The abbreviation means control mode change processing.

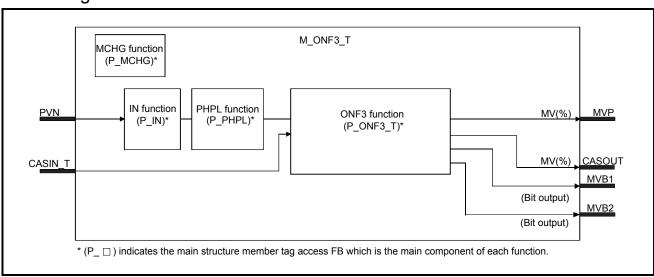
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

7 - 349 7 - 349


7.8.25 3-Position ON/OFF Control (With Tracking to primary loop) (M_ONF3_T)

FB	FBD parts			Corresponding tag type					
	M_ONF3_T		ONF3						
M_ONF3_T	PVN MVP — CASIN_T CASOUT —				ontrol mo		001/		
W_6/4/ 6_1	MVB1 —		MAN	AUT	CAS	CMV	CSV		
	MVB2 —		0	0	0	0	0		

Function overview: Execute 3position ON/OFF control taking function of P_IN+P_PHPL+P_ONF3_T as a single FB.

Function/FB classification name: Tag FB_loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
Input	CASIN_T	Input variable	ADR_REAL	Primary loop SV input (Unit: %) (Without tracking)	0 to 100
	MVP	Output variable	REAL	△MV output (Unit: %)	0 to 100
	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
Output	MVB1	Output variable	BOOL	ON/OFF output (ON if MV≧75%) (TRUE: ON, FALSE: OFF)	TRUE, FALSE
	MVB2	Output variable	BOOL	ON/OFF output (ON if MV<25%) (TRUE: ON, FALSE: OFF)	TRUE, FALSE

7 - 350 7 - 350

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
Operation processing	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
	ONF3_PN	Public variable	INT	Reverse action and direct action (0: Reverse action, 1: Direct action)	0 to 1	0	User
	ONF3_TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
	ONF3_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	ONF3_SVPTN_B1	Public variable	BOOL	Set value (SV) pattern TRUE: Not upper MV FALSE: Upper MV	TRUE, FALSE	TRUE	User

Public Variable (Others)(*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM processing*2	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*3	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

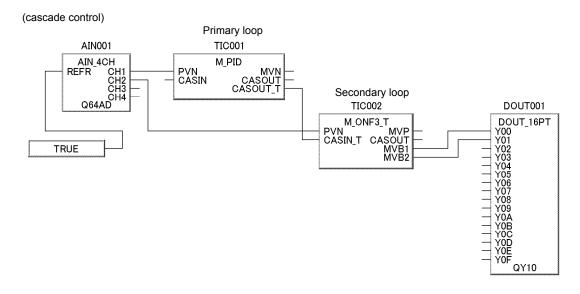
This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
ONF3 function	P_ONF3_T	Section 7.6.22
MCHG function	P_MCHG	Section 7.7.1

7 - 351 7 - 351

It will not be displayed on FB property window of PX Developer.

^{*2} Indicates simulation processing.


^{*3} The abbreviation means control mode change processing.

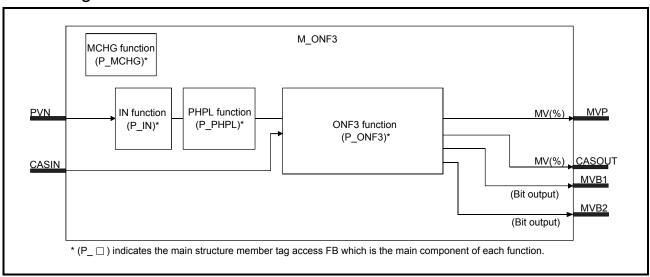
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

7 - 352 7 - 352


7.8.26 3-Position ON/OFF Control (Without Tracking to primary loop) (M_ONF3)

FB	FBD parts		Corresponding tag type					
	M_ONF3	ONF3						
M_ONF3	PVN MVP — CASIN CASOUT —	MAN		ntrol mod		CSV		
	MVB1 —	IVIAIN	AUT	CAS	CMV	CSV		
	MVB2	0	O	0	0	O		

Function overview: Execute 3position ON/OFF control taking function of P_IN+P_PHPL+P_ONF3 as a single FB.

Function/FB classification name: Tag FB_loop tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVN	Input variable	REAL	Module FB input	-999999 to 999999
Input	CASIN	Input variable	REAL	Primary loop SV input (Unit: %) (Without tracking)	0 to 100
	MVP	Output variable	REAL	△MV output (Unit: %)	0 to 100
	CASOUT	Output variable	REAL	Cascade MV output (Unit: %) (Without tracking)	0 to 100
Output	MVB1	Output variable	BOOL	ON/OFF output (ON if MV≥75%) (TRUE: ON, FALSE: OFF)	TRUE, FALSE
	MVB2	Output variable	BOOL	ON/OFF output (ON if MV<25%) (TRUE: ON, FALSE: OFF)	TRUE, FALSE

7 - 353 7 - 353

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
Operation	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
processing	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
	ONF3_PN	Public variable	INT Reverse action and direct action (0: Reverse action, 1: Direct action)		0 to 1	0	User
	ONF3_SVPTN_B0	Public variable	BOOL	Set value (SV) used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User

Public Variable (Others)(*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
SIM processing*2	SIMIN	Public variable	REAL	Simulation input	NMIN to NMAX	0.0	User
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3:CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*3	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

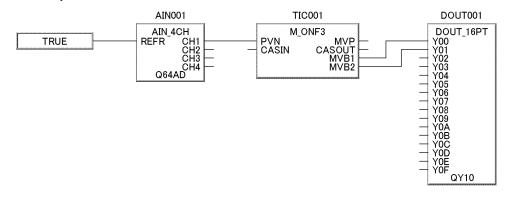
This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
ONF3 function	P_ONF3	Section 7.6.23
MCHG function	P_MCHG	Section 7.7.1

7 - 354 7 - 354

It will not be displayed on FB property window of PX Developer.

^{*2} Indicates simulation processing.

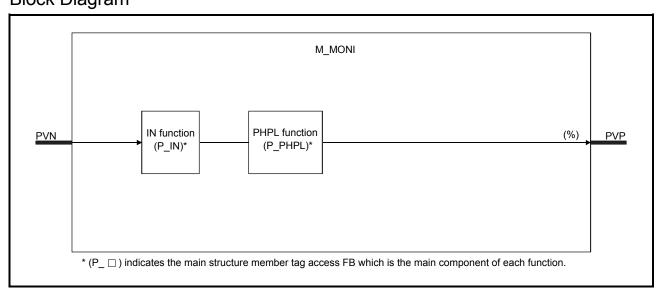

^{*3} The abbreviation means control mode change processing.

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example



7.8.27 Monitor (M_MONI)

FB	FBD parts		Corresponding tag type							
		MONI								
M MONI	M_MONI	Control mode								
M_MONI	PVN PVP		MAN	AUT	CAS	CMV	CSV			
			_	_	_	_	_			
Function overview: Execute r	nonitoring taking function of P_IN+P_PHPL as a single FB.									
T dilotion overview. Excoate i	Torntorning taking rational or i _it is _it _it is _it									

Block Diagram

Function/FB classification name: Manual output with Monitor

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	PVN	Input variable	REAL	Module FB input	-99999 to 999999
Output	PVP	Output variable	REAL	PV output (Unit: %)	0 to 100

Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
Operation	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
processing	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User

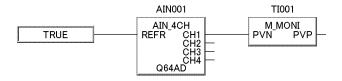
Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19

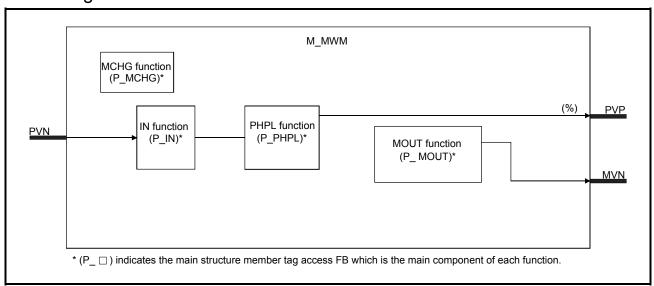

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example


7 - 357 7 - 357

7.8.28 Manual Output With Monitor (M_MWM)

Function/FB classification name: Tag access FB _ I/O control operation FB

FB	FBD parts		Corres	ponding t	ag type		
	M MWM	MWM					
M M\//M	PVN PVP		C	Control mode			
IVI_IVIVVIVI	MVN — MAN AUT			CAS	CMV	CSV	
		0		_	0	_	
Function overview: Execute r	nanual output with monitor taking function of P_IN+P_PHPL+F	P_MOUT	as functio	on of a si	ngle FB.		
	M_MWM	M_MWM PVN PVP MVN	M_MWM PVN PVP MVN MAN	M_MWM PVN PVP MVN CG MAN AUT C -	M_MWM PVN PVP MVN MAN AUT CAS	M_MWM PVN PVP Control mode	

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
Input	PVN	Input variable	REAL	Module FB input	-99999 to 999999
Output	PVP	Output variable	REAL	PV output (Unit: %)	0 to 100
Output	MVN	Output variable	REAL	Module FB output	MOUT_NMIN to MOUT_NMAX

Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	IN_NMAX	Public variable	REAL	Input high limit	-999999 to 999999	100.0	User
	IN_NMIN	Public variable	REAL	Input low limit	-999999 to 999999	0.0	User
	IN_HH	Public variable	REAL	High limit range error	-999999 to 999999	110.0	User
Operation	IN_H	Public variable	REAL	High limit range error reset	-999999 to 999999	100.0	User
processing	IN_L	Public variable	REAL	Low limit range error reset	-999999 to 999999	0.0	User
	IN_LL	Public variable	REAL	Low limit range error	-999999 to 999999	-10.0	User
	MOUT_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	MOUT_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

Public Variable (others)(*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*2	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

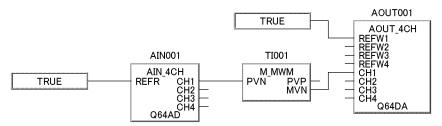
Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
IN function	P_IN	Section 7.5.1
PHPL function	P_PHPL	Section 7.6.19
OUT1 function	P_MOUT	Section 7.5.5


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

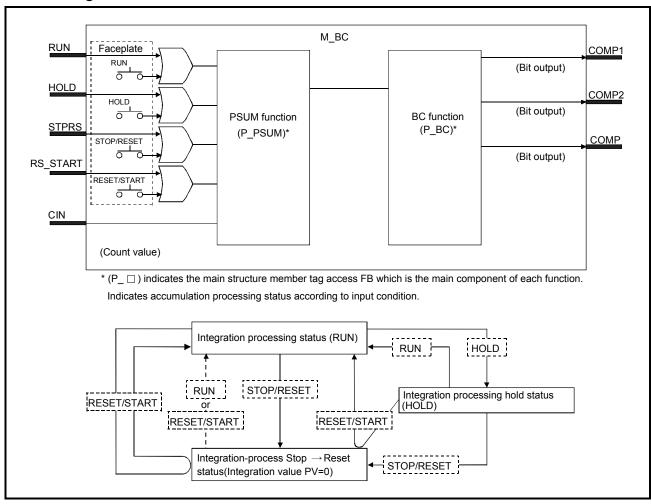
Program Example

7 - 359 7 - 359

It will not be displayed on FB property window of PX Developer.

^{*2} The abbreviation means control mode change processing.

7.8.29 Batch Preparation (M_BC)


M_BC RUN COMP1
RUN COMP1
HOLD COMP2
STPRS COMP -
RS_START

	Corresponding tag type									
ВС										
Control mode										
MAN	AUT	CAS	CMV	CSV						
_	_	_	_	_						

Function overview: Execute batch preparation taking function of P_PSUM+P_BC as a single FB.

Function/FB classification name: Tag FB_loop tag FB

Block Diagram

7 - 360 7 - 360

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	RUN	Input variable	BOOL	Integration start signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE
	HOLD	Input variable	BOOL	Integration stop signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE
Input	STPRS	Input variable	BOOL	Reset signal after integration stop (TRUE: Execute, FALSE: Stop)	TRUE, FALSE
	RS_START	Input variable	BOOL	Start signal after integration reset (TRUE: Execute, FALSE: Stop)	TRUE, FALSE
	CIN	Input variable	DINT	Count value	Ring counter of -2147483648 to 2147483647 (however, increment pulse of each time will be below 32767)
	COMP1	Output variable	BOOL	Set Value 1 (SV1) completed output (TRUE: ON, FALSE: OFF)	TRUE, FALSE
Output	COMP2	Output variable	BOOL	Set Value 2 (SV2) completed output (TRUE: ON, FALSE: OFF)	TRUE, FALSE
	COMP	Output variable	BOOL	Set value (SV) completed output (TRUE: ON, FALSE: OFF) It is TRUE when Count value (CIN) and Set value (SV) are coincidence.	TRUE, FALSE

Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	PSUM_W	Public variable	INT	Weight per pulse	1 to 999	1	User
	PSUM_U	Public variable	INT	Unit conversion constant	1,10,100,1000	1	User
Operation processing	PSUM_HILMT	Public variable	DINT	High limit value of integration	0 to 2147483647	2147483647	User
F. 22360mg	PSUM_SUMPTN	Public variable	INT	Integration pattern 0: return to 0 when it is beyond integration high limit. 1: hold high limit value when it is beyond integration high limit.	0,1	0	User

Tag Data

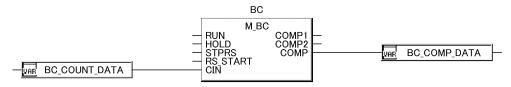
For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page	
PSUM function	P_PSUM	Section 7.5.7	
BC function	P_BC	Section 7.5.8	

Error


Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

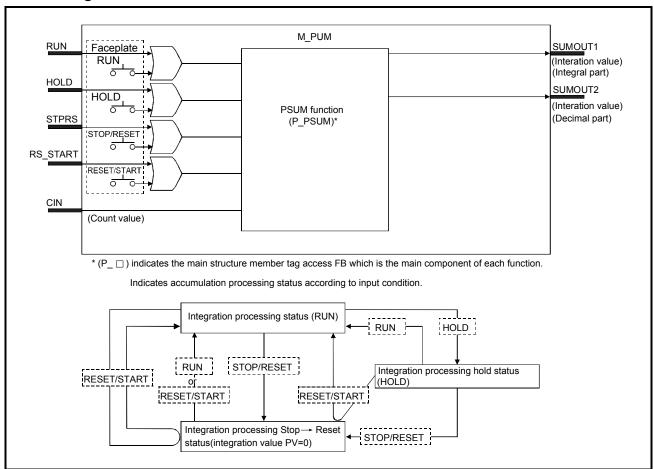
Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

7 - 361 7 - 361

Program Example

7.8.30 Pulse Integrator (M PSUM)


M_PSUM	FB	FBD parts			
M_PSUM	. 5	M_PSUM			

Corresponding tag type						
PSUM						
Control mode						
MAN	AUT	CAS	CMV	CSV		
_		_	_	_		

Function overview: Execute pulse integration taking function of P_PSUM as a single FB.

Function/FB classification name: Tag FB_loop tag FB

Block Diagram

7 - 363 7 - 363

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	RUN	Input variable	BOOL	Integration start signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE
	HOLD	Input variable	BOOL	Integration stop signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE
Input	STPRS	Input variable	BOOL	Reset signal after integration stop (TRUE: Execute, FALSE: Stop)	TRUE, FALSE
	RS_START	Input		Start signal after integration reset (TRUE: Execute, FALSE: Stop)	TRUE, FALSE
	CIN	Input variable	DINT	Count value	Ring counter of -2147483648 to 2147483647 (however, added pulse of each time will be below 32767)
Output	SIMOUT1	Output variable	DINT	Integration value (integral part) output	0 to 99999999
Output	SIMOUT2	Output variable	DINT	Integration value (decimal part) output	0 to 999

Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	PSUM_W	Public variable	INT	Weight per pulse	1 to 999	1	User
	PSUM_U	Public variable	INT	Unit conversion constant	1,10,100,1000	1	User
Operation processing	PSUM_HILMT	Public variable	DINT	High limit value of integration	0 to 2147483647	2147483647	User
processing	PSUM_SUMPTN	Public variable	INT	Integration pattern 0: return to 0 when it is beyond integration high limit. 1: hold high limit value when it is beyond integration high limit.	0,1	0	User

Tag Data

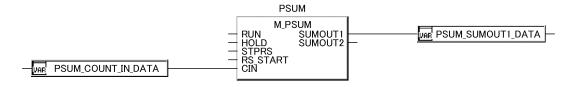
For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
PSUM function	P_PSUM	Section 7.5.7

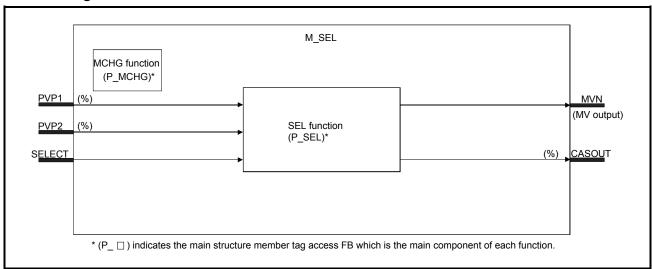
Error


Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

7 - 364 7 - 364


Program Example

7.8.31 Loop Selector (Without Tracking to primary loop) (M_SEL)

FB	FBD parts		Corresponding tag type				
	M_SEL	SEL					
M SEI	PVP1 MVN			Control mode			
M_SEL	PVP2 CASOUT	MAN	AUT	CAS	CMV	CSV	
	SELECT	0	0	0	0	0	
Function overview: Execute lo	pop selector taking function of P_SEL as a single FB.						

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVP1	Input variable	REAL	PV input (Unit: %)	0 to 100
Input	PVP2	Input variable	REAL	PV input (Unit: %)	0 to 100
прис	SELECT	Input variable	BOOL	Selection signal (TRUE: PVP2, FALSE: PVP1)	TRUE, FALSE
	MVN	Output variable	REAL	MV output to output module FB	SEL_NMIN to SEL_NMAX
Output	CASOUT	Output variable	REAL	Cascade output (Unit:%) (Without tracking)	0 to 100

Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	SEL_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
processing	SEL_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

7 - 366 7 - 366

Public Variable (Others)(*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*2	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Read and write them with program.

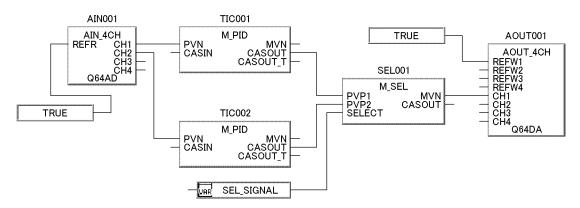
Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
SEL function	P_SEL	Section 7.6.26
MCHG function	P_MCHG	Section 7.7.1


Error

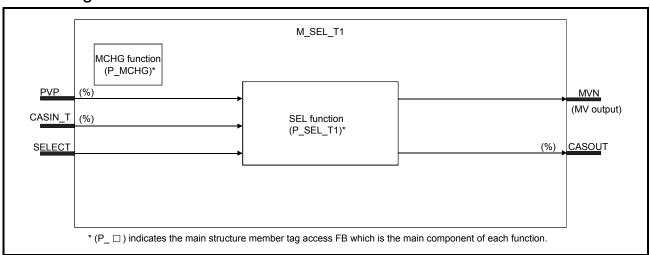
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

7 - 367 7 - 367


It will not be displayed on FB property window of PX Developer.

^{*2} The abbreviation means control mode change processing.

7.8.32 Loop Selector (With Tracking to primary loop) (M_SEL_T1)

FB	FBD parts		Corresponding tag type				
	M_SEL_T1	SEL					
M SEL T1	PVP MVN	Control mode					
M_SEL_II	CASIN_T CASOUT -	MAN	AUT	CAS	CMV	CSV	
	SELECT	0	0	0	0	0	
Function overview: Execute le	oop selector taking function of P_SEL_Tt1 as a single FB.						
Function/FB classification na	me: Tag FB _ loop tag FB						

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVP	Input variable	REAL	PV input (Unit: %)	0 to 100
Input	CASIN_T	Input variable	ADR_REAL	PV input (Unit: %) (With tracking)	0 to 100
	SELECT	Input variable	BOOL	Selection signal (TRUE: CASIN_T, FALSE: PVP)	TRUE, FALSE
Output	MVN	Output variable	REAL	MV output to output module FB	SEL_NMIN to SEL_NMAX
Output	CASOUT	Output variable	REAL	Cascade output (Unit:%) (Without tracking)	0 to 100

Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	SEL_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	SEL_NMIN Public variable		REAL	Output conversion low limit -999999 to 999999		0.0	User
processing	SEL_TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
	SEL_SVPTN_B4	Public variable	BOOL	CASIN_T pattern TRUE: Not upper MV FALSE: Upper MV	TRUE, FALSE	TRUE	User

Public Variable (Others)(*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*2	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Read and write them with program.

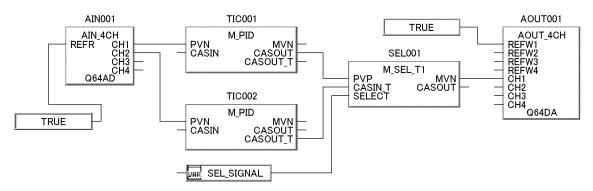
Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
SEL function	P_SEL_T1	Section 7.6.27
MCHG function	P_MCHG	Section 7.7.1


Error

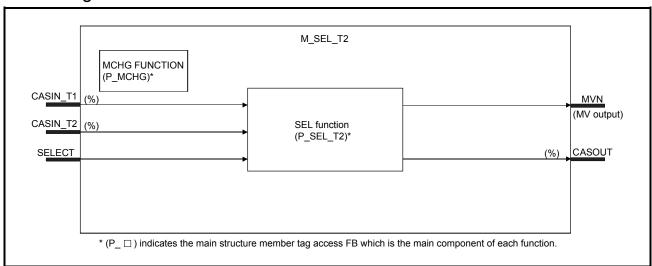
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example

7 - 369 7 - 369


It will not be displayed on FB property window of PX Developer.

^{*2} The abbreviation means control mode change processing.

7.8.33 Loop Selector (With Tracking to primary loop) (M_SEL_T2)

FB	FBD parts		Corresponding tag type						
	M_SEL_T2	SEL							
M_SEL_T2	CASIN_T1 MVN		С	ontrol mo	de				
	CASIN_T2 CASOUT —	MAN	AUT	CAS	CMV	CSV			
	SELECT	0	0	0	0	0			
Function overview: Execute Ic	oop selector taking function of P_SEL_T2 as a single FB.								

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	CASIN_T1	Input variable	ADR_REAL	PV input (Unit: %) (With tracking)	0 to 100
Input	CASIN_T2	Input variable	ADR_REAL	PV input (Unit: %) (With tracking)	0 to 100
	SELECT	Input variable	BOOL	Selection signal (TRUE: CASIN_T2, FALSE: CASIN_T1)	TRUE, FALSE
	MVN	Output variable	REAL	MV output to output module FB	SEL_NMIN to SEL_NMAX
Output	CASOUT	Output variable	REAL	Cascade output (Unit: %) (Without tracking)	0 to 100

7 - 370 7 - 370

Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	SEL_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
	SEL_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User
	SEL_TRK	Public variable	INT	Tracking flag (0: Not execute, 1: Execute)	0 to 1	0	User
Operation processing	SEL_SVPTN_B1	Public variable	BOOL	CASIN_T1 used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	SEL_SVPTN_B2	Public variable	BOOL	CASIN_T2 used (TRUE: Not used, FALSE: Used)	TRUE, FALSE	TRUE	User
	SEL_SVPTN_B3	Public variable	BOOL	CASIN_T1 pattern TRUE: Not upper MV FALSE: Upper MV	TRUE, FALSE	TRUE	User
	SEL_SVPTN_B4	Public variable	BOOL	CASIN_T2 pattern TRUE: Not upper MV FALSE: Upper MV	TRUE, FALSE	TRUE	User

Public Variable (Others)(*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
MCHG	MODEIN	Public variable	INT	Mode changing signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*2	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Read and write them with program.

Tag Data

For details about the tag data that is read/written by this tag FB, please refer to tag data list of various tag types in Appendix 1.1.

Function

This tag FB consists of the following tag access FB.

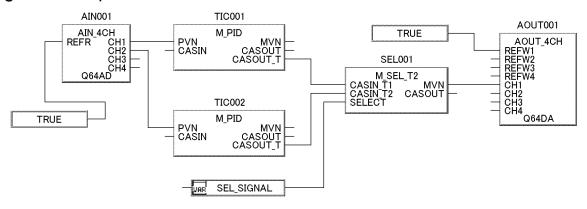
Item	Main structure member tag access FB	Explanation page
SEL function	P_SEL_T2	Section 7.6.28
MCHG function	P_MCHG	Section 7.7.1

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

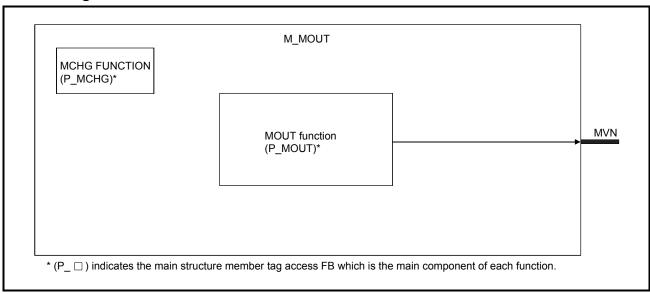

7 - 371 7 - 371

It will not be displayed on FB property window of PX Developer.

^{*2} The abbreviation means control mode change processing.

7 PROCESS FB

Program Example



7 - 372 7 - 372

7.8.34 Manual Output (M_MOUT)

FB	FBD parts	Corresponding tag type					
		MOUT					
M_MOUT	M_MOUT		Co	ontrol mo	de		
	MVN	MAN	AUT	CAS	CMV	CSV	
		0	_	-	0	_	
Function overview: Execute r	nanual output taking function of P_MOUT as a single FB.						
Function/FB classification na	me: Tag FB loop tag FB						

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Description	Range
Output	MVN	Output variable	REAL	MV output to output module FB	MOUT_NMIN to MOUT_NMAX

Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Operation	MOUT_NMAX	Public variable	REAL	Output conversion high limit	-999999 to 999999	100.0	User
processing	MOUT_NMIN	Public variable	REAL	Output conversion low limit	-999999 to 999999	0.0	User

Public Variable (Others)(*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*2	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

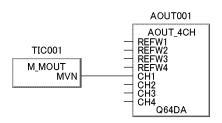
Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
MOUT function	P_MOUT	Section 7.5.5
MCHG function	P_MCHG	Section 7.7.1


Error

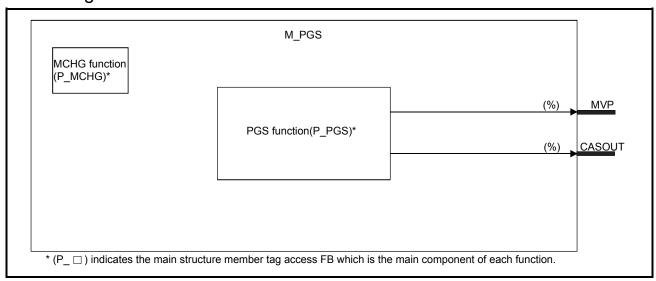
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

When overflow occurs during operation. (Error code: 4100)

Program Example

7 - 374 7 - 374


It will not be displayed on FB property window of PX Developer.

^{*2} The abbreviation means control mode change processing.

7.8.35 Program Setter (M_PGS)

FB	FBD parts		Corres	ponding t	ag type	
		PGS				
M DCC	M_PGS MVP		С	ontrol mo	de	
M_PGS	CASOUT —	MAN	AUT	CAS	CMV	CSV
		0	0	0	0	0
Function overview: Execute p	program setter operation taking function of P PGS as a single	FB.				
Function/FB classification na	me: Tag FB _ loop tag FB					

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	MVP	Output variable	REAL	MV output (Unit: %)	0 to 100
Output	CASOUT	Output variable	REAL	Cascade output (Unit: %) (Without tracking)	0 to 100

Public Variable (Others)(*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT, 3: CAS, 4: CMV, 5: CSV)	1 to 5	0	User
processing*2	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

It will not be displayed on FB property window of PX Developer.

^{*2} The abbreviation means control mode change processing.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

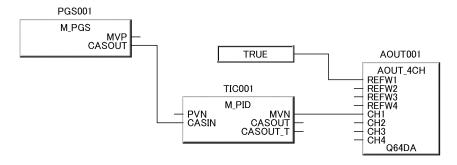
Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Explanation page
PGS function	P_PGS	Section 7.6.24
MCHG function	P_MCHG	Section 7.7.1

Initial value settings on the FB property page

The initial values of the program setter (M_PGS) can easily be set on the FB property page of the PX Developer programming tool.

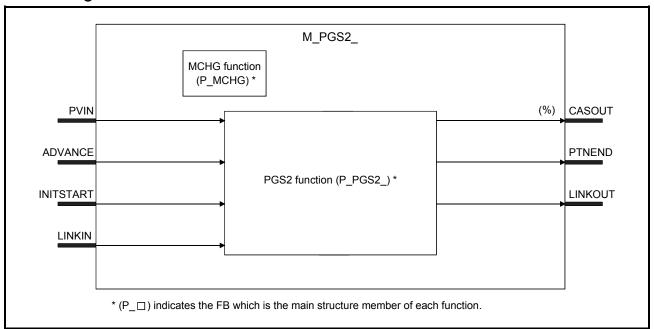

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

Additionally, process control error code as well as the detailed error information, will be displayed on the screen. Please refer to Appendix 2 for details of process control error code.

• When overflow occurs during operation. (Error code: 4100)

Program Example



7 - 376 7 - 376

7.8.36 Multi-Point Program Setter (M_PGS2_)

FB	FBD parts	Corresponding tag type									
	M_PGS2_	PGS2									
	- PVIN CASOUT		C	ontrol mo	de						
M_PGS2_	ADVANCE PINEND — INITSTART LINKOUT	MAN	AUT	CAS	CMV	CSV					
	- LINKIN	0	0	_	-	-					
Function overview: Set the program using the function of P_PGS2_ as a single FB.											
Function/FB classification name: Tag FB_Loop tag FB											

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	PVIN	Input variable	REAL	Process input (Engineering value)	-32768 to 32767
Input	ADVANCE	Input variable BC		Advance command	TRUE, FALSE
	INITSTART	INITSTART Input variable		Initial start command	TRUE, FALSE
	LINKIN	Input variable	ADR_REAL	Link input	
	CASOUT	Output variable	REAL	Cascade output (unit: %)	0 to 100
Output	PTNEND	Output variable	BOOL	Pattern end output	TRUE, FALSE
	LINKOUT	Output variable	ADR_REAL	Link output	

Public Variable (Operation Constant)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	PGS2_PVSTARTNO	Public variable	INT	PV start search start step	1 to 32	1	User
Operation	PGS2_PVENDNO	Public variable	INT	PV start search end step	1 to 32	32	User
processing	PGS2_PRIMARY	Public variable	BOOL	Lead FB specified (TRUE: Lead, FALSE: Following)	TRUE, FALSE	TRUE	User

Public Variable (Others) (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
P_PGS2_	PGS2_TCNT	Public variable	INT	Second counter for minute mode	0 to 59	0	System
processing	PGS2_TMCNT	Public variable	INT	Millisecond counter for second mode	0 to 999	0	System
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN, 2: AUT)	1 to 2	0	User
processing*2	E	Public variable	BOOL	Change request (TRUE: Execution, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1:} Read and write them with a program.

Tag data

For details about the tag data that is read/written by this tag access FB, refer to tag data list of various tag types in Appendix 1.1.

Function

This tag FB consists of the following tag access FB.

Item	Main structure member tag access FB	Reference
PGS2 function	P_PGS2_	Section 7.6.25
MCHG function	P_MCHG	Section 7.7.1

Initial value settings on the FB Property Page

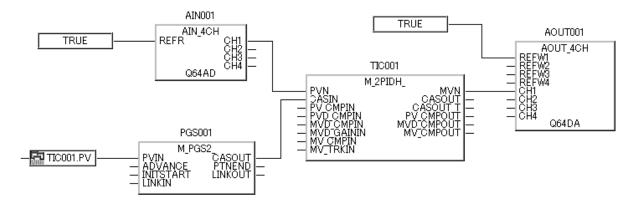
The initial value setting of the Multi-point program setter (M_PGS2_) can easily be set on the FB Property Page of the PX Developer Programming tool.

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

• When an overflow occurs during operation. (Error code: 4100)

7 - 378 7 - 378

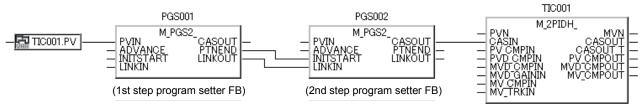

It will not be displayed on FB property window of PX Developer.

^{*2:} Indicates the control mode change processing.

Program Example

- (1) When using M_PGS2_ output by itself
 - Precautions on settings Set the following items.

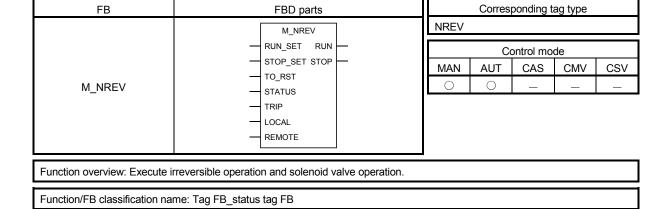
Variable type/Pin Variable name		Contents	Setting/connection method		
Public variable	PGS2_PRIMARY	Lead FB specified	TRUE		
Input pin	LINKIN	Link input	Not connected		

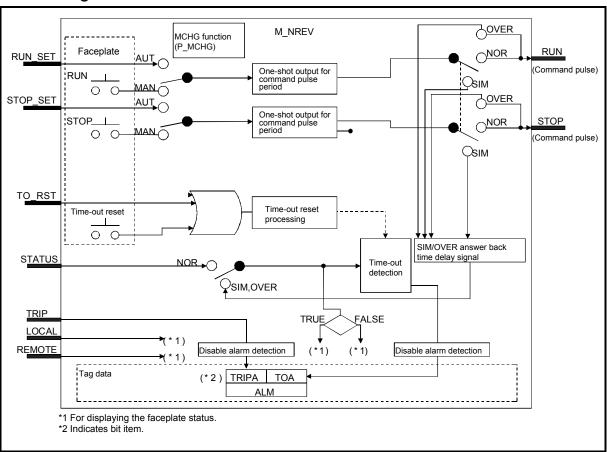

- (2) When using M PGS2 concatenated (When using a program with over 32 steps)
 - Precautions on settings Set the following items.

Target FB	Variable type /Pin	Variable name	Contents	Setting/connection method
	Public variable	PGS2_PRIMARY	Lead FB specified	TRUE
Lead FB	Input pin	LINKIN	Link input	Not connected
Leau I D	Output pin	PTNEND	Pattern end output	Connected with INITSTART of following FB
	Output pin	LINKOUT	Link output	Connected with LINKIN of following FB
	Public variable	PGS2_PRIMARY	Lead FB specified	FALSE
Collowing	Input pin	INITSTART	Initial start command	Connected with PTNEND of lead FB
Following FB		LINKIN	Link input	Connected with LINKOUT of lead FB
	Output pip	PTNEND	Pattern end output	Connected with INITSTART of following FB
	Output pin	LINKOUT	Link output	Connected with LINKIN of following FB
	Public variable	PGS2_PRIMARY	Lead FB specified	FALSE
Last FB	Input pin	INITSTART	Initial start command	Connected with PTNEND of lead FB
Lastib	iliput pili	LINKIN	Link input	Connected with LINKOUT of lead FB
	Output pin	CASOUT	Cascade output	Connected with CASIN of tag FB such as following PID

• Operation description

Starts PGS001 in AUT mode, and turns PTNEND output pin ON for 1 cycle at completion. When PGS002 receives PTNEND output, the mode is changed to AUT mode and the control is transferred.


For details, refer to 'FB multi-link function' on Section 7.6.25.


7 - 379 7 - 379

7.9 Tag FB _ Status Tag FB

7.9.1 Motor Irreversible (2 Input, 2 Output) (M_NREV)

Block Diagram

7 - 380 7 - 380

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	RUN_SET	Input variable	BOOL	External input for RUN operation (FALSE →TRUE: RUN)	TRUE, FALSE
	STOP_SET	Input variable	BOOL	External input for STOP operation (FALSE→TRUE: STOP)	TRUE, FALSE
	TO_RST	Input variable	BOOL	External reset input for time-out error (FALSE→TRUE: Time-out reset)	TRUE, FALSE
Input	STATUS	Input variable	BOOL	Status answer input (TRUE: RUN, FALSE: STOP)	TRUE, FALSE
	TRIP	Input variable	BOOL	External failure (TRIP) input (TRUE: Occurred, FALSE: Recovered)	TRUE, FALSE
	LOCAL	Input variable	BOOL	Local operation selection signal (TRUE: Valid, FALSE: Invalid)	TRUE, FALSE
	REMOTE	Input variable	BOOL	Remote operation selection signal (TRUE: valid, FALSE: invalid)	TRUE, FALSE
Output	RUN	Output variable	BOOL	On output for command pulse period (TRUE: Run, FALSE: -)	TRUE, FALSE
Calput	STOP	Output variable	BOOL	On output for command pulse period (TRUE: Run, FALSE: -)	TRUE, FALSE

Public Variable (Others)(*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
MCHG	MODEIN	Public variable	INT	Mode change signal (1: MAN 2: AUT)	1,2	0	User
processing*2	E	Public variable	BOOL	Change request (TRUE: Execute FALSE: Stop)	TRUE, FALSE	FALSE	User

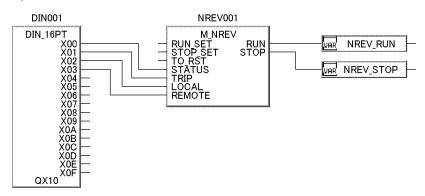
^{*1} Please read and write them with program.

It will not be displayed on FB property window of PX Developer.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

7 - 381 7 - 381


^{*2} The abbreviation means control mode change processing.

Function

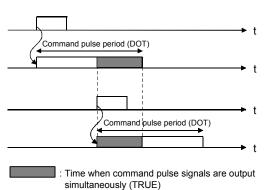
This tag FB consists of the following tag access FB.

Item	Contents
One-shot for command pulse period	Execute the one-shot output for command pulse period according to operation from faceplate or input from input variable (RUN_SET, STOP_SET) (1) In case of operation from faceplate or the input variable (RUN_SET) transforms from FALSE to TRUE, command pulse signal (TRUE) will be output from the output variable RUN for the time set by command pulse period (DOT). (2) In case of operation from faceplate or the input variable (STOP_SET) transforms from FALSE to TRUE, command pulse signal (TRUE) will be output from the output variable STOP for the time set by command pulse period (DOT). Input signal from the panel or input pin (rising edge detection) Command pulse signal from the panel or input pin (rising edge detection)
Time-out detection/ time-out reset	(1) Time-out detection Time-out (TOA) of alarm (ALM) will occur if TRUE or FALASE is not input from the status answer input (STATUS) for more than the set time of time-out timer (TOT) after command pulse signal (TRUE) is output from output variables RUN/STOP. Condition Alarm Time-out (TOA) Time up to status answer signal input≧setting period of time-out timer (TOT) TRUE (occur) Time up to status answer signal input <setting (2)="" (alm)="" (false)="" (reset)="" (run,="" (run_set,="" (to_rst).<="" (toa)="" (tot)="" alarm="" by="" command="" faceplate="" false="" following="" from="" input="" of="" operation="" operations.="" or="" output="" period="" pulse="" reset="" signal="" stop)="" stop_set).="" td="" the="" time-out="" timer="" to="" true="" variable=""></setting>
SIM/OVER answer back time delay signal	In case of SIMULATION Mode or OVERRIDE Mode, status answer signal is created in CPU module after command pulse signal output. The delay time of status answer signal is set by simulation answer time (SIMT). Input signal from the faceplate or the output pin (Rising edge detection) Command pulse signal from the output pin SIM/OVER answer back signal Simulation answer signal (SIMT)
Disable Alarm Detection	If the following items (INH) of tag data are TRUE, TRIPA and TOA of alarm (ALM) will not be detected. • ERRI, TRIPI, TOI

Program Example

POINT

If the STOP command (RUN command) occurs during output of the command pulse signal (TRUE) from the output variable RUN (output variable STOP), the command pulse signals (TRUE) are output simultaneously from the output variable RUN and output variable STOP.

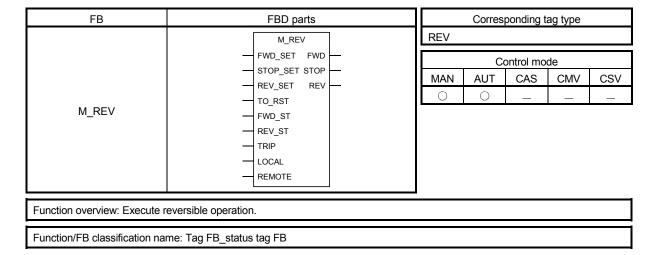

<When command pulse signals (TRUE) are output simultaneously from output variable RUN and output variable STOP>

RUN command input signal from faceplate or input RUN_SET (Detected at rising edge)

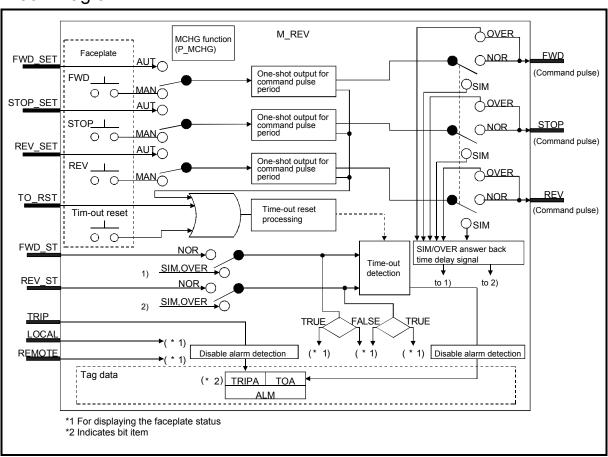
Command pulse signal from output pin RUN (output variable RUN)

STOP command input signal from faceplate or input STOP_SET (Detected at rising edge)

Command pulse signal from output pin STOP (output variable STOP)



When the output variable RUN and output variable STOP are output directly to the external device, multiple commands (RUN command and STOP command) may be output simultaneously to the external device.


When it is not desired to output multiple commands to the external device simultaneously, correct the program to output only either one of the command pulse signals to the external device.

7 - 383 7 - 383

7.9.2 Motor Reversible (2 Input, 3 Output) (M_REV)

Block Diagram

7 - 384 7 - 384

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	FWD_SET	Input variable	BOOL	External input of FWD (forward rotation) operation (FALSE→TRUE: FWD)	TRUE, FALSE
	STOP_SET	Input variable	BOOL	External input of STOP operation (FALSE→TRUE: STOP)	TRUE, FALSE
	REV_SET	Input variable	BOOL	External input of REV (reverse rotation) operation (FALSE→TRUE)	TRUE, FALSE
	TO_RST	Input variable	BOOL	Time-out error external reset input (FALSE→TRUE: Time-out reset)	TRUE, FALSE
Input	FWD_ST Input variable		BOOL	Status answer input (TRUE: REV, FALSE: STOP)	TRUE, FALSE
	REV_ST Input variable	BOOL	Status answer input (TRUE: REV, FALSE: STOP)	TRUE, FALSE	
	TRIP	Input variable	BOOL	External failure (TRIP) input (TRUE: Occurred, FALSE: Recovered)	TRUE, FALSE
	LOCAL	Input variable	BOOL	Local operation selection signal (TRUE: Valid, FALSE: Invalid)	TRUE, FALSE
	REMOTE	Input variable	BOOL	Remote operation selection signal (TRUE: Valid, FALSE: Invalid)	TRUE, FALSE
	RUN	Output variable	BOOL	Command pulse period ON output (TRUE: Run, FALSE: -)	TRUE, FALSE
Output	STOP	Output variable	BOOL	ON output for command pulse period (TRUE: Run, FALSE: -)	TRUE, FALSE
	REV	Output variable	BOOL	ON output for command pulse period (TRUE: Run, FALSE: -)	TRUE, FALSE

Public Variable (Others)(*1)

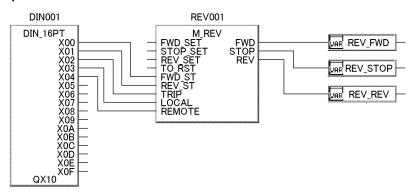
	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
MCHG	MODEIN	Public variable	INT	Mode changing signal (1: MAN, 2: AUT)	1, 2	0	User
processing*2	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

It will not be displayed on FB property window of PX Developer.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.


^{*2} The abbreviation means control mode change processing.

Function

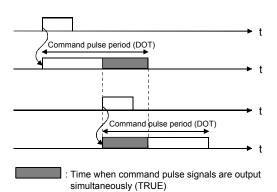
This tag FB consists of the following tag access FB.

Item	Contents						
One-shot output for command pulse period	Execute the one-shot output for command pulse period according to operation from faceplate or input from input variable (RUN_SET, STOP_SET). (1) In case of operation from faceplate or the input variable (RUN_SET) transforms from FALSE to TRUE, command pulse signal (TRUE) will be output from the output variable RUN for the time set by command pulse period (DOT). (2) In case of operation from faceplate or the input variable (STOP_SET) transforms from FALSE to TRUE, command pulse signal (TRUE) will be output from the output variable STOP for the period set by command pulse period (DOT). (3) In case of the operation from faceplate or the input variable (REV_SET) transforms from FALSE to TRUE, command pulse signal (TRUE) will be output from the output variable REV for the period set by command pulse time period (DOT). Input signal from the faceplate or the input variable (DOT). Command pulse signal from the faceplate or the input variable (DOT).						
Time-out check/ time- out reset	(1) Time-out detection (a) Alarm (ALM) time-out (TOA) will occur when command pulse signal (TRUE) is output from output variable FWD/STOP and TRUE/FALSE is not input from status answer input (FWD-ST) within the set time of time-out timer (TOT). (b) Alarm (ALM) time-out (TOA) will occur when command pulse signal (TRUE) is output from output variable REN/STOP and TRUE/FALSE is not input from status answer input (REN-ST) within the set time of time-out timer (TOT). Condition Alarm Time-out (TOA) Time up to status answer signal input≥setting period of time-out timer (TOT) Time up to status answer signal input <setting (2)="" (a)="" (alm)="" (false)="" (fwd,="" (reset)="" (toa)="" (tot)="" alarm="" by="" command="" false="" following="" from="" from<="" of="" operation="" operations.="" output="" period="" pulse="" ren)="" reset="" signal="" stop,="" td="" the="" time-out="" timer="" variable=""></setting>						
	faceplate or input from input variable (FWD_SET, STOP_SET, REV_SET). (b) Input TRUE to input variable (TO_RST). In case of SIMULATION mode or OVERRIDE mode, status answer signal is created in CPU module after command pulse signal output.						
SIM/OVER answer back time delay signal	The delay time of status answer signal is set by simulation answer time (SIMT). Input signal from the faceplate or the input pin (rising edge detection) Command pulse signal from the output pin SIM/OVER answer back signal Simulation answer signal (SIMT)						
Disable Alarm Detection	If the following items (INH) of tag data are TRUE, the TRIPA and TOA of alarm (ALM) will not be detected. • ERRI, TRIPI, TOI						

Program Example

POINT

If the other command occurs during output of the command pulse signal (TRUE) from the output variable FWD, STOP or REV, multiple command pulse signals (TRUE) are output.

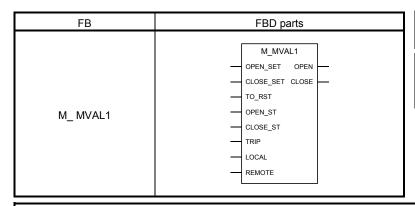

<When multiple command pulse signals (TRUE) are output>

FWD command input signal from faceplate or input FWD_SET (Detected at rising edge)

Command pulse signal from output pin FWD (output variable FWD)

STOP command input signal from faceplate or input STOP_SET (Detected at rising edge)

Command pulse signal from output pin STOP (output variable STOP)

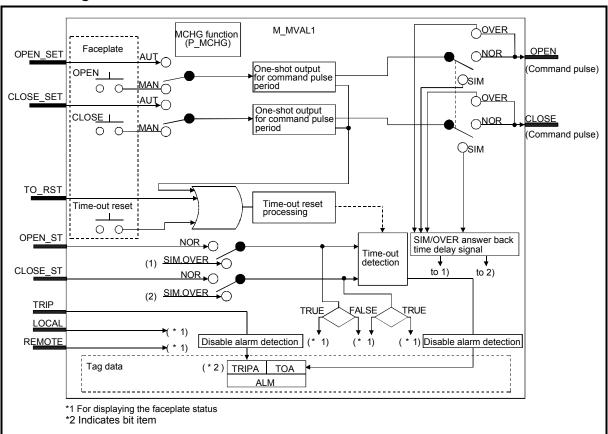


When the output variables FWD, STOP and REV are output directly to the external device, multiple commands (FWD command, STOP command, REV command) may be output simultaneously to the external device.

When it is not desired to output multiple commands to the external device simultaneously, correct the program to output only any one of the command pulse signals to the external device.

7 - 387 7 - 387

7.9.3 ON/OFF Operation (2 Input, 2 Output) (M MVAL1)



Corresponding tag type							
MVAL1							
Control mode							
MAN	MAN AUT CAS CMV CSV						
0	0	_	_	_			

Function overview: Execute ON/OFF solenoid valve and solenoid valve operation.

Function/FB classification name: Tag FB_status tag FB

Block Diagram

7 - 388 7 - 388

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	OPEN_SET Input variable		BOOL	External input of OPEN operation (FALSE→TRUE: OPEN)	TRUE, FALSE
CLOSE_S		Input variable	BOOL	External input of CLOSE operation (FALSE→TRUE: CLOSE)	TRUE, FALSE
	TO_RST Input variable		BOOL	Time-out error external reset input (FALSE→TRUE: Error reset)	TRUE, FALSE
Input	OPEN_ST	Input variable	BOOL	Status answer input (TRUE: OPEN, FALSE: SEMI_CLOSE)	TRUE, FALSE
прис	CLOSE_ST	Input variable	BOOL	Status answer input (TRUE: CLOSE, FALSE: SEMI_CLOSE)	TRUE, FALSE
	TRIP	Input variable	BOOL	External failure (TRIP) input (TRUE: Occurred, FALSE: Recovered)	TRUE, FALSE
	LOCAL	Input variable	BOOL	Local operation selection signal (TRUE: Valid, FALSE: Invalid)	TRUE, FALSE
	REMOTE Input variable BOOL		BOOL	Remote operation selection signal (TRUE: Valid, FALSE: Invalid)	TRUE, FALSE
Output	OPEN	Output variable	BOOL	ON output for command pulse period (TRUE: Run, FALSE: -)	TRUE, FALSE
Output	CLOSE	Output variable	BOOL	ON output for command pulse period (TRUE: Run, FALSE: -)	TRUE, FALSE

Public Variable (Others)(*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
MCHG	MODEIN	Public variable	INT	Mode changing signal (1: MAN, 2: AUT)	1, 2	0	User
processing*2	E	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

^{*1} Please read and write them with program.

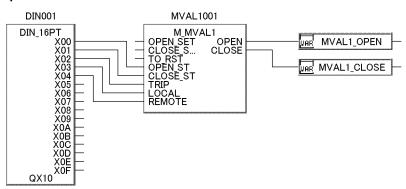
It will not be displayed on FB property window of PX Developer.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

7 - 389 7 - 389

^{*2} The abbreviation means control mode change processing.


Function

This tag FB consists of the following tag access FB.

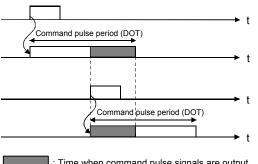
Item	Contents						
Command pulse period one shot output	Execute the one-shot output for command pulse period according to operation from faceplate or input from input variable (OPEN_SET, CLOSE_SET). (1) In case of operation from faceplate or the input variable (OPEN_SET) transforms from FALSE to TRUE, command pulse signal (TRUE) will be output from the output variable RUN for the time set by command pulse period (DOT). (2) In case of operation from faceplate or the input variable (CLOSE_SET) transforms from FALSE to TRUE, command pulse signal (TRUE) will be output from the output variable STOP for the time set by command pulse period (DOT). Input signal from the faceplate or input pin (rising edge detection) Command pulse signal from output pin (Command pulse period (DOT))						
Time-out detection/ time-out reset	(1) Time-out detection Time-out (TOA) of alarm (ALM) will occur if TRUE or FALSE is not input from the status answer input (OPEN_ST/CLOSE_ST) for more than the set time of time-out timer (TOT) after command pulse signal (TRUE) is output from output variables OPEN/CLOSE. Condition Alarm Time-out (TOA) Time up to status answer signal input≧setting period of time-out timer (TOT) TRUE (occur) Time up to status answer signal input <setting (2)="" (a)="" (alm)="" (b)="" (false)="" (open,close)="" (open_set,="" (reset)="" (to_rst).<="" (toa)="" (tot)="" alarm="" by="" close_set).="" command="" faceplate="" false="" following="" from="" input="" of="" operation="" operations.="" or="" output="" period="" pulse="" reset="" signal="" td="" the="" time-out="" timer="" to="" true="" variable=""></setting>						
SIM/OVER answer back time delay signal	In case of SIMULATION Mode or OVERRIDE Mode, status answer signal is created in CPU module after command pulse signal output. The delay time of status answer signal is set by analog answer time (SIMT). Input signal from the faceplate or the input pin (rising edge detection) Command pulse signal from the output pin SIM/OVER answer back signal (SIMT)						
Disable Alarm Detection	If the following items (INH) of tag data are TRUE, alarm (ALM) of TRIPA and TOA will not be detected. • ERRI, TRIPI, TOI						

7 - 390 7 - 390

Program Example

POINT

If the CLOSE command (OPEN command) occurs during output of the command pulse signal (TRUE) from the output variable OPEN (output variable CLOSE), the command pulse signals (TRUE) are output simultaneously from the output variable OPEN and output variable CLOSE.


<When command pulse signals (TRUE) are output simultaneously from output variable OPEN and output variable CLOSE>

OPEN command input signal from faceplate or input OPEN_SET (Detected at rising edge)

Command pulse signal from output pin OPEN (output variable OPEN)

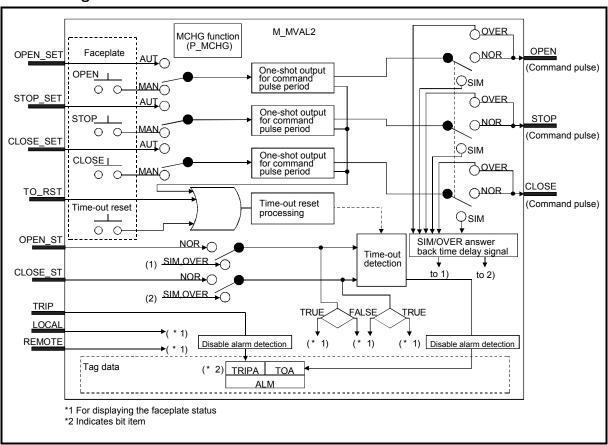
CLOSE command input signal from faceplate or input CLOSE_SET (Detected at rising edge)

Command pulse signal from output pin CLOSE (output variable CLOSE)

: Time when command pulse signals are output simultaneously (TRUE)

When the output variable OPEN and output variable CLOSE are output directly to the external device, multiple commands (OPEN command and CLOSE command) may be output simultaneously to the external device.

When it is not desired to output multiple commands to the external device simultaneously, correct the program to output only either one of the command pulse signals to the external device.


7 - 391 7 - 391

7.9.4 ON/OFF Operation (2 Input, 3 Output) (M MVAL2)

FB	FBD parts		Corresponding tag type			
	M_MVAL2	MVAL2				
	OPEN_SET OPEN — STOP SET STOP —		C	ontrol mo	de	
	CLOSE_SET CLOSE —	MAN	AUT	CAS	CMV	CSV
	— TO_RST	0	0	_		_
M_MVAL2	→ OPEN_ST					
	CLOSE_ST					
	— TRIP					
	— LOCAL					
	REMOTE					
		J				
Function overview: Execute (ON/OFF solenoid valve (with intermediate status) oper:	ation				

Function/FB classification name: Tag FB_status tag FB

Block Diagram

7 - 392 7 - 392

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	OPEN_SET	SET Input variable BOOL External input of OPEN operation (FALSE→TRUE: OPEN)		·	TRUE, FALSE
	STOP_SET	Input variable	BOOL	External input of STOP operation (FALSE→TRUE: STOP)	TRUE, FALSE
	CLOSE_SET Input variable		BOOL	External input of CLOSR operation (FALSE→TRUE: CLOSE)	TRUE, FALSE
	TO_RST	_RST Input variable B		Time-out error external reset input (FALSE→TRUE: Time-out reset)	TRUE, FALSE
Input	OPEN_ST Input variable		BOOL	Status answer input (TRUE: OPEN, FALSE: SEMI_CLOSE)	TRUE, FALSE
	CLOSE_ST	Input variable	BOOL	Status answer input (TRUE: CLOSE, FALSE: SEMI_CLOSE)	TRUE, FALSE
	TRIP	Input variable	BOOL	External failure (TRIP) input (TRUE: Occur, FALSE: Reset)	TRUE, FALSE
	LOCAL	Input variable	BOOL	Local operation selection signal (TRUE: Valid, FALSE: invalid)	TRUE, FALSE
	REMOTE	Input variable	BOOL	Remote operation selection signal (TRUE: valid, FALSE: invalid)	TRUE, FALSE
	OPEN	Output variable	BOOL	Command pulse period ON output (TRUE: Run, FALSE: -)	TRUE, FALSE
Output	STOP	Output variable	BOOL	Command pulse period ON output (TRUE: Run, FALSE: -)	TRUE, FALSE
	CLOSE	Output variable	BOOL	Command pulse period ON output (TRUE: Run, FALSE: -)	TRUE, FALSE

Public Variable (Others)(*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
MCHG	MODEIN	Public variable	INT	Mode changing signal (1: MAN, 2: AUT)	1,2	0	User
processing*2	Е	Public variable	BOOL	Change request (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	FALSE	User

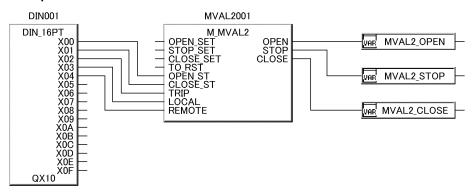
^{*1} Please read and write them with program.

It will not be displayed on FB property window of PX Developer.

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

7 - 393 7 - 393


^{*2} The abbreviation means control mode change processing.

Function

This tag FB consists of the following tag access FB.

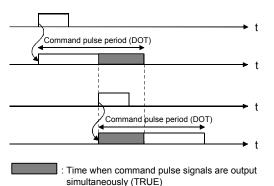
Item	Contents						
Command pulse period one shot output	ulse (3) In case of operation from faceplate or the input variable (CLOSE_SET) transforms for command pulse signal (TRUE) will be output from the output variable CLOSE for the						
	Input signal from the faceplate or input pin (rising edge detection) Command pulse signal from output pin Command pulse period (DOT)	t → t					
	 (1) Time-out detection (a) Time-out (TOA) of alarm (ALM) will occur if TRUE or FALSE is not input from (OPEN_ST) for more than the set time of time-out time (TOT) after command output from output variables OPEN/STOP. (b) Time-out (TOA) of alarm (ALM) will occur if TRUE or FALSE is not input from (CLOSE_ST) for more than the set time of time-out time (TOT) after command output from output variables CLOSE/STOP. 	d pulse signal (TRUE) is					
Time-out check/time-	Condition	Alarm					
out reset		Time-out (TOA)					
	Time up to status answer signal input≧setting period of time-out timer (TOT) Time up to status answer signal input <setting (tot)<="" of="" period="" td="" time-out="" timer=""><td>TRUE (occur) FALSE (reset)</td></setting>	TRUE (occur) FALSE (reset)					
	(2) Time-out reset Reset (FALSE) the time-out (TOA) of alarm (ALM) by the following operations. (a) Output command pulse signal from output variable (OPEN, STOP, CLOSE) panel or input from input variable (OPEN_SET, STOP_SET, CLOSE_SET). (b) Input TRUE to input variable (TO_RST).	· · · · · · ·					
SIM/OVER answer	In case of SIMULATION Mode or OVERRIDE Mode, status answer signal is created command pulse signal output. The delay time of status answer signal is set by simulation answer time (SIMT). Input signal from the faceplate or the input pin (rising edge detection)	in CPU module after					
back time delay signal	Command pulse signal from the output pin SIM/OVER answer back signal (SIMT)	→ t ————————————————————————————————————					
Disable Alarm Detection	If the following items (INH) of tag data are TRUE, alarm (ALM) of TRIPA and TOA w ■ ERRI, TRIPI, TOI	ill not be detected.					

Program Example

POINT

If the other command occurs during output of the command pulse signal (TRUE) from the output variable OPEN, STOP or CLOSE, multiple command pulse signals (TRUE) are output.

<When multiple command pulse signals (TRUE) are output>


OPEN command input signal from faceplate or input OPEN_SET (Detected at rising edge)

Command pulse signal from output pin OPEN (output variable OPEN)

STOP command input signal from faceplate or input STOP_SET (Detected at rising edge)

signals to the external device.

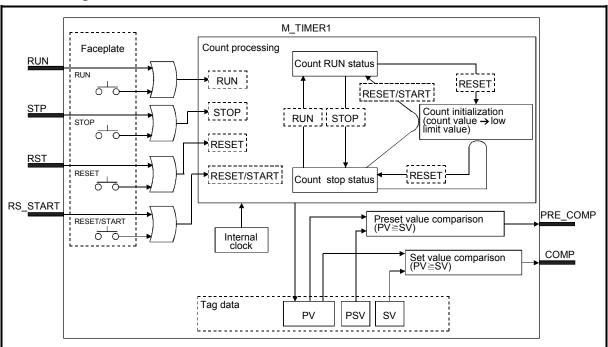
Command pulse signal from output pin STOP (output variable STOP)

When the output variables OPEN, STOP and CLOSE are output directly to the external device, multiple commands (OPEN command, STOP command, CLOSE

command) may be output simultaneously to the external device.

When it is not desired to output multiple commands to the external device simultaneously, correct the program to output only any one of the command pulse

7.9.5 Timer 1 (Timer Stops When COMPLETE Flag is ON) (M_TIMER1)


FB	FBD parts	
M_TIMER1	M_TIMER1 RUN PRE_COMP STP COMP RST RS_START	MAN —

	Corresponding tag type					
TIMER'	TIMER1					
	Control mode					
MAN	MAN AUT CAS CMV CSV					
_	_	_	_	_		

Function overview: It is a clock timer. Timing stops when the count value reaches the set value.

Function/FB classification name: Tag FB _ status tag FB

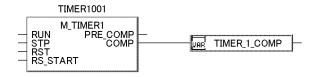
Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	RUN	Input variable	BOOL	External input of RUN operation (FALSE→TRUE: RUN)	TRUE, FALSE
Input	STP	Input variable	BOOL	External input of STOP operation (FALSE→TRUE: STOP)	TRUE, FALSE
Прис	RST	Input variable	BOOL	External input of RESET operation (FALSE→TRUE: RESET)	TRUE, FALSE
	RS_START	Input variable	BOOL	External input of RESET/START operation (FALSE→TRUE: RESET/START)	TRUE, FALSE
Output	PRE_COMP	Output variable	BOOL	Preset value count up completed (TRUE: Completed, FALSE: Not completed)	TRUE, FALSE
Output	COMP	Output variable	BOOL	Set value count up completed (TURE: Completed, FALSE: Not completed)	TRUE, FALSE

7 - 396 7 - 396

Tag Data


For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

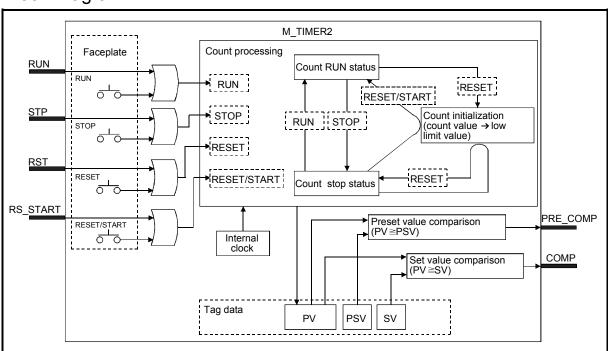
Function

This tag FB consists of the following tag access FB.

Item	Contents
Count processing	(1) In case of operation from faceplate, or the input variable (RUN) transforms from FALSE to TRUE, the timer current value is stored in process value (PV) in unit set by timer multiplying factor (MULT). (Following figure *1) When the process value (PV) reaches the preset value (PSV) TRUE will be output from output variable PRE_COMP. (Block diagram—Preset value comparison) When the process value (PV) reaches the set value (SV) TRUE will be output from output variable COMP and the timer clock stops. (BLOCK diagram—Set value comparison) When the process value (PV) reaches timer high limit (RH), timer clock stops. (2) In case of operation from faceplate, or the input variable (STP) transforms from FALSE to TRUE, process value (PV) measuring will be stopped. (Following figure *2) (3) In case of operation from faceplate, or the input variable (RST) transforms from FALSE to TRUE, process value (PV) will be set as timer low limit (RL) value, and timer clock stops. (Following figure *3) (4) In case of operation from faceplate, or the input variable (RS_START) transforms from FALSE to TRUE, process value (PV) will be set as timer low limit (RL) value, and timer clock starts. (Following figure *4) *1 RUN STOP *2 Count initialization (count value) low value)

Program Example

7 - 397 7 - 397


7.9.6 Timer 2 (Timer Continues When COMPLETE Flag is ON) (M_TIMER2)

FB	FBD parts		Corres	ponding t	ag type	
	M TIMER2	TIMER2	<u> </u>			
	RUN PRE_COMP		С	ontrol mo	de	
M_TIMER2	STP COMP	MAN	AUT	CAS	CMV	CSV
_	— RST	_		1	_	_
	RS_START					
		4				
Function overview: It is a clock timer. Timing continues even if the count value reaches the set value. Timing stops when the						

count value reaches the high limit value.

Function/FB classification name: Tag FB _ status tag FB

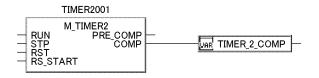
Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	RUN	Input variable	BOOL	External input of RUN operation (FALSE→TRUE: RUN)	TRUE, FALSE
Input	STP	Input variable	BOOL	External input of STOP operation (FALSE→TRUE: STOP)	TRUE, FALSE
input	RST	Input variable	BOOL	External input of RESET operation (FALSE→TRUE: RESET)	TRUE, FALSE
	RS_START	Input variable	BOOL	External input of RESET/START operation (FALSE→TRUE: RESET/START)	TRUE, FALSE
Output	PRE_COMP	Output variable	BOOL	Preset value count up completed (TRUE: Completed, FALSE: Not completed)	TRUE, FALSE
Output	·		BOOL	Set value count up completed (TURE: Completed, FALSE: Not completed)	TRUE, FALSE

7 - 398 7 - 398

Tag Data

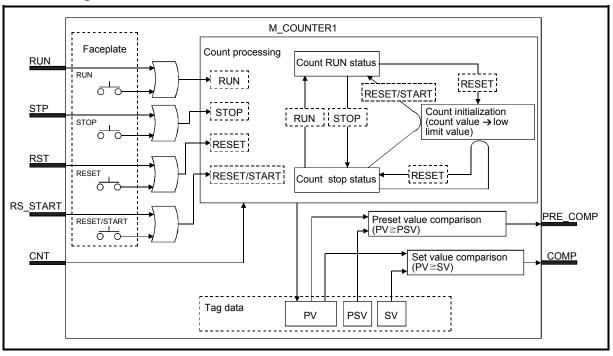

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

This tag FB consists of the following tag access FB.

Item	Contents
Count processing	(1) In case of operation for faceplate, or the input variable (RUN) transforms from FALSE to TRUE, the timer current value is stored in process value (PV) in unit set by timer multiplying factor (MULT). When the process value (PV) reaches the preset value (PSV) TRUE will be output from output variable PRE_COMP. (Block diagram — Preset value comparison) When the process value (PV) reaches the set value (SV) TRUE will be output from output variable COMP and the timer clock stops. (BLOCK diagram — set value comparison) When the process value (PV) reaches timer high limit (RH), timer clock stops. (2) In case of operation from faceplate, or the input variable (STP) transforms from FALSE to TRUE, process value (PV) measuring will be stopped. (Following figure *2) (3) In case of operation from faceplate, or the input variable (RST) transforms from FALSE to TRUE, process value (PV) will be set as timer low limit (RL) value, and timer clock stops. (Following figure *3) (4) In case of operation from faceplate, or the input variable (RS_START) transforms from FALSE to TRUE, process value (PV) will be set as timer low limit (RL) value, and timer clock starts. (Following figure *4) Count RUN status *1 RESET/START RESET* *3 Count initialization (count value → low value) *4 RESET* *3 Count initialization (count value → low value)

Program Example



7.9.7 Counter 1 (Counter Stops When COMPLETE Flag is ON) (M_COUNTER1)

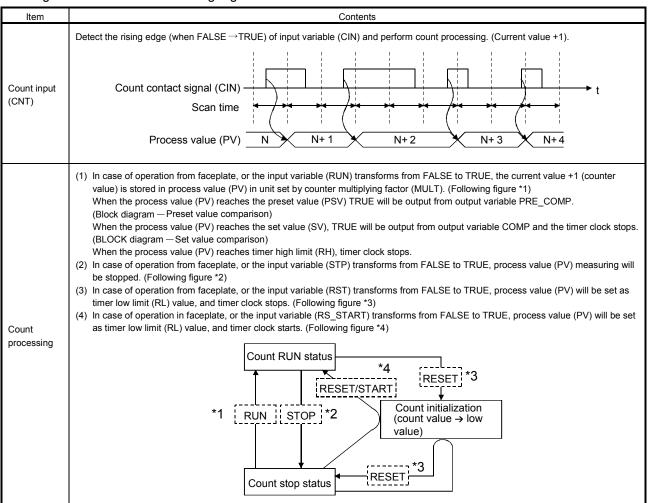
FB	FBD parts		Corresponding tag type				
M_COUNTER1	M_COUNTER1	COUNT1					
	RUN PRE_COMP - STP COMP -		Control mode				
	— RST	MAN	AUT	CAS	CMV	CSV	
	RS_START	_	_	_	_	_	
	CNT						
Function overview: It is a counter that counts contact signal input. Count stops when count value reaches the set value.							

Function/FB classification name: Tag FB _ status tag FB

Block Diagram

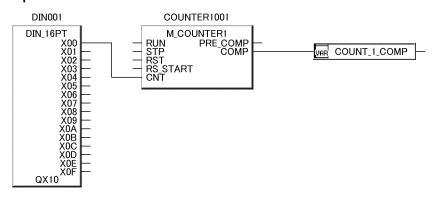
7 - 400 7 - 400

Input and Output Pins


Pin	Variable name	Variable type	Data type	Contents	Range
	RUN	Input variable	BOOL	External input of RUN operation (FALSE →TRUE: RUN)	TRUE, FALSE
	STP	Input variable	BOOL	External input of STOP operation (FALSE →TRUE: STOP)	TRUE, FALSE
Input	RST	Input variable	BOOL	External input of RESET operation (FALSE →TRUE: RESET)	TRUE, FALSE
	RS_START	Input variable	BOOL	External input of RESET/START operation (FALSE →TRUE: RESET/START)	TRUE, FALSE
	CNT	Input variable	BOOL	Count contact signal input (FALSE →TRUE: Count)	TRUE, FALSE
Output	PRE_COMP	Output variable	BOOL	Preset value count up completed (TRUE: Completed, FALSE: Not completed)	TRUE, FALSE
Output	COMP	Output variable	BOOL	Set value count up completed (TURE: Completed, FALSE: Not complete)	TRUE, FALSE

Tag Data

For details about the tag data that is read/written by this tag FB, please refer to tag data list of various tag types in Appendix 1.1.


Function

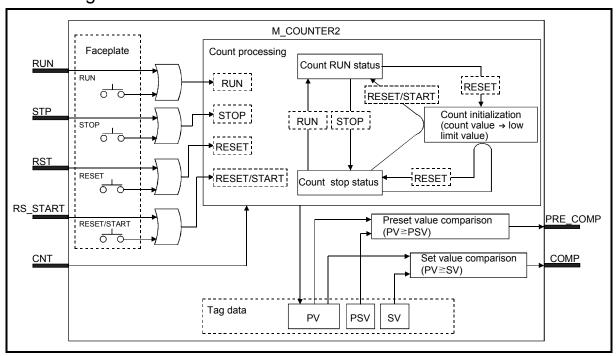
This tag FB consists of the following tag access FB.

7 - 401 7 - 401

Program Example

7 - 402 7 - 402

7.9.8 Counter 2 (Counter Continues When COMPLETE Flag is ON) (M_COUNTER2)


FB	FBD parts	Corresponding tag type					
M_COUNTER2	M_COUNTER2	С	OUNT	2			
	RUN PRE_COMP	Control mode					
	RST COMP	Ν	ΛAN	AUT	CAS	CMV	CSV
	RS START		_	I		_	_
	— CNT						

Function overview: It is a counter that counts contact signal input. Count continues when count value reaches the set value.

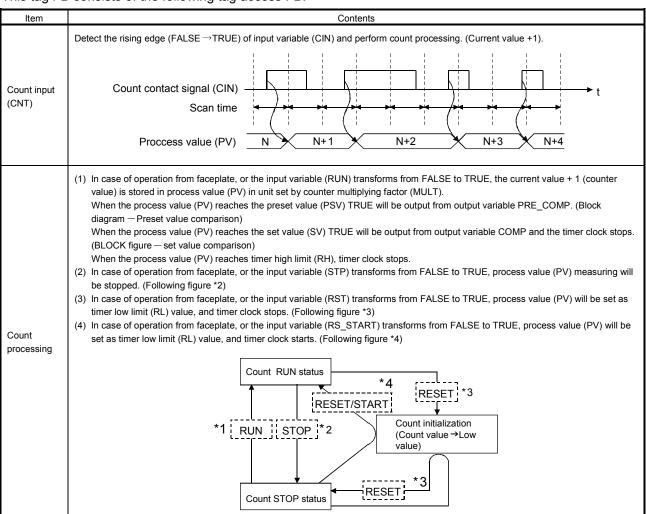
Count stops when the count value reaches the high limit value.

Function/FB classification name: Tag FB_status tag FB

Block Diagram

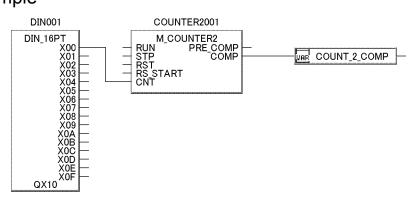
7 - 403 7 - 403

Input and Output Pins


Pin	Variable name	Variable type	Data type	Contents	Range
	RUN	Input variable	BOOL	External input of RUN operation (FALSE→TRUE: RUN)	TRUE, FALSE
	STP	Input variable	BOOL	External input of STOP operation (FALSE→TRUE: STOP)	TRUE, FALSE
Input	RST	Input variable	BOOL	External input of RESET operation (FALSE→TRUE: RESET)	TRUE, FALSE
	RS_START	Input variable	BOOL	External input of RESET/START operation (FALSE→TRUE: RESET/START)	TRUE, FALSE
	CNT	Input variable	BOOL	Count contact signal input (FALSE→TRUE: Count)	TRUE, FALSE
Output	PRE_COMP	Output variable	BOOL	Preset value count up completed (TRUE: Completed, FALSE: Not complete)	TRUE, FALSE
Cutput	COMP	Output variable	BOOL	Set value count up completed (TURE: Completed, FALSE: Not complete)	TRUE, FALSE

Tag Data

For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

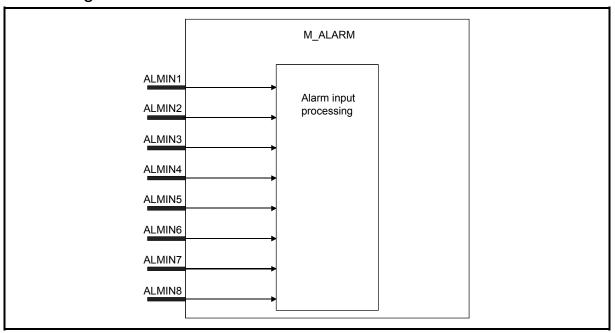

Function

This tag FB consists of the following tag access FB.

7 - 404 7 - 404

Program Example

7.10 Tag FB _ Alarm Tag FB


7.10.1 Alarm (M_ALARM)

FB	FBD parts	Corresponding tag type
	M_ALARM — ALMIN1 — ALMIN2 — ALMIN3	ALM
M_ALARM	ALMIN4 — ALMIN5 — ALMIN6 — ALMIN7 — ALMIN8	

Function overview: The corresponding alarm of the input pins (ALMIN1 to ALMIN8) to which TRUE is input is displayed on the alarm list screen of PX Developer monitor tool.

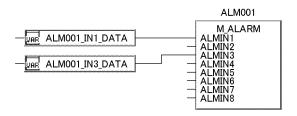
Function/FB classification name: Tag FB_alarm tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	ALMIN1	Input variable	BOOL	Alarm 1 input signal (TRUE: Occur, FALSE: Recover)	TRUE, FALSE
	ALMIN2	Input variable	BOOL	Alarm 2 input signal (TRUE: Occur, FALSE: Recover)	TRUE, FALSE
	ALMIN3	Input variable	BOOL	Alarm 3 input signal (TRUE: Occur, FALSE: Recover)	TRUE, FALSE
Input	ALMIN4	Input variable	BOOL	Alarm 4 input signal (TRUE: Occur, FALSE: Recover)	TRUE, FALSE
IIIput	ALMIN5	Input variable	BOOL	Alarm 5 input signal (TRUE: Occur, FALSE: Recover)	TRUE, FALSE
	ALMIN6	Input variable	BOOL	Alarm 6 input signal (TRUE: Occur, FALSE: Recover)	TRUE, FALSE
	ALMIN7	Input variable	BOOL	Alarm 7 input signal (TRUE: Occur, FALSE: Recover)	TRUE, FALSE
	ALMIN8	Input variable	BOOL	Alarm 8 input signal (TRUE: Occur, FALSE: Recover)	TRUE, FALSE

Tag Data


For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

This tag FB consists of the following tag access FB.

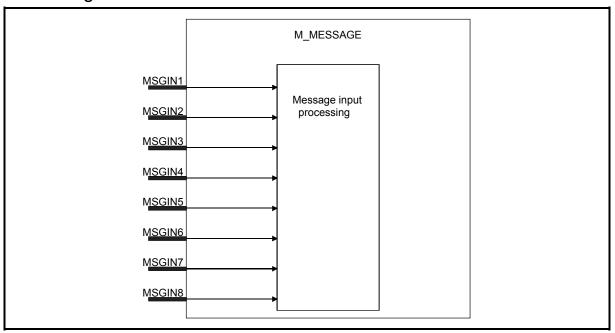
Item	Contents
	The corresponding alarm of the input pins to which TRUE is input is displayed on the alarm list screen of
Alarm input	PX Developer monitor tool.
processing	For the operating methods of PX Developer monitor tool, please refer to PX Developer Operating Manual
	(Monitor Tool edition)

Program Example

7 - 407 7 - 407

7.11 Tag FB _ Message Tag FB

7.11.1 Message (M_MESSAGE)


FB	FBD parts	
M_MESSAGE	M_MESSAGE MSGIN1 MSGIN2 MSGIN3 MSGIN4 MSGIN5 MSGIN6	MSG
	— MSGIN7 — MSGIN8	

Corresponding tag type
MSG

Function overview: The corresponding message of the input pins (MSGIN1 to MSGIN8) to which TRUE is input is displayed on the event list screen of PX Developer monitor tool.

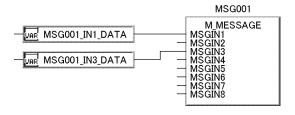
Function/FB classification name: Tag FB _ Message tag FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	MSGIN1	Input variable	BOOL	Message 1 input signal (TRUE: Occur, FALSE: Recover)	TRUE, FALSE
	MSGIN2	Input variable	BOOL	Message 2 input signal (TRUE: Occur, FALSE: Recover)	TRUE, FALSE
	MSGIN3	Input variable	BOOL	Message 3 input signal (TRUE: Occur, FALSE: Recover)	TRUE, FALSE
Input	MSGIN4	Input variable	BOOL	Message 4 input signal (TRUE: Occur, FALSE: Recover)	TRUE, FALSE
IIIput	MSGIN5	Input variable	BOOL	Message 5 input signal (TRUE: Occur, FALSE: Recover)	TRUE, FALSE
	MSGIN6	Input variable	BOOL	Message 6 input signal (TRUE: Occur, FALSE: Recover)	TRUE, FALSE
	MSGIN7	Input variable	BOOL	Message 7 input signal (TRUE: Occur, FALSE: Recover)	TRUE, FALSE
	MSGIN8	Input variable	BOOL	Message 8 input signal (TRUE: Occur, FALSE: Recover)	TRUE, FALSE

Tag Data


For details about the tag data that is read/written by this tag FB, refer to tag data list of various tag types in Appendix 1.1.

Function

This tag FB consists of the following tag access FB.

Item	Contents
	The corresponding message of the input pins (MSGIN1 to MSGIN8) to which TRUE is input is displayed
Message input	on the event list screen of PX Developer monitor tool.
processing	For the operating methods of PX Developer monitor tool, please refer to PX Developer Operating Manual
	(Monitor Tool Edition)

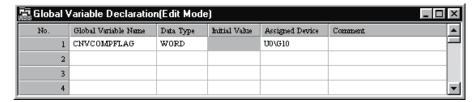
Program Examples

7 - 409 7 - 409

8 MODULE FB

Module FB can be classified into following types according to module buffer memory area reading/writing instructions.

Classification name	Contents	Reference
Analog module FB	 Reads A/D conversion values from A/D converter modules (4 channels, 8 channels), channel-isolated A/D converter modules (4 channels, 8 channels), channel-isolated high resolution A/D converter module with signal conditioning function (2 channels), and channel-isolated A/D converter module with signal conditioning function (6 channels). Writes digital values to 2 channels, 4 channels, 8 channels, 2 channel-isolated, and 6 channel-isolated D/A converter modules. 	Section 8.1
Temperature input module FB	Read temperature conversion value from 4/8 channels temperature input module.	Section 8.2
Counter module FB	Read pulse count value from high-speed counter module and isolation type pulse input module	Section 8.3
Digital input/output module FB	 Read ON/OFF input value from 8/16/32/64 points input module. Write ON/OFF output value to 8/16/32/64 points output module. Read/write ON/OFF input/output value from/to 15/64 points input/output mixed module. 	Section 8.4
CC-Link module FB	Read/write information of CC-Link slave stations occupying 1/2/3/4 stations.	Section 8.5


(1) Read/write of I/O signals and buffer memory data that do not exist in public variables

Some of the I/O signals and buffer memory data of the module can be read/written with the public variables of the module FB.

On the other hand, read/write the I/O signals and buffer memory data, which do not exist in the public variables of the module FB, using either of the following methods.

(a) Read/write using global variable

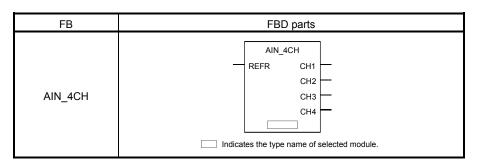
When declaring a global variable in the global variable declaration window of the programming tool, set the I/O signal or buffer memory address to Assigned device.

The declared global variable is placed in the FBD program and used for read/write.

(b) Read/write using GX Developer

Perform read/write using Device batch or Buffer memory batch of GX Developer.

For details of GX Developer, refer to the GX Developer Operating Manual.

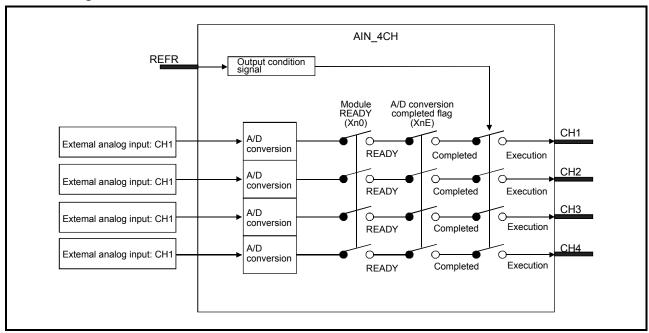

POINT

The usable I/O signals and buffer memory addresses change depending on the module.

For details, refer to the manual of the used module.

8.1 Analog Module FB

8.1.1 4 Channels Analog Input (AIN_4CH)



Corresponding module
Q64AD

Function overview: Reads the digital output value of 4 channels A/D conversion module that converts analog signal to digital value, and outputs it from output variable (CH1 to CH4).

Function/FB classification name: Module FB

Block Diagram

Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range
Input	REFR	Input variable	BOOL	Output condition signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE
Output	CH1 to CH4	Output variable	REAL	CH1 to CH4 digital output value	Due to input range and resolution mode.

8

Public Variable (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	ERRC	Public variable	BOOL	Error clear request (TRUE: Error clear request FALSE: -). When module error (ERR) is TRUE, module error is cleared by setting ERRC to TRUE. ERR will become FALSE accordingly.	TRUE, FALSE	FALSE	User
	CH1INH to CH4INH	Public variable	BOOL	Enable/Disable A/D conversion (CH1 to CH4) (TRUE: Enabled FALSE: Disabled). Set whether enable/disable A/D conversion value output of per channel. STB is valid in FALSE →TRUE.	TRUE, FALSE	FALSE	User
	STB	Public variable	BOOL	Operation condition setting request. Execute A/D conversion enable/disable setting (CH1INH to CH4INH) when STB changes from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	MRES	Public variable	BOOL	Maximum/minimum value reset request. Maximum/minimum value (CH1MAX to CH4MAX, CH1MIN to CH4MIN) is cleared when MRES change from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	RDY	Public variable	BOOL	Module READY (TRUE: ON FALSE: OFF). The status of module READY (Xn0) is stored. Execute A/D conversion processing when module READY (Xn0) is TRUE.	TRUE, FALSE	FALSE	System
Conversion	CNVCMPL	Public variable	BOOL	A/D conversion completed flag (TRUE: ON FALSE: OFF). Store the status of A/D conversion completed flag (XnE).	TRUE, FALSE	FALSE	System
processing	ERR	Public variable	BOOL	Error flag (TRUE: Error FALSE: no error). Store TRUE when error occurs in writing.	TRUE, FALSE	FALSE	System
	ADENB	Public variable	INT	A/D conversion enabled/disabled setting status. Store A/D conversion enabled/disabled setting status. b15 to b3 b2 b1 b0 CH CH CH CH CH CH 4 3 2 1 0: Enable A/D conversion 1: Disable A/D conversion	0 to 15	0	System
	ERRCOD	Public variable	INT	Error code. Store error code detected by A/D conversion module. Refer to Analog-Digital Converter Module User's Manual for details about error codes.	_	0	System
	CH1MAX to CH4MAX	Public variable	INT	Maximum value of CH1 to CH4. Store the maximum of digital values according to channels.	Due to input range and resolution mode.	0	System
	CH1MIN to CH4MIN	Public variable	INT	Minimum value of CH1 to CH4. Store the minimum of digital values according to channels.	Due to input range and resolution mode.	0	System

^{*1:} Please execute reading/writing via program.

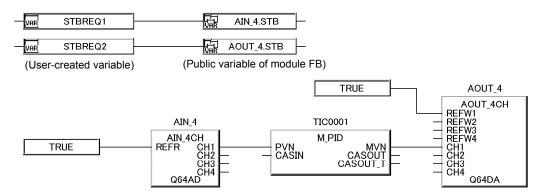
It will not be displayed in FB property window of PX Developer.

Function

Item				Contents	
		Output condition signal (REFR)	Condition Module READY (Xn0)	A/D conversion completed flag (XnE)	Output (CH1 to CH4)
Output condition signal		TRUE	TRUE	TRUE	Read digital output value from A/D conversion module and output the digital output value of each channel from output variable CH1 to CH4.
(REFR)				FALSE	Output veriable CIIII to CIIII remains the
			FALSE	TRUE or FALSE	Output variable CH1 to CH4 remains the previous value.
		FALSE	TRUE or FALSE	TRUE or FALSE	previous value.
					-
Others			he processing and se er Module User's Ma		nodule of this module FB, refer to the following manua

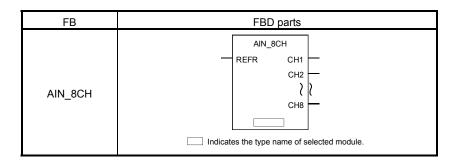
POINT

- It is recommended to use GX Configurator-AD for initial settings.
- Module FB is incompliant with the intelligent function module mounted to a MELSECNET/H remote I/O station.


For details, refer to Section 2.10.2.

Error

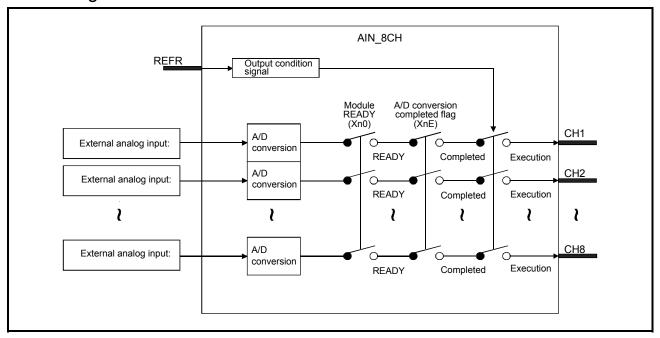
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.


- Unable to communicate with A/D conversion module. (Error code: 1412)
- Abnormality of A/D conversion module is detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)

Program Example

When STBREQ1 is TRUE, execute operation condition setting request (STB)of AIN_4. When STBREQ2 is TRUE, execute operation condition setting request (STB) of AOUT-4.

8.1.2 8 Channels Analog Input (AIN_8CH)



Corresponding module
Q68ADV, Q68ADI

Function overview: Reads the digital output value of 8 channels A/D conversion module that converts analog signal to digital value, and outputs it from output variable (CH1 to CH8).

Function/FB classification name: Module FB

Block Diagram

Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range
Input	REFR	Input variable	BOOL	Output condition signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE
Output	CH1 to CH8	Output variable	REAL	CH1 to CH8 digital output value	Due to input range and resolution mode.

Public Variable (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	ERRC	Public variable	BOOL	Error clear request (TRUE: Error clear request FALSE: -). When module error (ERR) is TRUE, clear module error by setting ERRC to TRUE and ERR will become FALSE accordingly.	TRUE, FALSE	FALSE	User
	CH1INH to CH8INH	Public variable	BOOL	Enable/disable A/D conversion (CH1 to CH8) (TRUE: Enabled FALSE: Disabled). Set whether enable/disable A/D conversion value output based on channels. STB is valid in FALSE→TRUE.	TRUE, FALSE	FALSE	User
	STB	Public variable	BOOL	Operation condition setting request. Execute A/D conversion enabled/disabled setting (CH1INH to CH4INH) when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	MRES	Public variable	BOOL	Maximum/minimum value reset request. Maximum/minimum value (CH1MAX to CH8MAX, CH1MIN to CH8MIN) is cleared when MRES changes from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	RDY	Public variable	BOOL	Module READY (TRUE: ON FALSE: OFF). The status of module READY (Xn0) is stored. Execute A/D conversion processing when module READY (Xn0) is TRUE.	TRUE, FALSE	FALSE	System
Conversion	CNVCMPL	Public variable	BOOL	A/D conversion completed flag (TRUE: ON FALSE: OFF). Store the status of A/D conversion completion flag (XnE).	TRUE, FALSE	FALSE	System
processing	ERR	Public variable	BOOL	Error flag (TRUE: Error FALSE: No error). Store TRUE when error occurs in writing.	TRUE, FALSE	FALSE	System
	ADENB	Public variable	INT	A/D conversion enabled/disabled setting status. Store A/D conversion enabled/disabled setting status. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 to 255	0	System
	ERRCOD	Public variable	INT	Error code. Store error code detected by A/D conversion module. Refer to Analog-Digital Converter Module User's Manual for details about error codes.	_	0	System
	CH1MAX to CH8MAX	Public variable	INT	Maximum value of CH1 to CH8. Store the maximum digital value based on channels.	Due to input range and resolution mode.	0	System
	CH1MIN to CH8MIN	Public variable	INT	Minimum value of CH1 to CH8. Store the minimum digital value based on channels.	Due to input range and resolution mode.	0	System

^{*1:} Please execute reading/writing via program.

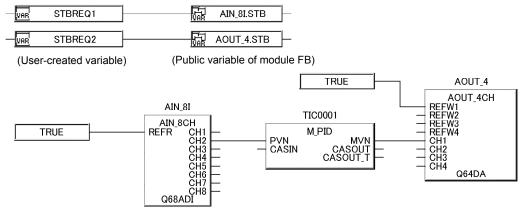
It will not be displayed in FB property window of PX Developer.

Function

Item				Contents						
		Output condition signal (REFR)	Condition Module READY (Xn0)	A/D conversion completed flag (XnE)	Output (CH1 to CH8)					
Output condition signal		TRUE	TRUE	TRUE	Read digital output value from A/D conversion module and output digital output value of each channel from output variable CH1 to CH8.					
(REFR)				FALSE	Output variable CI14 to CI18 holds the provious					
			FALSE	TRUE or FALSE	Output variable CH1 to CH8 holds the previous value.					
		FALSE	TRUE or FALSE	TRUE or FALSE	value.					
Others		For information about the processing and setting of corresponding module of this module FB, refer to the following manual: Analog-Digital Converter Module User's Manual.								

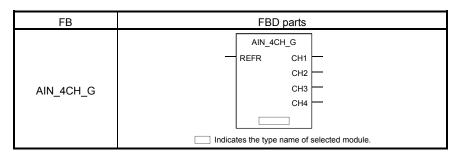
POINT

- It is recommended to use GX Configurator-AD for initial settings.
- Module FB is incompliant with the intelligent function module mounted to a MELSECNET/H remote I/O station.


For details, refer to Section 2.10.2.

Error

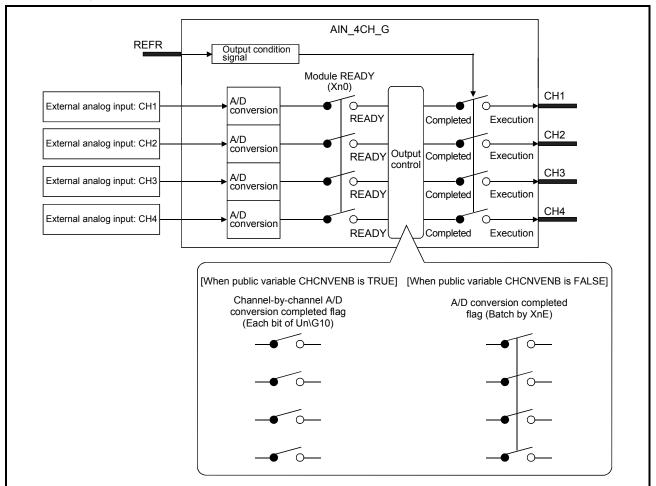
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.


- Unable to communicate with A/D conversion module. (Error code: 1412)
- Abnormality of A/D conversion module is detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)

Program Example

If STBREQ1 is TRUE, operation condition setting request of AIN_81 (STB) will be executed. If STBREQ2 is TRUE, operation condition setting request of AOUT_4 (STB) will be executed.

8.1.3 Channel-isolated 4 Channels Analog Input (AIN_4CH_G)



Corresponding module
Q64AD-GH

Function overview: Reads the digital output value of channel-isolated A/D conversion module (4 channels) that converts analog signal to digital value, and outputs it from output variable (CH1 to CH4).

Function/FB classification name: Module FB

Block Diagram

Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range
Input	REFR	Input variable	BOOL	Output condition signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE
Output	CH1 to CH4	Output variable	REAL	CH1 to CH4 digital output value	Due to input range and resolution mode.

Public Variable (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	ERRC	Public variable	BOOL	Error clear request (TRUE: Error clear request FALSE: -). When occurring module error (ERR) and input signal fault detection signal (SYSAL) are TRUE, clear module error by setting ERRC as TRUE. ERR and SYSAL will become FALSE accordingly.	TRUE, FALSE	FALSE	User
	CH1INH to CH4INH	Public variable	BOOL	Enable/disable A/D conversion (CH1 to CH4) (TRUE: Enabled FALSE: Disabled). Set whether enable/disable A/D conversion value output of each channel. STB is valid in FALSE →TRUE.	TRUE, FALSE	FALSE	User
	AL1ENB to AL4ENB	Public variable	BOOL	Enable/disable alarm output (CH1 to CH4) (TRUE: Disabled FALSE: Enabled). Set whether enable/disable alarm output of each channel. STB is valid in FALSE → TRUE.	TRUE, FALSE	FALSE	User
	STB	Public variable	BOOL	Operation condition setting request. Execute A/D conversion enabled/disabled setting (CH1INH to CH4INH) and alarm output enable/disable setting (AL1ENB to AL4ENB) when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	MRES	Public variable	BOOL	Maximum/minimum value reset request. Maximum/minimum value (CH1MAX to CH4MAX, CH1MIN to CH4MIN) is cleared when MRES turns from FALSE to TRUE.	TRUE, FALSE	FALSE	User
Variable processing	RDY	Public variable	BOOL	Module READY (TRUE: ON FALSE: OFF). The status of module READY (Xn0) is stored. Execute A/D conversion processing when module READY (Xn0) is TRUE.	TRUE, FALSE	FALSE	System
	CHCNVENB	Public variable	BOOL	Enable conversion completed flag for each channel. Set the output condition of the digital output value. When the setting is TRUE, the channel-by-channel A/D conversion completed flag is used as the output condition. When the setting is FALSE, the A/D conversion completed flag (CNVCMPL) is used as the output condition.	TRUE, FALSE	FALSE	User
	CNVCMPL	Public variable	BOOL	A/D conversion completed flag (TRUE: ON FALSE: OFF). Store the status of A/D conversion completion flag (XnE).	TRUE, FALSE	FALSE	System
	ERR	Public variable	BOOL	Error flag (TRUE: Error FALSE: no error). Store TRUE when error occurs in writing.	TRUE, FALSE	FALSE	System
	SYSAL	Public variable	BOOL	Input signal abnormality detection signal. (TRUE: abnormal FALSE: normal). Store TRUE once input signal abnormality occurs in any of CH1 to CH4 of A/D conversion module.	TRUE, FALSE	FALSE	System
	PRCAL	Public variable	BOOL	Alarm output signal (TRUE: alarm FALSE: normal). Store TRUE once process or rate abnormality occurs in any of CH1 to CH4 of A/D conversion module.	TRUE, FALSE	FALSE	System
	PLAL1 to PLAL4	Public variable	BOOL	Low limit value alarm of CH1 to CH4 process alarm (TRUE: over FALSE: normal). Store TRUE of the channel if it surpasses the low limit value of process alarm.	TRUE, FALSE	FALSE	System
	PHAL1 to PHAL4	Public variable	BOOL	High limit value alarm of CH1 to CH4 process alarm (TRUE: over FALSE: normal). Store TRUE of the channel if it surpasses the high limit value of process alarm.	TRUE, FALSE	FALSE	System

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	RTLAL1 to RTLAL4	Public variable	BOOL	Low limit alarm of CH1 to CH4 rate alarm (TRUE: over FALSE: normal) Store TRUE of the channel if it surpasses the low limit value of rate alarm.	TRUE, FALSE	FALSE	System
	RTHAL1 to RTHAL4	Public variable	BOOL	High limit alarm of CH1 to CH4 rate alarm (TRUE: over FALSE: normal) Store TRUE of the channel if it surpasses the high limit value of rate alarm.	TRUE, FALSE	FALSE	System
	RGAL1 to RGAL4	Public variable	BOOL	CH1 to CH4 input signal abnormality detection (TRUE: abnormal FALSE: normal) Store TRUE of the channel if it surpasses the setting range of I/O signal abnormality detection setting value.	TRUE, FALSE	FALSE	System
	ADENB	Public variable	INT	A/D conversion enabled/disabled setting status. Store A/D conversion enabled/disabled setting status b15 to b3 b2 b1 b0 CH CH CH CH CH CH 4 3 2 1 0: Enable A/D conversion 1: Disable A/D conversion	0 to 15	0	System
Variable processing	ERRCOD	Public variable	INT	Error code. Store error code detected by A/D conversion module. Refer to Channel Isolated High Resolution Analog-Digital Converter Module, Channel Isolated High Resolution Analog-Digital Converter Module (with Signal Conditioning Function) User's Manual.	_	0	System
	ALMENB	Public variable	INT	Alarm output enabled/disabled setting status. Store alarm output enabled/disabled setting status b15 to b3 b2 b1 b0 CH CH CH CH CH 4 3 2 1 0: Enable alarm output 1: Disable alarm output	0 to 15	0	System
	CH1MAX to CH4MAX	Public variable	DINT	Maximum A/D conversion value of CH1 to CH4. Store the maximum digital value based on channels.	Due to the input range and resolution mode.	0	System
	CH1MIN to CH4MIN	Public variable	DINT	Minimum A/D conversion value of CH1 to CH4. Store the minimum digital value based on channels.	Due to the input range and resolution mode.	0	System

^{*1:} The public variable CHCNVENB can be set in the FB property window of PX Developer.

Use a program to perform read/write of the public variables other than CHCNVENB.

It will not be displayed in FB property window of PX Developer.

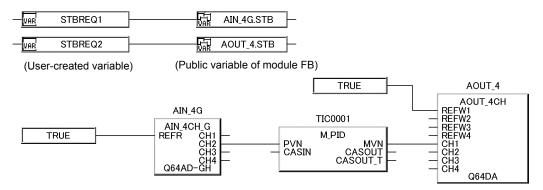
8 - 10 8 - 10

Function

Item			Contents						
		Condition							
	Output condition signal (REFR)	Module READY (Xn0)	(*1)	Output (CH1 to CH4)					
Output condition	TRUE	TRUE	TRUE	Read digital output value from A/D conversion module and output digital output value of each channel from output variable CH1 to CH4.					
signal			FALSE	Output variable CH1 to CH4 holds the previous					
(REFR)		FALSE	TRUE or FALSE	- value.					
	FALSE	TRUE or FALSE	TRUE or FALSE	value.					
	·	*1 When the public variable CHCNVENB is TRUE: Channel-by-channel A/D conversion flag (each bit of buffer memory address 10) When public variable CHCNVENB is FALSE: A/D conversion completed flag (batch by XnE)							
Othoro	For information about the processing, setting, channel-by-channel A/D conversion flag and A/D conversion completed flag of corresponding module of this module FB, refer to the following manual:								
Others	 Channel Isolated High Resolution Analog-Digital Converter Module, Channel Isolated High Resolution Analog-Digital Converter Module (with Signal Conditioning Function) User's Manual. 								

POINT

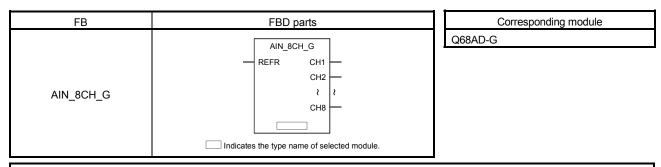
- It is recommended to use GX Configurator-AD for initial settings.
- Module FB is incompliant with the intelligent function module mounted to a MELSECNET/H remote I/O station.


For details, refer to Section 2.10.2.

Error

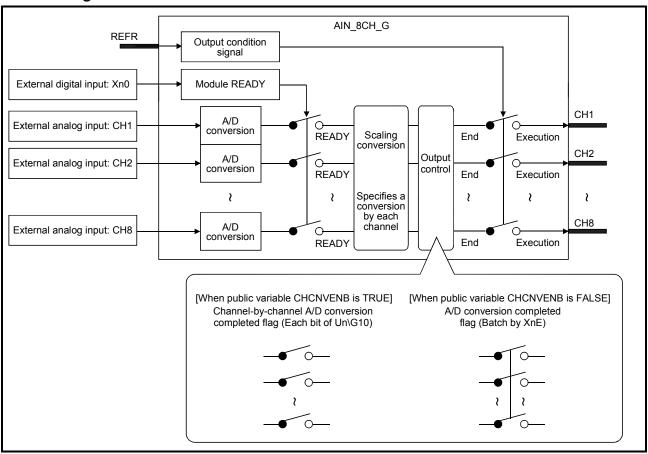
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

- Unable to communicate with A/D conversion module. (Error code: 1412)
- Abnormality of A/D conversion module is detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)


Program Example

If STBREQ1 is TRUE, operation condition setting request of AIN_4G (STB) will be executed. If STBREQ2 is TRUE, operation condition setting request of AOUT_4 (STB) will be executed.

8 - 11 8 - 11


8.1.4 Channel-isolated 8 Channels Analog Input (AIN 8CH G)

Function overview: Reads digital output values or scaling values of channel-isolated A/D converter module (8 channels), which converts analog signals to digital values, and outputs them from output variables (CH1 to CH8).

Function/FB classification name: Module FB

Block Diagram

Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range
Input	REFR	Input variable	BOOL	Output condition signal (TRUE: Execute FALSE: Stop)	TRUE, FALSE
Output	CH1 to CH8	Output variable	REAL	CH1 to CH8 output value (*1)	Depends on the input range, resolution mode, and scaling function of the module.

^{*1:} With the scaling enable/disable setting, either digital output values or scaling values are selected for each channel and are output from the output values of CH1 to CH8.

8 - 12 8 - 12

Public Variable (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	ERRC	Public variable	BOOL	Error clear request (TRUE: Error clear request FALSE: -). When occurring module error (ERR) and input signal fault detection signal (SYSAL) are TRUE, clear module error by setting ERRC as TRUE. ERR and SYSAL will become FALSE accordingly.	TRUE, FALSE	FALSE	User
	CH1INH to CH8INH	Public variable	BOOL	Enable/disable A/D conversion (CH1 to CH8) (TRUE: Enabled FALSE: Disabled). Set whether enable/disable A/D conversion value output of each channel. STB is valid in FALSE →TRUE.	TRUE, FALSE	FALSE	User
	AL1ENB to AL8ENB	Public variable	BOOL	Enable/disable alarm output (CH1 to CH8) (TRUE: Disabled FALSE: Enabled). Set whether enable/disable alarm output of each channel. STB is valid in FALSE →TRUE.	TRUE, FALSE	FALSE	User
	STB	Public variable	BOOL	Operation condition setting request. Execute A/D conversion enabled/disabled setting (CH1INH to CH8INH) and alarm output enable/disable setting (AL1ENB to AL8ENB) when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	MRES	Public variable	BOOL	Maximum/minimum value reset request. Maximum/minimum value (CH1MAX to CH8MAX, CH1MIN to CH8MIN) is cleared when MRES turns from FALSE to TRUE.	TRUE, FALSE	FALSE	User
Variable	RDY	Public variable	BOOL	Module READY (TRUE: ON FALSE: OFF). The status of module READY (Xn0) is stored. Execute A/D conversion processing when module READY (Xn0) is TRUE.	TRUE, FALSE	FALSE	System
processing	CHCNVENB	Public variable	BOOL	Enable conversion completed flag for each channel. Set the output condition of the digital output value. When the setting is TRUE, the channel-by-channel A/D conversion completed flag is used as the output condition. When the setting is FALSE, the A/D conversion completed flag (CNVCMPL) is used as the output condition.	TRUE, FALSE	FALSE	User
	CNVCMPL	Public variable	BOOL	A/D conversion completed flag (TRUE: ON FALSE: OFF). Store the status of A/D conversion completion flag (XnE).	TRUE, FALSE	FALSE	System
	ERR	Public variable	BOOL	Error flag (TRUE: Error FALSE: no error). Store TRUE when error occurs in writing.	TRUE, FALSE	FALSE	System
	SYSAL	Public variable	BOOL	Input signal abnormality detection signal. (TRUE: abnormal FALSE: normal). Store TRUE once input signal abnormality occurs in any of CH1 to CH4 of A/D conversion module.	TRUE, FALSE	FALSE	System
	PRCAL	Public variable	BOOL	Alarm output signal (TRUE: alarm FALSE: normal). Store TRUE once process or rate abnormality occurs in any of CH1 to CH8 of A/D conversion module.	TRUE, FALSE	FALSE	System
	PLAL1 to PLAL8	Public variable	BOOL	Low limit value alarm of CH1 to CH8 process alarm (TRUE: over FALSE: normal). Store TRUE of the channel if it surpasses the low limit value of process alarm.	TRUE, FALSE	FALSE	System
	PHAL1 to PHAL8	Public variable	BOOL	High limit value alarm of CH1 to CH8 process alarm (TRUE: over FALSE: normal). Store TRUE of the channel if it surpasses the high limit value of process alarm.	TRUE, FALSE	FALSE	System

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	RTLAL1 to RTLAL8	Public variable	BOOL	Low limit alarm of CH1 to CH8 rate alarm (TRUE: over FALSE: normal). Store TRUE of the channel if it surpasses the low limit value of rate alarm.	TRUE, FALSE	FALSE	System
	RTHAL1 to RTHAL8	Public variable	BOOL	High limit value alarm of CH1 to CH8 rate alarm (TRUE: over FALSE: normal). Store TRUE of the channel if it surpasses the high limit value of rate alarm.	TRUE, FALSE	FALSE	System
	RGAL1 to RGAL8	Public variable	BOOL	CH1 to CH8 input signal abnormality detection (TRUE: abnormal FALSE: normal). Store TRUE of the channel if it surpasses the setting range of I/O signal abnormality detection setting value.	TRUE, FALSE	FALSE	System
	ADENB Public variable WORD		WORD	A/D conversion enabled/disabled setting status. Store A/D conversion enabled/disabled setting status b15 to b7 b3 b2 b1 b0 CH CH CH CH CH CH CH 0 ··· 0 8 ··· 4 3 2 1 0: Enable A/D conversion 1: Disable A/D conversion	0 to 00FFн	0	System
Variable processing	ERRCOD	Public variable	INT	Error code. Store error code detected by A/D conversion module. Refer to Channel Isolated High Resolution Analog-Digital Converter Module, Channel Isolated High Resolution Analog-Digital Converter Module (with Signal Conditioning Function) User's Manual.	-	0	System
ALMEN	ALMENB1	Public variable	WORD	Alarm output enabled/disabled setting status. Stores alarm output enabled/disabled setting status. b15 to b10 b9 b8 b7 to b2 b1 b0 CH C	0 to 00FFн	FFFFH	System
	ALMENB2	Public variable	WORD	Input signal fault detection enabled/disabled setting status. Stores an input signal fault detection enabled/disabled setting status. b15 to b7 b3 b2 b1 b0 CH C	0 to 00FFн	FFFFH	System

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	SCLENB	Public variable	WORD	Scaling enabled/disabled setting status. Store scaling enabled/disabled setting status. b15 to b7 b3 b2 b1 b0	0 to 00FFн	FFFFH	System
Variable processing	CH1DOUT to CH8DOUT	Public variable	INT	CH1 to CH8 Digital output value. Stores digital output values of each channel.	Depends on input range and resolution mode.	0	System
	CH1MAX to CH2MAX	Public variable	INT	Maximum A/D conversion value of CH1 to CH8. Stores the maximum output value of each channel. (*2)	Depends on the input range, resolution mode, and scaling function of the module.	0	System
	CH1MIN to CH2MIN	Public variable	INT	Minimum A/D conversion value of CH1 to CH8. Stores the minimum output value of each channel. (*2)	Depends on the input range, resolution mode, and scaling function of the module.	0	System

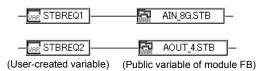
- *1: The public variable CHCNVENB can be set in the FB property window of PX Developer. Use a program to perform read/write of the public variables other than CHCNVENB. It will not be displayed in FB property window of PX Developer.
- *2: With the scaling enable/disable setting, either digital output values or scaling value is selected for each channel and output from the output values of CH1 to CH8. The storage value is also switched between the maximum value and minimum value with the setting.

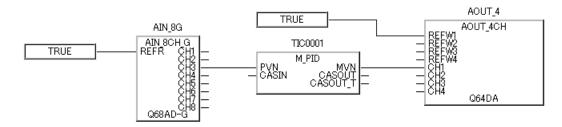
Function

Item			Contents						
	Output condition	Condition Module READY	Output (CH1 to CH4)						
	signal (REFR)	(Xn0)	(*1)						
Output condition	TRUE	TRUE	TRUE	Read digital output value from A/D conversion module and output digital output value of each channel from output variable CH1 to CH8.					
signal			FALSE	Output variable CH1 to CH8 holds the previous					
(REFR)		FALSE	TRUE or FALSE	value.					
	FALSE	TRUE or FALSE	TRUE or FALSE	value.					
	*1 When the public variable CHCNVENB is TRUE: Channel-by-channel A/D conversion flag (each bit of buffer memory address 10) When public variable CHCNVENB is FALSE: A/D conversion completed flag (batch by XnE)								
Others	For information about the processing, setting, Channel-by-channel A/D conversion flag and A/D conversion completed flag of corresponding module of this module FB, refer to the following manual: Channel Isolated Analog-Digital Converter Module/Channel Isolated Analog-Digital Converter Module (With Signal Conditioning Function) User's Manual.								

POINT

- It is recommended to use GX Configurator-AD for initial settings.
- Module FB is incompliant with the intelligent function module mounted to a MELSECNET/H remote I/O station.
 For details, refer to Section 2.10.2.

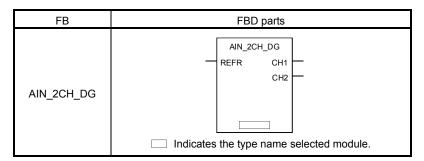

8 - 15 8 - 15


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

- Unable to communicate with A/D conversion module. (Error code: 1412)
- Abnormality of A/D conversion module is detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)

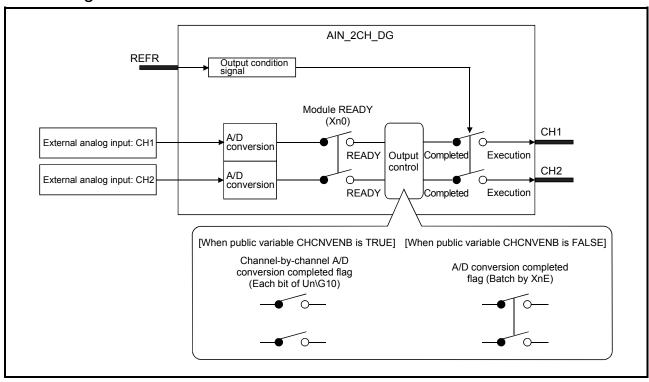
Program Example



If STBREQ1 is TRUE, operation condition setting request of AIN_8G (STB) will be executed. If STBREQ2 is TRUE, operation condition setting request of AOUT_4 (STB) will be executed.

8 - 16 8 - 16

8.1.5 Channel-isolated High-resolution 2 Channels Signal Condition Function (AIN_2CH_DG)



Corresponding module
Q62AD-DGH

Function overview: Reads the digital output value of channel-isolated (2 channels) high resolution signal conditioning function that converts analog signal to digital value, and output it from output variable (CH1 to CH2)

Function/FB classification name: Module FB

Block Diagram

Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range
Input	REFR	Input variable	BOOL	Output condition signal (TRUE: Execute FALSE: Stop)	TRUE, FALSE
Output	CH1, CH2	Output variable	REAL	CH1, CH2 digital output value	Due to the resolution mode of module

8 - 17 8 - 17

Public Variable (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	ERRC	Public variable	BOOL	Error clear request (TRUE: Error clear request FALSE: —). When occurring module error (ERR) and input fault detection signal (SYSAL) are TRUE, set ERRC to TRUE to clear the module error and the input/output abnormality and ERR and SYSAL will become FALSE.	TRUE, FALSE	FALSE	User
	CH1INH to CH2INH	Public variable	BOOL	Enable/disable A/D conversion (CH1 to CH2). (TRUE: Conversion enabled FALSE: Conversion disabled) Set whether enable/disable A/D conversion based on channels. STB is valid when it transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	AL1ENB to AL2ENB	Public variable	BOOL	Enable/disable alarm output (CH1 to CH2). (TRUE:Output enabled FALSE:Output disabled) Set alarm output enabled/disabled based on channels. STB is valid when it transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	STB Public variable BOO	BOOL	Operation condition setting request. Execute A/D conversion enabled/disabled setting (CH1INH to CH2INH) and alarm output enabled/disabled setting (AL1ENB to AL2ENB) when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User	
Variable	MRES	Public variable	BOOL	Maximum/minimum value reset request. Reset maximum/minimum value (CH1MAX to CH2MAX, CH1MIN to CH2MIN) when MRES transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
processing	RDY	Public variable	BOOL	Module READY (TRUE:ON FALSE:OFF). Store the status of module READY (Xn0). Execute A/D conversion processing when module READY (Xn0) is TRUE.	TRUE, FALSE	FALSE	System
	CHCNVENB	Public variable	BOOL	Enable conversion completed flag for each channel. Set the output condition of the digital output value. When the setting is TRUE, the channel-by-channel A/D conversion completed flag is used as the output condition. When the setting is FALSE, the A/D conversion completed flag (CNVCMPL) is used as the output condition.	TRUE, FALSE	FALSE	User
	CNVCMPL	Public variable	BOOL	A/D conversion completed flag (TRUE:ON FALSE:OFF). Store the status of A/D conversion completion signal (Xn0).	TRUE, FALSE	FALSE	System
	ERR	Public variable	BOOL	Error tag (TRUE: Error FALSE: No error). Store TRUE when error occurs in writing.	TRUE, FALSE	FALSE	System
	SYSAL	Public variable	BOOL	Input signal abnormality detection signal (TRUE: Abnormal FALSE: Normal). Store TRUE when input signal abnormality occurs in eitherCH1 or CH2 of high-resolution signal condition function.	TRUE, FALSE	FALSE	System
	PRCAL	Public variable	BOOL	Alarm output signal (TRUE to Alarm occurs FALSE to Normal). Store TRUE when procedure alarm or rate alarm occurs on CH1 or CH2 of high-resolution signal condition function.	TRUE, FALSE	FALSE	System

8 - 18 8 - 18

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	PLAL1 to PLAL2	Public variable	BOOL	CH1 to CH2 low limit alarm of process alarm (TRUE: Exceed FALSE: Normal) Store TRUE in each channel when exceeding the low limit.	TRUE, FALSE	FALSE	System
	PHAL1 to PHAL2	Public variable	BOOL	CH1 to CH2 high limit alarm of process alarm (TRUE: Exceed FALSE: Normal) Store TRUE in each channel when exceeding the high limit.	TRUE, FALSE	FALSE	System
	RTLAL1 to RTLAL2	Public variable	BOOL	CH1 to CH2 low limit alarm of rate alarm (TRUE: Exceed FALSE: Normal) Store TRUE in each channel when exceeding the low limit of rate alarm.	TRUE, FALSE	FALSE	System
	RTHAL1 to RTHAL2	Public variable	BOOL	CH1 toCH2 high limit alarm of rate alarm (TRUE: Exceed FALSE: Normal) Store TRUE in each channel when exceeding the high limit of rate alarm	TRUE, FALSE	FALSE	System
	RGAL1 to RGAL2	Public variable	BOOL	CH1 toCH2 input/output signal detection (TRUE: Abnormal FALSE: Normal) Store TRUE in each channel when exceeding the set value range of input/output abnormality detection.	TRUE, FALSE	FALSE	System
Variable processing		INT	Setting status of A/D conversion enabled/disabled. Store the setting status of A/D conversion enabled/disabled. b15 to b1 b0 CH CH 2 1 0: Enable A/D conversion 1: Disable A/D conversion	0 to 3	3	System	
	ERRCOD	Public variable	INT	Error code Store the code of error that is detected by high-resolution signal condition function. For detailed information about the error code, refer to Channel Isolated High Resolution Analog-Digital Converter Module, Channel Isolated High Resolution Analog-Digital Converter Module (with Signal Conditioning Function) User's Manual	_	0	System
	ALMENB	Public variable	INT	Setting status of alarm output enabled/disabled. Store the setting status of alarm output enabled/disabled. b15 to b9 b8 b5 b4 to b1 b0 CH C	0 to 819 (333н)	819 (333н)	System
	CH1MAX to CH2MAX	Public variable	DINT	Maximum value of CH1 to CH2 A/D conversion Store the maximum value of data value in each channel.	The range of module resolution.	0	System
	CH1MIN to CH2MIN	Public variable	DINT	Minimum value of CH1 to CH2 A/D conversion Store the minimum value of data value in each channel.	The range of module resolution.	0	System

^{*1:} The public variable CHCNVENB can be set in the FB property window of PX Developer.

Use a program to perform read/write of the public variables other than CHCNVENB.

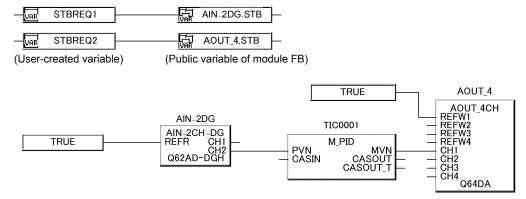
It will not be displayed in FB property window of PX Developer.

Function

Item			Contents							
		Condition								
Output condition signal	Output condition signal (REFR)	Module READY (Xn0)	(*1)	Output (CH1 to CH2)						
	TRUE	TRUE	TRUE	Read digital output value from high-resolution signal conditioning function and output digital output value from output variable CH1 to CH2.						
				Output variable CH1 to CH2 holds the previous						
(REFR)		FALSE	TRUE or FALSE	value.						
	FALSE	TRUE or FALSE	TRUE or FALSE							
	*1 When the public variable CHCNVENB is TRUE: Channel-by-channel A/D conversion flag (each bit of buffer memory address 10) When public variable CHCNVENB is FALSE: A/D conversion completed flag (batch by XnE)									
Others	For information about the processing, setting, Channel-by-channel A/D conversion flag and A/D conversion completed flag of corresponding module of this module FB, refer to the following manual.									
Others		 Channel Isolated High Resolution Analog-Digital Converter Module, Channel Isolated High Resolution Analog-Digital Converter Module (with Signal Conditioning Function) User's Manual. 								

POINT

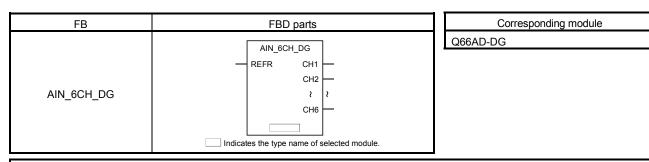
- It is recommended to use GX Configurator-AD for initial settings.
- Module FB is incompliant with the intelligent function module mounted to a MELSECNET/H remote I/O station.


For details, refer to Section 2.10.2.

Error

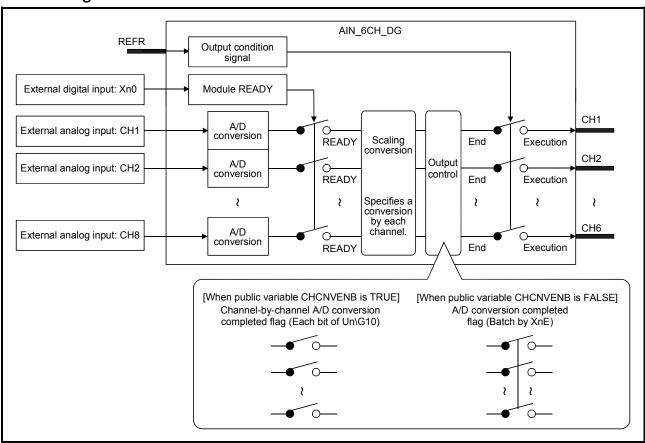
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

- Unable to communicate with high-resolution signal conditioning module. (Error code: 1412)
- Abnormality of high-resolution conditioning module is detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)


Program Example

If STBREQ1 is TRUE, operation condition setting request of AIN_4 (STB) will be executed. If STBREQ2 is TRUE, operation condition setting request of AOUT_2 (STB) will be executed.

8 - 20 8 - 20


8.1.6 Channel-isolated 6 Channels A/D Converter Module with Signal Conditioning Function (AIN 6CH DG)

Function overview: Reads digital output values or scaling values of channel isolated A/D converter module with signal conditioning function (6 channels), which converts analog signals to digital values, and outputs them from output variables (CH1 to CH6).

Function/FB classification name: Module FB

Block Diagram

Input and Output Pin

<u> </u>	<u> </u>						
Pin	Variable name	Variable type	Data type	Contents	Range		
Input	REFR	REFR Input variable		REFR Input variable BOOL		Output condition signal (TRUE: Execute FALSE: Stop)	TRUE, FALSE
Output	CH1 to CH6	Output variable	REAL	CH1 to CH8 Output value (*1)	Depends on the input range, resolution mode, and scaling function of the module.		

^{*1:} With the scaling enable/disable setting, either digital output values or scaling values are selected for each channel and are output from the output values of CH1 to CH6.

8 - 21 8 - 21

Public Variable (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	ERRC	Public variable	BOOL	Error clear request (TRUE: Error clear request FALSE: —). When occurring module error (ERR) and input fault detection signal (SYSAL) are TRUE, set ERRC to TRUE to clear the module error and the input/output abnormality and ERR and SYSAL will become FALSE.	TRUE, FALSE	FALSE	User
	CH1INH to CH6INH	Public variable	BOOL	Enable/disable A/D conversion (CH1 to CH6). (TRUE: Conversion enabled FALSE: Conversion disabled) Set whether enable/disable A/D conversion based on channels. STB is valid when it transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	AL1ENB to AL6ENB	Public variable	BOOL	Enable/disable alarm output (CH1 to CH6). (TRUE:Output enabled FALSE:Output disabled) Set alarm output enabled/disabled based on channels. STB is valid when it transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	STB Public variable BOOL Execute to CH6 (AL1E to TRU) MRES Public variable BOOL Maxim Reset CH1M to TRU	Operation condition setting request. Execute A/D conversion enabled/disabled setting (CH1INH to CH6INH) and alarm output enabled/disabled setting (AL1ENB to AL6ENB) when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User		
Variable		BOOL	Maximum/minimum value reset request. Reset maximum/minimum value (CH1MAX to CH6MAX, CH1MIN to CH6MIN) when MRES transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User	
processing	RDY	Public variable	BOOL	Module READY (TRUE:ON FALSE:OFF). Store the status of module READY (Xn0). Execute A/D conversion processing when module READY (Xn0) is TRUE.	TRUE, FALSE	FALSE	System
	CHCNVENB	Public variable	BOOL	Enable conversion completed flag for each channel. Set the output condition of the digital output value. When the setting is TRUE, the channel-by-channel A/D conversion completed flag is used as the output condition. When the setting is FALSE, the A/D conversion completed flag (CNVCMPL) is used as the output condition.	TRUE, FALSE	FALSE	User
	CNVCMPL	Public variable	BOOL	A/D conversion completed flag (TRUE:ON FALSE:OFF). Store the status of A/D conversion completion signal (Xn0).	TRUE, FALSE	FALSE	System
	ERR	Public variable	BOOL	Error tag (TRUE: Error FALSE: No error). Store TRUE when error occurs in writing.	TRUE, FALSE	FALSE	System
	SYSAL	Public variable	BOOL	Input signal abnormality detection signal (TRUE: Abnormal FALSE: Normal). Store TRUE when input signal abnormality occurs in eitherCH1 or CH6 of high-resolution signal condition function.	TRUE, FALSE	FALSE	System
	PRCAL	Public variable	BOOL	Alarm output signal (TRUE to Alarm occurs FALSE to Normal). Store TRUE when procedure alarm or rate alarm occurs on CH1 or CH6 of high-resolution signal condition function.	TRUE, FALSE	FALSE	System

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	PLAL1 to PLAL6	Public variable	BOOL	CH1 to CH6 low limit alarm of process alarm (TRUE: Exceed FALSE: Normal). Store TRUE in each channel when exceeding the low limit.	TRUE, FALSE	FALSE	System
	PHAL1 to PHAL6	Public variable	BOOL	CH1 to CH6 high limit alarm of process alarm (TRUE: Exceed FALSE: Normal). Store TRUE in each channel when exceeding the high limit.	TRUE, FALSE	FALSE	System
	RTLAL1 to RTLAL6	Public variable	BOOL	CH1 to CH6 low limit alarm of rate alarm (TRUE: Exceed FALSE: Normal). Store TRUE in each channel when exceeding the low limit of rate alarm.	TRUE, FALSE	FALSE	System
	RTHAL1 to RTHAL6	Public variable	BOOL	CH1 toCH6 high limit alarm of rate alarm (TRUE: Exceed FALSE: Normal). Store TRUE in each channel when exceeding the high limit of rate alarm	TRUE, FALSE	FALSE	System
	RGAL1 to RGAL6	Public variable	BOOL	CH1 toCH6 input/output signal detection (TRUE: Abnormal FALSE: Normal). Store TRUE in each channel when exceeding the set value range of input/output abnormality detection.	TRUE, FALSE	FALSE	System
I ADENR I	Public variable	WORD	Setting status of A/D conversion enabled/disabled. Store the setting status of A/D conversion enabled/disabled. b15 to b5 b4 b3 b2 b1 b0 CH CH CH CH CH CH CH CH 0 ··· 0 6 5 4 3 2 1 0: Enable A/D conversion 1: Disable A/D conversion	0 to 003Fн	003Fн	System	
processing	ERRCOD	Public variable	INT	Error code. Store the code of error that is detected by high-resolution signal condition function. For detailed information about the error code, refer to Channel Isolated High Resolution Analog-Digital Converter Module, Channel Isolated High Resolution Analog-Digital Converter Module (with Signal Conditioning Function) User's Manual.	_	0	System
	ALMENB1	Public variable	WORD	Setting status of alarm output enabled/disabled. Store the setting status of alarm output enabled/disabled. b15 to b13 to b9 b8 b5 to b1 b0 CH C	0 to 3F3Fн	3F3Fн	System
	ALMENB2	Public variable	WORD	Input signal fault detection enabled/disabled setting status. Stores an input signal fault detection enabled/disabled setting status. b15 to b5 b4 b3 b2 b1 b0 CH CH CH CH CH CH CH CH 0 ··· 0 6 5 4 3 2 1 0: Enables fault detection. 1: Disables fault detection.	0 to 003Fн	003Fн	System

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	SCLENB	Public variable	WORD	Scaling enabled/disabled setting status. Stores scaling enabled/disabled setting status. b15 to b5 b4 b3 b2 b1 b0	0 to 003Fн	003Fн	System
Variable processing	CH1DOUT to CH6DOUT	Public variable	INT	CH1 to CH6 Digital output value. Stores digital output values of each channel.	Depends on the range of module resolution.	0	System
	CH1MAX to CH6MAX	Public variable	INT	Maximum A/D conversion value of CH1 to CH6. Stores the maximum output value of each channel. (*2)	Depends on the range of module resolution and scaling function.	0	System
	CH1MIN to CH6MIN	Public variable	INT	Minimum A/D conversion value of CH1 to CH6. Stores the minimum output value of each channel. (*2)	Depends on the range of module resolution and scaling function.	0	System

- *1: The public variable CHCNVENB can be set in the FB property window of PX Developer.

 Use a program to perform read/write of the public variables other than CHCNVENB.

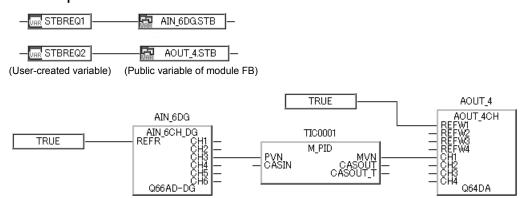
 It will not be displayed in FB property window of PX Developer.
- *2: With the scaling enable/disable setting, either digital output values or scaling value is selected for each channel and output from the output values of CH1 to CH6. The storage value is also switched between the maximum value and minimum value with the setting.

Function

Item		Contents										
			Condition									
Output condition signal		Output condition signal (REFR)	Module READY (Xn0)	(*1)	Output (CH1 to CH6)							
		TRUE	TRUE	TRUE	Reads digital output values from an A/D converter module and outputs them by channels from output variables CH1 to CH6.							
					Output variable CH1 to CH2 holds the provious							
(REFR)			FALSE	TRUE or FALSE	Output variable CH1 to CH2 holds the previous value.							
		FALSE	TRUE or FALSE	TRUE or FALSE	value.							
		*1 When the public variable CHCNVENB is TRUE: Channel-by-channel A/D conversion flag (each bit of buffer memory address 10)										
		When public variable CHCNVENB is FALSE: A/D conversion completed flag (batch by XnE)										
Others	For information about the processing, setting, Channel-by-channel A/D conversion flag and A/D conversion completed flag of corresponding module of this module FB, refer to the following manual. Channel Isolated Analog-Digital Converter Module (With Signal Conditioning Function) User's Manual.											

POINT

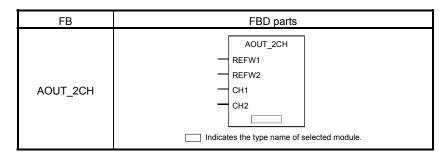
- It is recommended to use GX Configurator-AD for initial settings.
- Module FB is incompliant with the intelligent function module mounted to a MELSECNET/H remote I/O station.
 For details, refer to Section 2.10.2.


8 - 24 8 - 24

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

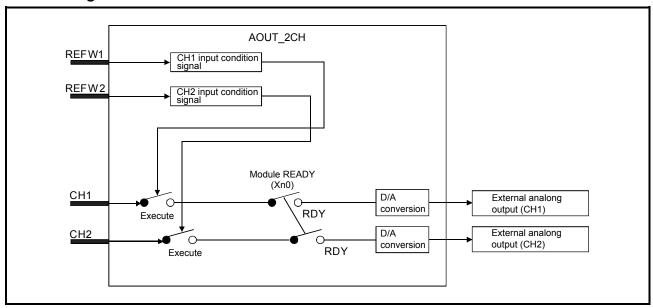
- Unable to communicate with high-resolution signal conditioning module. (Error code: 1412)
- Abnormality of high-resolution conditioning module is detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)


Program Example

If STBREQ1 is TRUE, operation condition setting request of AIN_6 (STB) will be executed. If STBREQ2 is TRUE, operation condition setting request of AOUT_4 (STB) will be executed.

8 - 25 8 - 25

8.1.7 2 Channels Analog Output (AOUT_2CH)



Corresponding module
Q62DA, Q62DAN

Function overview: Write the input digital value from input variable (CH1, CH2) into 2CH D/A conversion module that converts the digital value to analog signal.

Function/FB classification name: Module FB

Block Diagram

Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range
Input	REFW1	Input variable	BOOL	CH1 input condition signal (TRUE: Execute FALSE: Stop)	TRUE, FALSE
	REFW2	Input variable	BOOL	CH2 input condition signal (TRUE: Execute FALSE: Stop)	TRUE, FALSE
	CH1	Input variable	REAL	CH1 digital input value	Due to input range and resolution mode
	CH2	Input variable	REAL	CH2 digital input value	Due to input range and resolution mode

POINT

The digital input to the channel that is not connected to input pin can be executed via ladder program or auto refreshing settings. In this case, however, the $CH\square$ input condition signal of the abovementioned channel should be set as FALSE.

8 - 26 8 - 26

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	ERRC	Public variable	BOOL	Error clear request (TRUE: Error clear request FALSE: —) When module error (ERR) is TRUE, set ERRC as TRUE to clear module error and make ERR FALSE.	TRUE, FALSE	FALSE	User
	to	Public variable	BOOL	Enable/disable D/A conversion (CH1 to CH2). (TRUE: Disabled FALSE: Enabled) Set the D/A conversion enabled/disabled in channels. It is valid when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	OUT1INH to OUT2INH	Public variable	BOOL	Enable/disable D/A output (CH1 to CH2). (TRUE: Offset value FALSE: D/A conversion value) Set output D/A conversion/offset value in channels.	TRUE, FALSE	FALSE	User
	STB	Public variable BO		Operation condition setting request Execute D/A conversion enabled/disabled setting (CH1INH to CH2INH) when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
Conversion processing	RDY	RDY Public variable	BOOL	Module READY (TRUE: ON FALSE: OFF). Store the status of module READY (Xn0). Perform D/A conversion processing when module READY (Xn0) is TRUE.	TRUE, FALSE	FALSE	System
	ERR	Public variable	BOOL	Error flag (TRUE: Error FALSE: No error) Store TRUE when writing error occurs.	TRUE, FALSE	FALSE	System
	DAENB	Public variable	INT	D/A conversion enabled/disabled setting status Store D/A conversion enabled/disabled setting status. b15 to b1 b0 CH CH 2 1 0: Enable D/A conversion 1: Disabled D/A conversion	0 to 3	3	System
	ERRCOD	Public variable	INT	Error code Store the error code detected by D/A conversion module. For detailed information about the error code, refer to Digital-Analog Converter Module User's Manual.	_	0	System

^{*1:} Please execute reading/writing via program.

It will not be displayed in FB property window of PX Developer.

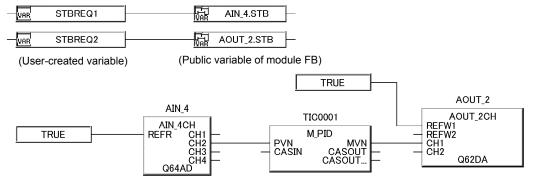
POINT

The default values of "Enable/Disable D/A output" for all channels are "Enable" if this module FB is used.

Item		Contents								
		Write to D/A conversion module for every channel according to the following conditions (e.g.) When the input condition of input variable (CH1) is input condition signal (REFW1)								
		Conc	dition							
Input condition		nput condition signal REFW1 to REFW2)	Module READY (Xn0)	Input (CH1 to CH2)						
signal (REFW1 to REFW2)		TRUE	TRUE	Write the input digital value from input variable CH1 to CH2 to the D/A conversion module.						
			FALSE	Do not write the input digital value from input variable						
		FALSE	TRUE or FALSE	CH1 to CH2 to the D/A conversion module.						
Others	Refer to the following manual for the relative information about the processing and setting concerned on the module FB.									
	● Dig	gital-Analog Converter	Module User's Manual							

POINT

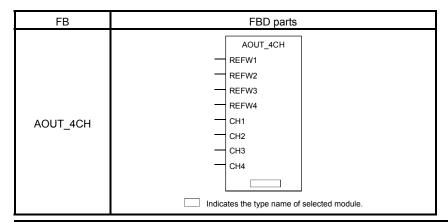
- It is recommended to use GX Configurator-DA for initial settings.
- Module FB is incompliant with the intelligent function module mounted to a MELSECNET/H remote I/O station.


For details, refer to Section 2.10.2.

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

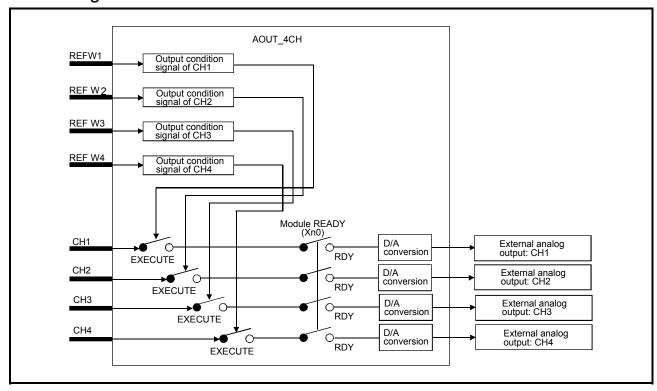
- When the input value is not within the range of -32768 to 32767. (Error code: 4100)
- Unable to communicate with D/A conversion module. (Error code: 1412)
- Abnormality of D/A conversion module is detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)


Program Example

If STBREQ1 is TRUE, operation condition setting request (STB) of AIN_4 will be executed. If STBREQ2 is TRUE, operation condition setting request (STB) of AOUT_2 will be executed.

8 - 28 8 - 28

8.1.8 4 Channels Analog Output (AOUT_4CH)



Corresponding module Q64DA, Q64DAN

Function overview: Write the input digital value of input variable (CH1 to CH4) to 4CH D/A conversion module that converts the digital value to analog signal.

Function/FB classification name: Module FB

Block Diagram

8 - 29 8 - 29

Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range
	REFW1	Input variable	BOOL	CH1 input condition signal (TURE: Execute FALSE: Stop)	TRUE, FALSE
	REFW2	Input variable	BOOL	CH2 input condition signal (TRUE: Execute FALSE: Stop)	TRUE, FALSE
	REFW3	Input variable	BOOL	CH3 input condition signal (TRUE: Execute FALSE: Stop)	TRUE, FALSE
Innut	REFW4	Input variable	BOOL	CH4 input condition signal (TRUE: Execute FALSE: Stop)	TRUE, FALSE
Input	CH1	Input variable	REAL	CH1 digital input value	Due to input range and resolution mode
	CH2	Input variable	REAL	CH2 digital input value	Due to input range and resolution mode
	CH3	Input variable	REAL	CH3 digital input value	Due to input range and resolution mode
	CH4	Input variable	REAL	CH4 digital input value	Due to input range and resolution mode

POINT

The digital input of the channel that is not connected to input pin can be executed via ladder program or auto refresh settings.

In this case, however, the CH \square input condition signal of the above mentioned channel should be set to FALSE.

Public Variable (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	ERRC	Public variable	BOOL	Error clear request (TRUE: Error clear request FALSE: —) When module error (ERR) is TRUE, set ERRC as TRUE to clear module error and make ERR FALSE.	TRUE, FALSE	FALSE	User
	CH1INH to CH4INH	Public variable	BOOL	Enable/disable D/A conversion (CH1 to CH4). (TRUE: Disabled FALSE; Enabled) Set the D/A conversion enabled/disabled in channels. It is valid when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
Conversion processing	OUT1INH to OUT4INH	Public variable	BOOL	Enable/disable D/A output (CH1 to CH4). (TRUE: Offset value FALSE: D/A conversion value) Set output D/A conversion/offset value in channels.	TRUE, FALSE	FALSE	User
	STB	Public variable	BOOL	Operation condition setting request \Execute D/A conversion enabled/disabled setting (CH1INH to CH4INH) when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	RDY	Public variable	BOOL	Module READY (TRUE: ON FALSE: OFF). Store the status of module READY (Xn0). Perform D/A conversion processing when module READY (Xn0) is TRUE.	TRUE, FALSE	FALSE	System
	ERR	Public variable	BOOL	Error flag. (TRUE: Error FALSE: No error) Store TRUE when writing error occurs.	TRUE, FALSE	FALSE	System

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Conversion processing	DAENB	Public variable	INT	D/A conversion enabled/disabled setting status. Store D/A conversion enabled/disabled setting status. b15 to b3 b2 b1 b0 CH CH CH CH CH CH CH CH 3 2 1 0: D/A conversion enabled 1: D/A conversion disabled	0 to F	F	System
	ERRCOD	Public variable	INT	Error code Store the error code detected by D/A conversion module. For detailed information about the error code, refer to Digital-Analog Converter Module User's Manual.	_	0	System

^{*1:} Please execute reading/writing via program.

It will not be displayed in FB property window of PX Developer.

POINT

- The default values of "Enable/Disable D/A output" for all channels are "Enable" if this module FB is used.
- Module FB is incompliant with the intelligent function module mounted to a MELSECNET/H remote I/O station.

For details, refer to Section 2.10.2.

Function

Item		Contents								
	Execute write-in to D/A conversion module according to the following conditions (e.g.) When the input condition of input variable (CH1) is input condition signal (REFW1)									
		Con	dition							
Input condition		Input condition signal (REFW1 to REFW4)	Module READY (Xn0)	Input (CH1 to CH4)						
signal (REFW1 to REFW4)		TRUE	TRUE	Write the input digital value of input variable CH1 to CH4 to the D/A conversion module.						
			FALSE	Do not write the input digital value of input variable						
		FALSE	TRUE or FALSE	CH1 to CH4 to the D/A conversion module.						
				_						
Others	mod	er to the following manu dule FB. Digital-Analog Converter		tion about the processing and setting concerned with this						

POINT

- It is recommended to use GX Configurator-DA for initial settings.
- Module FB is incompliant with the intelligent function module mounted to a MELSECNET/H remote I/O station.

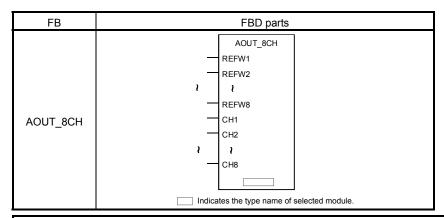
For details, refer to Section 2.10.2.

8 - 31 8 - 31

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

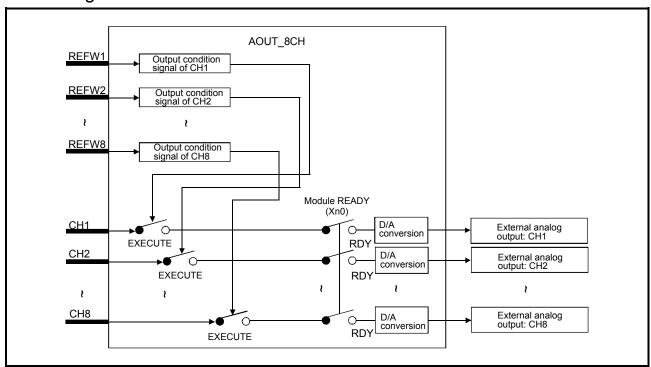
- When the input value is beyond the range of -32768 to 32767. (Error code: 4100)
- Unable to communicate with D/A conversion module. (Error code: 1412)
- The error of D/A conversion module is detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)


Program Example

If STBREQ1 is TRUE, operation condition setting request (STB) of AIN_4 will be executed. If STBREQ2 is TRUE, operation condition setting request (STB) of AOUT_4 will be executed.

8 - 32 8 - 32

8.1.9 8 Channels Analog Output (AOUT_8CH)



Corresponding module
Q68DAV, Q68DAVN, Q68DAI, Q68DAIN

Function overview: Write the input digital value of input variable (CH1 to CH8) into 8CH D/A conversion module that converts the digital value to analog signal.

Function/FB classification name: Module FB

Block Diagram

Input and Output Pins

Pin	Variable name	Variable type	Data type	Contents	Range
	REFW1	Input variable	BOOL	CH1 input condition signal (TURE: Execute FALSE: Stop)	TRUE, FALSE
	REFW2	Input variable	BOOL	CH2 input condition signal (TRUE: Execute FALSE: Stop)	TRUE, FALSE
	REFW3	Input variable	BOOL	CH3 input condition signal (TRUE: Execute FALSE: Stop)	TRUE, FALSE
	REFW4	Input variable	BOOL	CH4 input condition signal (TRUE: Execute FALSE: Stop)	TRUE, FALSE
	REFW5	Input variable	BOOL	CH5 input condition signal (TRUE: Execute FALSE: Stop)	TRUE, FALSE
	REFW6	Input variable	BOOL	CH6 input condition signal (TRUE: Execute FALSE: stop)	TRUE, FALSE
	REFW7	Input variable	BOOL	CH7 input condition signal (TRUE: Execute FALSE: Stop)	TRUE, FALSE
Input	REFW8	Input variable	BOOL	CH8 input condition signal (TRUE: Execute FALSE: Stop)	TRUE, FALSE
Input	CH1	Input variable	REAL	CH1 digital input value	Due to input range and resolution mode
	CH2	Input variable	REAL	CH2 digital input value	Due to input range and resolution mode
	СНЗ	Input variable	REAL	CH3 digital input value	Due to input range and resolution mode
	CH4	Input variable	REAL	CH4 digital input value	Due to input range and resolution mode
	CH5	Input variable	REAL	CH5 digital input value	Due to input range and resolution mode
	СН6	Input variable	REAL	CH6 digital input value	Due to input range and resolution mode
	CH7	Input variable	REAL	CH7 digital input value	Due to input range and resolution mode
	CH8	Input variable	REAL	CH8 digital input value	Due to input range and resolution mode

POINT

The digital input to the channel that is not connected to input pin can be executed via ladder program or auto refreshing settings.

In this case, however, the CH \Box input condition signal of the above-mentioned channel should be set as FALSE.

Public Variable (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Conversion processing	ERRC	Public variable	BOOL	Error clear request (TRUE: Error clear request FALSE: —) When module error (ERR) is TRUE, set ERRC as TRUE to clear module error and make ERR FALSE.	TRUE, FALSE	FALSE	User
	CH1INH to CH8INH	Public variable	BOOL	Enable/disable D/A conversion (CH1 to CH8). (TRUE: Disabled FALSE; Enabled) Set the D/A conversion enabled/disabled in channels. It is valid when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	OUT1INH to Public variable		BOOL	Enable/disable D/A output (CH1 to CH8). (TRUE: Offset value FALSE: D/A conversion value) set output D/A conversion value or offset value in channels.	TRUE, FALSE	FALSE	User

	Variable name	Variable type	Data type	Contents Range Initia value	Storage
	STB	Public variable	BOOL	Operation condition setting request. Execute D/A conversion enabled/disabled setting (CH1INH to CH8INH) when STB transforms from FALSE to TRUE.	User
	RDY	Public variable	BOOL	Module READY (TRUE: ON FALSE: OFF). Store the status of module READY (Xn0). Perform D/A conversion processing when module READY (Xn0) is TRUE.	System
	ERR	Public variable	BOOL	Error flag. (TRUE: Error FALSE: No error) Store TRUE, FALSE TRUE when writing error occurs.	System
Conversion processing	DAENB	Public variable	INT	D/A conversion enabled/disabled setting status. Store D/A conversion enabled/disabled setting status. b15 to b7 b6 b5 b4 b3 b2 b1 b0 CH C	System
	ERRCOD	Public variable	INT	Error code Store the error code detected by D/A conversion module. For detailed information about the error code, refer to Digital-Analog Converter Module User's Manual.	System

^{*1:} Please execute reading/writing via program.

It will not be displayed in FB property window of PX Developer.

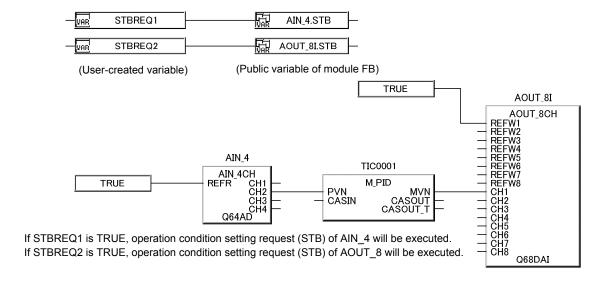
POINT

The default values of "Enable/Disable D/A output" for all channels are "Enable" if this module FB is used.

	Contents								
Write to D/A conversion module for every channel according to the following conditions (E.g.) When the input condition of input variable (CH1) is input condition signal (REFW1)									
ĺ	Condition	on							
	Input condition signal (REFW1 to REFW8)	Unit READY (Xn0)	Input (CH1 to CH8)						
	TRUE	TRUE	Write the input digital value from input variable CH1 to CH8 to the D/A conversion unit.						
		FALSE	Do not write the input digital value from input variable						
	FALSE	TRUE or FALSE	CH1 to CH8 to the D/A conversion unit.						
			bout the processing and setting concerned with this module						
	(E.(Condition of Condition of Input condition of Input condition signal (REFW1 to REFW8) TRUE FALSE Refer to the following manual for the FB.	Write to D/A conversion module for every channel accordi (E.g.) When the input condition of input variable (CH1) is i Condition Input condition signal (REFW1 to REFW8) TRUE TRUE FALSE FALSE TRUE or FALSE Refer to the following manual for the relative information as						

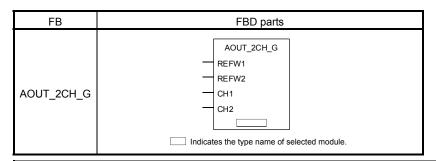
POINT

- It is recommended to use GX Configurator-DA for initial settings.
- Module FB is incompliant with the intelligent function module mounted to a MELSECNET/H remote I/O station.


For details, refer to Section 2.10.2.

Error

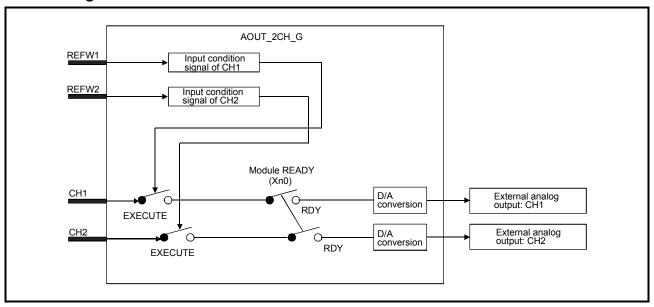
Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.


- When the input value is not within the range of –32768 to 32767. (Error code: 4100)
- When it is unable to communicate with D/A conversion module. (Error code: 1412)
- The error of D/A conversion module is detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)

Program Example

8 - 36 8 - 36

8.1.10 Channel-isolated 2 Channels Analog Output (AOUT_2CH_G)



Corresponding module
Q62DA_FG

Function overview: Write the input digital value from input variable (CH1, CH2) into channel-isolated D/A conversion module that converts the digital value to analog signal.

Function/FB classification name: Module FB

Block Diagram

Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range
	REFW1	Input variable	BOOL	CH1 input condition signal (TURE: Execute FALSE: Stop)	TRUE, FALSE
Input	REFW2	Input variable	BOOL	CH2 input condition signal (TRUE: Execute FALSE: Stop)	TRUE, FALSE
	CH1	Input variable REAL		CH1 digital input value	Due to input range and resolution mode
	CH2	Input variable	REAL	CH2 digital input value	Due to input range and resolution mode

POINT

The digital input to the channel that is not connected to input pin can be executed via ladder program or auto refreshing settings.

In this case, however, the CH \square input condition signal of the above-mentioned channel should be set as FALSE.

8 - 37 8 - 37

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	ERRC	Public variable	BOOL	Error clear request (TRUE: Error clear request FALSE: —) When module error (ERR) is TRUE, set ERRC as TRUE to clear module error and make ERR FALSE.	TRUE, FALSE	FALSE	User
	RGALC	Public variable	BOOL	Alarm output clear request (TRUE: Alarm output clear request FALSE: —) When alarm detection (RGAL) is TRUE, set RGALC as TRUE to clear alarm and make MHAL1, MHAL2, MLAL1, MLAL2 and RGAL FALSE.	TRUE, FALSE	FALSE	User
	CH1INH to CH2INH	Public variable	BOOL	Enable/disable D/A conversion (CH1 to CH2). (TRUE: Disabled FALSE; Enabled) Set the D/A conversion enabled/disabled in channels. It is valid when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	OUT1INH to OUT2INH	Public variable	BOOL	Enable/disable D/A output (CH1 to CH2). (TRUE: Offset value FALSE: D/A conversion value) Set output D/A conversion value or offset value in channels.	TRUE, FALSE	FALSE	User
	AL1ENB to Public variable	BOOL	CH1 to CH2 alarm output disconnection enabled/ disabled setting (TRUE: Output enabled FALSE: Output disabled) Set the alarm output wire break detection enabled/disabled in channels. It is valid when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User	
Conversion processing	BNALC	Public variable	BOOL	Wire break detection clear request (TRUE: Wire break detection clear request FALSE: —) When wire break detection signal (BNAL) is TRUE, set BNALC as TRUE to clear wire break detection signal and make BNOUT1, BNOUT2 and BNAL FALSE.	TRUE, FALSE	FALSE	User
	STB	Public variable	BOOL	Operation condition setting request Execute D/A conversion enabled/disabled setting (CH1INH to CH4INH), alarm output and wire break detection enable/disable setting (AL1ENB to AL2ENB) when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	RDY	Public variable	BOOL	Module READY (TRUE: ON FALSE: OFF) Store the status of module READY (Xn0). Perform D/A conversion processing when module READY (Xn0) is TRUE.	TRUE, FALSE	FALSE	System
	ERR	Public variable	BOOL	Error flag (TRUE: Error FALSE: No error) Store TRUE when writing error occurs.	TRUE, FALSE	FALSE	System
	BNAL	Public variable	BOOL	Wire break detected signal (TRUE: Wire break detected FALSE: Normal) Store TRUE once either CH1 or CH2 of D/A conversion module is disconnected.	TRUE, FALSE	FALSE	System
	RGAL	Public variable	BOOL	Alarm output signal (TRUE: Alarms occur FALSE: Normal) Store TRUE once the high/low limit setting of either CH1 or CH2 of D/A conversion module is exceeded.	TRUE, FALSE	FALSE	System

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	MLAL1 to MLAL2	Public variable	BOOL	CH1 to CH2 alarm output flag low limit alarm (TRUE: Over FALSE: Normal) Store TRUE in channels when the set low limit is exceeded.	TRUE, FALSE	FALSE	System
	MHAL1 to MHAL2	Public variable	BOOL	CH1 to CH2 alarm output flag high limit alarm (TRUE: Over FALSE: Normal) Store TRUE in channels when the set high limit is exceeded.	TRUE, FALSE	FALSE	System
	BNOUT1 to BNOUT2	Public variable	BOOL	CH1 to CH2 wire break detection flag (TRUE: Disconnection detected FALSE: Normal) Store TRUE in channels in disconnection.	TRUE, FALSE	FALSE	System
	MONIFLG	Public variable	BOOL	Monitor start flag (TRUE: Monitor start FALSE: -) Store TRUE when monitor starts.	TRUE, FALSE	FALSE	System
Conversion processing	DAENB	Public variable	INT	D/A conversion enabled/disabled setting status. Store the D/A conversion enabled/disabled setting status. b15 to b1 b0 CH CH 2 1 0: Enable D/A conversion 1: Disable D/A conversion	0 to 3	3	System
	ALMENB	Public variable	INT	The setting status of Alarm output & wire break detection enabled/disabled. Store alarm the setting status of output & wire break detection enabled/disabled. D15 to b13 b12 to b1 b0	0 to 12291 (3003н)	12291 (3003н)	System
	ERRCOD	Public variable	INT	Error code Store the error code detected by D/A conversion module. For detailed information about the error code, refer to Channel Isolated Digital-Analog Converter Module User's Manual.	_	0	System
	MONI1 to MONI2	Public variable	INT	CH1 to CH2 output monitor value Store output monitor value (D/A conversion digital value &. A/D conversion digital value in module) of every channel	Range of module resolution	0	System

^{*1:} Please execute reading/writing via program.

It will not be displayed in FB property window of PX Developer.

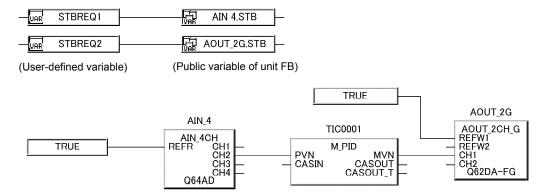
POINT

The default values of "Enable/Disable D/A output" for all channels are "Enable" if this module FB is used.

Item		Contents											
		e to D/A conversion module) When the input condition	•	the following conditions nput condition signal (REFW1)									
l		Cond	dition										
Input condition		Input condition signal (REFW1 to REFW2)	Module READY (Xn0)	Input (CH1 to CH2)									
signal (REFW1 to REFW2)		TRUE	TRUE	Write the input digital value from input variable CH1 to CH2 to the D/A conversion module.									
,			FALSE	Do not write the input digital value from input variable									
		FALSE	TRUE or FALSE	CH1 to CH2 to the D/A conversion module.									
Others	FB.	, and the second		bout the processing and setting concerned with this module									
	• C	Channel Isolated Digital-Anal	log Converter Module User	's Manual.									

POINT

- It is recommended to use GX Configurator-DA for initial settings.
- Module FB is incompliant with the intelligent function module mounted to a MELSECNET/H remote I/O station.


For details, refer to Section 2.10.2.

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

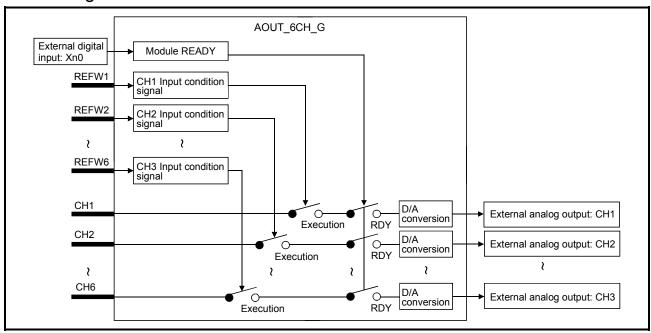
- Unable to communicate with D/A conversion module. (Error code: 1412)
- Abnormality of D/A conversion module is detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)

Program Example

If STBREQ1 is TRUE, operation condition setting request (STB) of AIN_4 will be executed. If STBREQ2 is TRUE, operation condition setting request (STB) of AOUT_2 will be executed.

8 - 40 8 - 40

8.1.11 Channel-isolated 6 Channels Analog Output (AOUT_6CH_G)


<u></u>	FB	FBD parts		
AOUT_6CH_G REFW1 REFW2 REFW6 CH1 CH2 CH6 Indicates the type name of selected module.		AOUT_6CH_G REFW1 REFW2 \\ \\ \\ REFW6 CH1 CH2 \\ \\ \\ CH6		

Corresponding module	
Q66DA-G	

Function overview: Writes digital values input from the input variables (CH1 to CH6) to channel-isolated D/A converter modules (6 channels), which converts digital values to analog signals.

Function/FB classification name: Module FB

Block Diagram

Input and Output Pin

Pin	Variable name Variable t		Data type	Contents	Range
Input	REFW1 to REFW6	Input variable	riable BOOL CH1 to CH6 Input condition signal (TRUE: Execute, FALSE: Stop)		TRUE, FALSE
iriput	CH1 to CH6	Input variable	REAL	CH1 to CH6 Digital input value	Depends on the input range, resolution mode, and scaling function of the module.

POINT

Using a ladder program or auto refresh setting, digital values can be input to the CH which is not connected to an input pin.

In this case, always set the input condition signal for CH□ used above to FALSE.

8 - 41 8 - 41

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	ERRC	Public variable	BOOL	Error clear request (TRUE: Error clear request FALSE: —) When module error (ERR) is TRUE, set ERRC as TRUE to clear module error and make ERR FALSE.	TRUE, FALSE	FALSE	User
	RGALC	Public variable	BOOL	Alarm output clear request (TRUE: Alarm output clear request FALSE: —) When alarm detection (RGAL) is TRUE, set RGALC as TRUE to clear alarm and make MHAL1 to MHAL6, MLAL1 to MLAL6 and RGAL FALSE.	TRUE, FALSE	FALSE	User
	CH1INH to CH6INH	Public variable	BOOL	Enable/disable D/A conversion (CH1 to CH6). (TRUE: Disabled FALSE; Enabled) Set the D/A conversion enabled/disabled in channels. It is valid when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	OUT1INH to OUT6INH	Public variable	BOOL	Enable/disable D/A output (CH1 to CH6). (TRUE: Offset value FALSE: D/A conversion value) Set output D/A conversion value or offset value in channels.	TRUE, FALSE	FALSE	User
	AL1ENB to AL6ENB	to Public BOOL		CH1 to CH6 alarm output enabled/disabled setting (TRUE: Output enabled FALSE: Output disabled) Alarm output enabled/disabled setting in channels. It is valid when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
Conversion processing	STB	Public variable	BOOL	Operation condition setting request Execute D/A conversion enabled/disabled setting (CH1INH to CH6INH), alarm output and alarm output enabled/disabled setting (AL1ENB to AL6ENB) when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	RDY	Public variable	BOOL	Module READY (TRUE: ON FALSE: OFF) Store the status of module READY (Xn0). Perform D/A conversion processing when module READY (Xn0) is TRUE.	TRUE, FALSE	FALSE	System
	ERR	Public variable	BOOL	Error flag		FALSE	System
	RGAL	Public variable	BOOL	Alarm output signal (TRUE: Alarms occur FALSE: Normal) Store TRUE once the high/low limit setting of either CH1 or CH6 of D/A conversion module is exceeded.	TRUE, FALSE	FALSE	System
	MLAL1 to MLAL6	Public variable	BOOL	CH1 to CH6 alarm output flag low limit alarm (TRUE: Over FALSE: Normal) Store TRUE in channels when the set low limit is exceeded.	TRUE, FALSE	FALSE	System
MHAL1 to MHAL6		Public variable	BOOL	CH1 to CH6 alarm output flag high limit alarm (TRUE: Over FALSE: Normal) Store TRUE in channels when the set high limit is exceeded.	TRUE, FALSE	FALSE	System

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	DAENB	Public variable	WORD	D/A conversion enabled/disabled setting status. Store the D/A conversion enabled/disabled setting status. b15 to b5 b4 b3 b2 b1 b0 CH C	0 to 003Fн	003Fн	System
Conversion processing	ALMENB	Public variable	WORD	The setting status of Alarm output enabled/disabled. Store alarm the setting status of output enabled/disabled.	0 to 003Fн	003Fн	System
	SCLENB	Public variable	WORD	Scaling enabled/disabled setting status Stores scaling enabled/disabled setting status. b15 to b5 b4 b3 b2 b1 b0 CH C	0 to 003Fн	003Fн	System
	ERRCOD	Public variable	INT	Error code Store the error code detected by D/A conversion module. For detailed information about the error code, refer to Channel Isolated Digital-Analog Converter Module User's Manual.	_	0	System

^{*1:} Read/write them with a program.

It will not be displayed on FB property window of PX Developer.

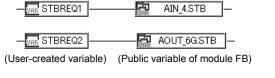
POINT

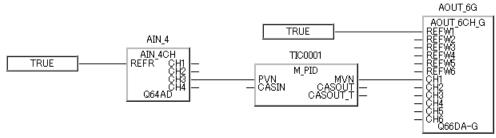
When using this module FB, the default value of D/A output enabled/disabled setting is enabled for all channels of D/A output.

Item		Contents										
		e to D/A conversion module) When the input condition	•	the following conditions nput condition signal (REFW1)								
la a d		Cond	lition									
Input condition signal		Input condition signal (REFW1 to REFW6)	Module READY (Xn0)	Input (CH1 to CH6)								
(REFW1 to		TRUE	TRUE	Write the input digital value from input variable CH1 to CH6 to the D/A conversion module.								
,			FALSE	Do not write the input digital value from input variable								
		FALSE	TRUE or FALSE	CH1 to CH6 to the D/A conversion module.								
Others	Refer to the following manual for the relative information about the processing and setting concerned with this module FB.											
	• 0	Channel Isolated Digital-Anal	og Converter Module User	's Manual.								

POINT

- It is recommended to use GX Configurator-DA for initial settings.
- Module FB is incompliant with the intelligent function module mounted to a MELSECNET/H remote I/O station.

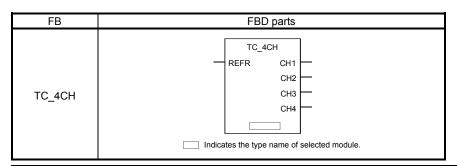

For details, refer to Section 2.10.2.

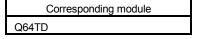

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

- Unable to communicate with D/A conversion module. (Error code: 1412)
- Abnormality of D/A conversion module is detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)

Program Example

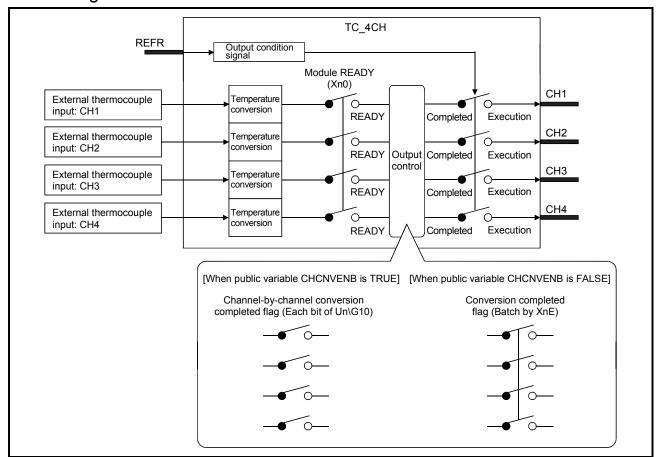



If STBREQ1 is TRUE, operation condition setting request of AIN_4 (STB) will be executed. If STBREQ2 is TRUE, operation condition setting request of AOUT_6 (STB) will be executed.

8 - 44 8 - 44

8.2 Temperature Input Module FB

8.2.1 4 Channels Thermocouple Input (TC_4CH)



Function overview: Read temperature conversion value of 4 channels temperature input module that converts the thermocouple signal to digital value, and output it from output variable (CH1 to CH4).

Function/FB classification name: Module FB

Block Diagram

Input and Output Pin

Pin	Variable name	able name Variable type		Contents	Range	
Input	REFR	Input variable	BOOL	Output condition signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	
Output	CH1 to CH4	Output variable	REAL	CH1 to CH4 temperature conversion value	Due to input range and resolution mode.	

8 - 45 8 - 45

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	ERRC	Public variable	BOOL	Error clear request (TRUE: Error clear request FALSE: —) When module error (ERR) is TRUE, set ERRC as TRUE to clear module error and make ERR FALSE.	TRUE, FALSE	FALSE	User
	CH1INH to CH4INH	Public variable	BOOL	Enable/disable conversion (CH1 to CH4). (TRUE: Disabled FALSE: Enabled). Set the output of temperature conversion value enabled/disabled in channels. It is valid when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	AL1ENB to AL4ENB	Public variable	BOOL	Enable/disable alarm output (CH1 to CH4). (TRUE: Output enabled FALSE: Output disabled) Set the alarm output enabled/disabled in channels. It is valid when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	STB	Public variable	BOOL	Operation condition setting request. Execute conversion enabled/disabled setting (CH1INH to CH4INH) and alarm output enabled/disabled setting (AL1ENB to AL4ENB) when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
Conversion processing	RDY	Public variable BOOL		Module READY (TRUE: ON FALSE: OFF). Store the status of module READY (Xn0). Perform temperature conversion processing when module READY (Xn0) is TRUE.	TRUE, FALSE	FALSE	System
	CHCNVENB	Public variable	BOOL	Enable conversion completed flag for each channel. Set the output condition of the temperature value. When the setting is TRUE, the channel-by-channel conversion completed flag is used as the output condition. When the setting is FALSE, the conversion completed flag (CNVCMPL) is used as the output condition.	TRUE, FALSE	FALSE	User
	CNVCMPL	Public variable	BOOL	Conversion completed flag (TRUE: ON FALSE: OFF) Store the status of conversion completion flag (XnE)	TRUE, FALSE	FALSE	System
	ERR	Public variable	BOOL	Error flag. (TRUE: Error FALSE: No error) Store TRUE when writing error occurs.	TRUE, FALSE	FALSE	System
	BNAL	Public variable	BOOL	Wire break detection signal. Store TRUE when one of CH1 to CH4 of temperature input module is disconnected. (TRUE: Disconnection detected FALSE: Normal)	TRUE, FALSE	FALSE	System
	PRCAL	Public variable	BOOL	Alarm output signal. Store TRUE when one of CH1 to CH4 of temperature input module exceeds the range of high/lower limit. (TRUE: Alarm occurs FALSE: Normal)	TRUE, FALSE	FALSE	System

8 - 46 8 - 46

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	PLAL1 to PLAL4	Public variable	BOOL	CH1 to CH4 low limit value alarm (TRUE: Over FALSE: Normal) Store TRUE in channel if it exceeds the low limit value set.	TRUE, FALSE	FALSE	System
	PHAL1 to PHAL4	Public variable	BOOL	CH1 to CH4 high limit alarm (TRUE: Over FALSE: Normal) Store TRUE in channel when it exceeds the high limit value set.	TRUE, FALSE	FALSE	System
	BNOUT1 to BNOUT4	Public variable	BOOL	CH1 to CH4 wire break detection flag (TRUE: Disconnection detected FALSE: Normal) Store TRUE in channel if disconnection occurs.	TRUE, FALSE	FALSE	System
Conversion	ADENB	Public variable	INT	Enable/disable conversion setting status. Store the setting status of conversion enabled/disabled. b15 to b3 b2 b1 b0 CH CH CH CH CH CH CH 3 2 1 0: Conversion enabled 1: Conversion disabled	0 to 15	0	System
processing	ERRCOD	Public variable	INT	Error code. Store the detected error code of temperature input module. For detailed information about the error code, refer to the Thermocouple Input Module Channel Isolated Thermocouple/Micro Voltage Input Module User's Manual.	_	0	System
	ALMENB	Public variable	INT	Alarm output enabled/disabled setting status. Store alarm output enabled/disabled setting status. b15 to b3 b2 b1 b0 CH CH CH CH CH CH CH 3 2 11 O: Alarm output disabled 1: Alarm output enabled	0	0	System
	CH1SCAL to CH4SCAL	Public variable	INT	CH1 to CH4 scaling value (%) Store the scaled value of scaling high/low limit value through high/low limit value. (Refer to the Thermocouple Input Module Channel Isolated Thermocouple/Micro Voltage Input Module User's Manual.)	-32768 to 32767	0	System

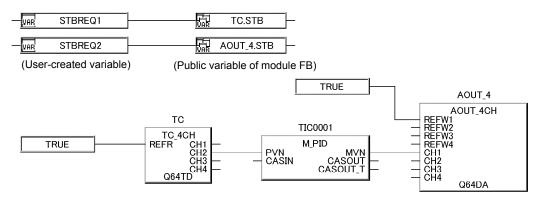
^{*1:} The public variable CHCNVENB can be set in the FB property window of PX Developer.

Use a program to perform read/write of the public variables other than CHCNVENB.

It will not be displayed in FB property window of PX Developer.

Item		Contents										
			Condition									
		Output condition signal (REFR)	Module READY (Xn0)	(*1)	Output (CH1 to CH4)							
Output condition signal		TRUE	TRUE	TRUE	Read temperature conversion value from temperature input module and output digital output the value in channels from output variable (CH1 to CH4).							
(REFR)				FALSE	Output veriable (CUI to CUI) holds the							
,			FALSE	TRUE or FALSE	Output variable (CH1 to CH4) holds the previous value.							
		FALSE	TRUE or FALSE	TRUE or FALSE	providuo valuo.							
		*1 When the public v	ariable CHCNVENB	is TRUE: Channel-b address 10	y-channel conversion flag (each bit of buffer memory 0)							
		When public varia	ble CHCNVENB is F	ALSE: Conversion c	ompleted flag (batch by XnE)							
Others	For detailed information of all the processing, settings, channel-by-channel conversion flag and conversion completed flag of the corresponding module of this module FB, refer to the following manual.											
	•	Thermocouple Input I	Module Channel Isola	ited Thermocouple/M	licro Voltage Input Module User's Manual.							

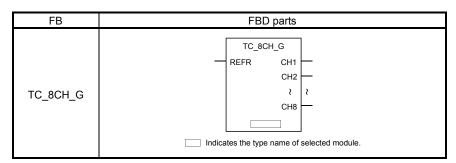
POINT

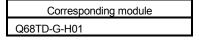

- It is recommended to use GX Configurator-TI for initial settings.
- Module FB is incompliant with the intelligent function module mounted to a MELSECNET/H remote I/O station.
 For details, refer to Section 2.10.2.

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

- Unable to communicate with temperature input module. (Error code: 1412)
- Abnormality of temperature input module has been detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)

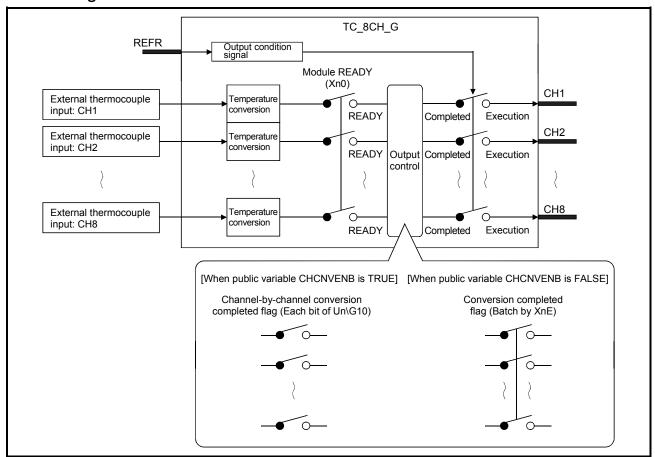

Program Example



If STBREQ1 is TRUE, operation condition setting request (STB) of TC will be executed. If STBREQ2 is TRUE, operation condition setting request (STB) of AOUT_4 will be executed.

8 - 48 8 - 48

8.2.2 Channels-isolated 8 Channels Thermocouple Input (TC_8CH_G)



Function overview: Read temperature conversion value of 8 channels temperature input module that converts the thermocouple signal to digital value, and output it from output variable (CH1 to CH8).

Function/FB classification name: Module FB

Block Diagram

Input and Output Pin

Pin	Variable name	Variable type Data typ		Contents	Range	
Input	REFR	Input variable	BOOL	Output condition signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	
Output	CH1 to CH8	Output variable	REAL	CH1 to CH8 temperature conversion value	Due to input range and resolution mode.	

8 - 49 8 - 49

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	ERRC	Public variable	BOOL	Error clear request (TRUE: Error clear request FALSE: —) When module error (ERR) is TRUE, set ERRC as TRUE to clear module error and make ERR FALSE.	TRUE, FALSE	FALSE	User
	CH1INH to Public variable		BOOL	Enable/disable conversion (CH1 to CH8). (TRUE: Disabled FALSE: Enabled). Set the output of temperature conversion value enabled/disabled in channels. It is valid when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	AL1ENB to AL8ENB	Public variable	BOOL	Enable/disable alarm output (CH1 to CH8). (TRUE: Output enabled FALSE: Output disabled) Set the alarm output enabled/disabled in channels. It is valid when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	STB	Public variable	BOOL	Operation condition setting request. Execute conversion enabled/disabled setting (CH1INH to CH8INH) and alarm output enabled/disabled setting (AL1ENB to AL8ENB) when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	RDY	Public variable	BOOL	Module READY (TRUE: ON FALSE: OFF). Store the status of module READY (Xn0). Perform temperature conversion processing when module READY (Xn0) is TRUE.	TRUE, FALSE	FALSE	System
Conversion processing	CHCNVENB	Public variable	BOOL	Enable conversion completed flag for each channel. Set the output condition of the temperature value. When the setting is TRUE, the channel-by-channel conversion completed flag is used as the output condition. When the setting is FALSE, the conversion completed flag (CNVCMPL) is used as the output condition.	TRUE, FALSE	FALSE	User
	CNVCMPL	Public variable	BOOL	Conversion completed flag (TRUE: ON FALSE: OFF) Store the status of conversion completion flag (XnE)	TRUE, FALSE	FALSE	System
	ERR	Public variable	BOOL	Error flag. (TRUE: Error FALSE: No error) Store TRUE when writing error occurs.	TRUE, FALSE	FALSE	System
	BNAL	Public variable	BOOL	Wire break detection signal. Store TRUE when one of CH1 to CH8 of temperature input module is disconnected. (TRUE: Disconnection detected FALSE: Normal)	TRUE, FALSE	FALSE	System
	PRCAL	Public variable	BOOL	Alarm output signal. Store TRUE once process or rate abnormality occurs in any of CH1 to CH8 of temperature input module. (TRUE: Alarm occurs FALSE: Normal)	TRUE, FALSE	FALSE	System
	PLAL1 to PLAL8	Public variable	BOOL	Low limit value alarm of CH1 to CH8 process alarm (TRUE: Over FALSE: Normal) Store TRUE in channel if it exceeds the low limit value set.	TRUE, FALSE	FALSE	System
	PHAL1 to PHAL8	Public variable	BOOL	High limit value alarm of CH1 to CH8 process alarm (TRUE: Over FALSE: Normal) Store TRUE in channel when it exceeds the high limit value set.	TRUE, FALSE	FALSE	System

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	RTLAL1 to RTLAL8	Public variable	BOOL	Low limit alarm of CH1 to CH8 rate alarm (TRUE: over FALSE: normal) Store TRUE of the channel if it surpasses the low limit value of rate alarm.	TRUE, FALSE	FALSE	System
	RTHAL1 to RTHAL8	Public variable	BOOL	High limit alarm of CH1 to CH8 rate alarm (TRUE: over FALSE: normal) Store TRUE of the channel if it surpasses the high limit value of rate alarm.	TRUE, FALSE	FALSE	System
	BNOUT1 to BNOUT8	Public variable	BOOL	CH1 to CH8 wire break detection flag (TRUE: Disconnection detected FALSE: Normal) Store TRUE in channel if disconnection occurs.	TRUE, FALSE	FALSE	System
	ADENB Public wariable WORD		WORD	Enable/disable conversion setting status. Store the setting status of conversion enabled/disabled. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 to 00FFн	Он	System
Conversion processing	ERRCOD	Public variable	INT	Error code. Store the detected error code of temperature input module. For detailed information about the error code, refer to the Thermocouple Input Module Channel Isolated Thermocouple/Micro Voltage Input Module User's Manual.	_	0	System
	ALMENB	Public variable	WORD	Alarm output enabled/disabled setting status. Store alarm output enabled/disabled setting status. b15 to b10 b9 b8 b7 to b2 b1 b0 CH B CH	0 to FFFFн	Он	System
	SCLENB	Public variable	WORD	Scaling enabled/disabled setting status. Store scaling enabled/disabled setting status. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 to 00FFн	Он	System
	CH1SCAL to CH8SCAL	Public variable	INT	CH1 to CH8 scaling value (%) Store the scaled value of scaling high/low limit value through high/low limit value. (Refer to the Thermocouple Input Module Channel Isolated Thermocouple/Micro Voltage Input Module User's Manual.)	-32768 to 32767	0	System

^{*1:} The public variable CHCNVENB can be set in the FB property window of PX Developer.

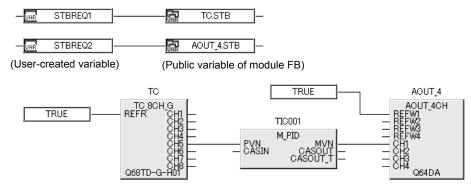
Use a program to perform read/write of the public variables other than CHCNVENB.

It will not be displayed in FB property window of PX Developer.

8 - 51 8 - 51

Item				Contents						
			Condition							
		Output condition signal (REFR)	Module READY (Xn0)	(*1)	Output (CH1 to CH8)					
Output condition signal		TRUE	TRUE	TRUE	Read temperature conversion value from temperature input module and output digital output the value in channels from output variable (CH1 to CH8).					
(REFR)				FALSE	Output variable (CLI4 to CLI9) holds the					
			FALSE	TRUE or FALSE	Output variable (CH1 to CH8) holds the previous value.					
		FALSE	TRUE or FALSE	TRUE or FALSE	providuo valuo.					
		*1 When the public variable CHCNVENB is TRUE: Channel-by-channel conversion flag (each bit of buffer memory address 10)								
		When public varia	ble CHCNVENB is F	ALSE: Conversion of	ompleted flag (batch by XnE)					
Others			of all the processing, module of this modu		r-channel conversion flag and conversion completed allowing manual.					
	•	Thermocouple Input	Module Channel Isola	ited Thermocouple/M	licro Voltage Input Module User's Manual.					

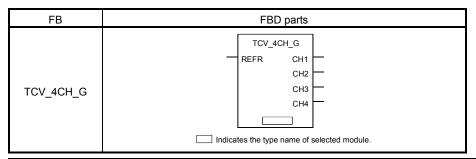
POINT


- It is recommended to use GX Configurator-TI for initial settings.
- Module FB is incompliant with the intelligent function module mounted to a MELSECNET/H remote I/O station.
 For details, refer to Section 2.10.2.

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

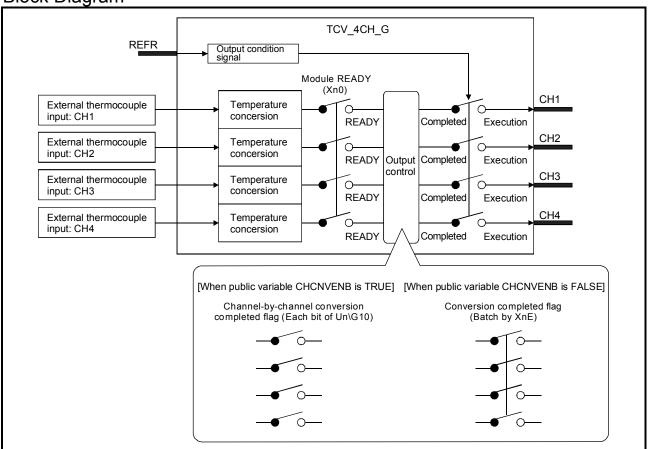
- Unable to communicate with temperature input module. (Error code: 1412)
- Abnormality of temperature input module has been detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)


Program Example

If STBREQ1 is TRUE, operation condition setting request (STB) of TC will be executed. If STBREQ2 is TRUE, operation condition setting request (STB) of AOUT_4 will be executed.

8 - 52 8 - 52

8.2.3 Channel-isolated 4 Channels Temperature/Micro-voltage Input (TCV_4CH_G)



Corresponding module Q64TDV-GH

Function overview: Read the digital signal of 4 channels channel-isolated temperature/micro-voltage input module that converts the thermocouple temperature signal or micro-voltage signal to digital value, and output it from output variable (CH1 to CH4).

Function/FB classification name: Module FB

Block Diagram

Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range	
Input	REFR	Input variable	BOOL	Output condition signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE	
Output	CH1 to CH4	Output variable	REAL	CH1 to CH4 temperature process value/ micro voltage conversion value	Due to input range and resolution mode.	

8 - 53 8 - 53

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	ERRC	Public variable	BOOL	Error clear request (TRUE: Error clear request FALSE: —) When module error (ERR) is TRUE, set ERRC as TRUE to clear module error and make ERR FALSE.	TRUE, FALSE	FALSE	User
	CH1INH to CH4INH	to Public BOOL		Enable/disable conversion (CH1 to CH4). (TRUE: Disabled FALSE: Enabled) Set temperature process value/micro voltage conversion value output enabled/disabled in channels. It is valid when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	to			Enable/disable alarm output (CH1 to CH4). (TRUE: Output enabled FALSE: Output disabled) Set alarm output enabled/disabled in channels. It is valid when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	STB Public variable BOOL		BOOL	Operation condition setting request. Execute conversion enabled/disabled setting (CH1INH to CH4INH) and alarm output enabled/disabled setting (AL1ENB to AL4ENB) when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
Conversion	RDY	Public variable	BOOL	Module READY (TRUE: ON FALSE: OFF). Store the status of module READY (Xn0). Perform temperature conversion processing when module READY (Xn0) is TRUE.	TRUE, FALSE	FALSE	System
processing	CHCNVENB	Public variable	BOOL	Enable conversion completed flag for each channel. Set the output condition of the temperature process value/micro voltage conversion value. When the setting is TRUE, the channel-by-channel conversion completed flag is used as the output condition. When the setting is FALSE, the conversion completed flag (CNVCMPL) is used as the output condition.	TRUE, FALSE	FALSE	User
	CNVCMPL	Public variable	BOOL	Conversion completion flag (TRUE: ON FALSE: OFF) Store the status of conversion completion flag (XnE)	TRUE, FALSE	FALSE	System
	ERR	Public variable	BOOL	Error flag (TRUE: Error FALSE: No error) Store TRUE when writing error occurs.	TRUE, FALSE	FALSE	System
	BNAL	Public variable	BOOL	Wire break detection signal Store TRUE when one of CH1 to CH4 of temperature input module is disconnected. (TRUE: Disconnection detected FALSE: Normal)	TRUE, FALSE	FALSE	System
	PRCAL	Public variable	BOOL	Alarm output signal Store TRUE when one of CH1 to CH4 of temperature input module exceeds the high/low limit set. (TRUE: Alarm occurs FALSE: Normal)	TRUE, FALSE	FALSE	System

	Variable name	Variable type	Data type	Contents Ra	Range	Initial value	Storage
	PLAL1 to PLAL4	Public variable	BOOL	(TRUE: Over FALSE: Normal)	RUE, ALSE	FALSE	System
	PHAL1 to PHAL4	Public variable	BOOL	·	RUE, ALSE	FALSE	System
	BNOUT1 to BNOUT4	Public variable	BOOL	(TRUE: Wire break detected FALSE: Normal)	RUE, ALSE	FALSE	System
Conversion	ADENB	Public variable	INT	Enable/disable conversion setting status. Store the setting status of conversion enabled/disabled. b15 to b3 b2 b1 b0 CH CH CH CH CH 4 3 2 1 0: Enable A/D conversion 1: Disable A/D conversion	to 15 (0	System
processing	ERRCOD	Public variable	INT	Error code. Store error code detected by temperature input module. For details of error code about the error code, refer to the Thermocouple Input Module Channel Isolated Thermocouple/Micro Voltage Input Module User's Manual.	(0	System
	ALMENB	Public variable	INT	Alarm output enabled/disabled setting status. Store alarm output enabled/disabled setting status. b15 to b3 b2 b1 b0 CH CH CH CH CH CH 4 3 2 1 0: Alarm output disabled 1: Alarm output enabled		0	System
	CH1SCAL to CH4SCAL	Public variable	INT	Store the scaled value of scaling high/low limit value. (Refer to the Thermocouple Input Module Channel Isolated to	2768 2767	0	System

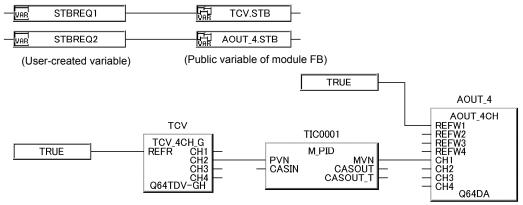
^{*1:} The public variable CHCNVENB can be set in the FB property window of PX Developer.

Use a program to perform read/write of the public variables other than CHCNVENB.

It will not be displayed in FB property window of PX Developer.

Item			Contents						
		Condition							
	Output condition signal (REFR)	Module READY (Xn0)	(*1)	Output (CH1 to CH4)					
Output condition signal	TRUE	TRUE	TRUE	Read temperature process value/micro voltage conversion value from temperature input module and output temperature process value/micro voltage conversion value from output variable CH1 to CH4 in channel.					
(REFR)			FALSE	Output variable CH1 to CH4 holds the provious					
		FALSE TRUE or FAI		Output variable CH1 to CH4 holds the previous value.					
	FALSE	TRUE or FALSE	TRUE or FALSE	14.40					
	· ·	*1 When the public variable CHCNVENB is TRUE: Channel-by-channel conversion flag (each bit of buffer memory address 10) When public variable CHCNVENB is FALSE: Conversion completed flag (batch by XnE)							
	vviien pablic valie	ADIC OFFICIAL END TO F	ALOL: CONVENDION	completed hag (batch by Ane)					
Others	For detailed information flag of the corresponding			y-channel conversion flag and conversion completed ollowing manual.					
	Thermocouple Input	Module Channel Isola	ated Thermocouple/I	Micro Voltage Input Module User's Manual.					

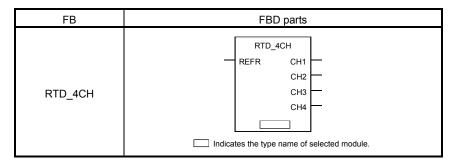
POINT


- It is recommended to use GX Configurator-TI for initial settings.
- Module FB is incompliant with the intelligent function module mounted to a MELSECNET/H remote I/O station.
 For details, refer to Section 2.10.2.

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

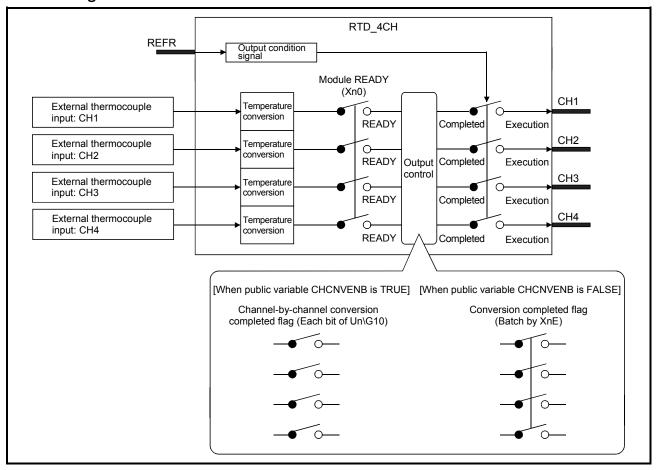
- Unable to communicate with temperature input module. (Error code: 1412)
- Abnormality of temperature input module has been detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)


Program Example

If STBREQ1 is TRUE, operation condition setting request (STB) of TCV will be executed. If STBREQ2 is TRUE, operation condition setting request (STB) of AOUT_4 will be executed.

8 - 56 8 - 56

8.2.4 4 Channels Temperature Input (RTD_4CH)



Corresponding module
Q64RD, Q64RD-G

Function overview: Read the temperature conversion value of 4 channels temperature input module that converts temperature - measuring resistor temperature signal to digital value, and output it from output variable (CH1 to CH4).

Function/FB classification name: Module FB

Block Diagram

Input and Output Pin

	-				
Pin	Variable name	Variable type	Data type	Contents	Range
Input	REFR	Input variable	LBOOL	Output condition signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE
Output	CH1 to CH4	Output variable	REAL	CH1 to CH4 temperature conversion value	Due to input range and resolution mode.

8 - 57 8 - 57

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	ERRC	Public variable	BOOL	Error clear request (TRUE: Error clear request FALSE: —) When module error (ERR) is TRUE, set ERRC as TRUE to clear module error and make ERR FALSE.	TRUE, FALSE	FALSE	User
	CH1INH to CH4INH	Public variable	BOOL	Enable/disable conversion (CH1 to CH4). (TRUE: Disabled FALSE: Enabled) Set the output of temperature conversion value enabled/disabled in channels. It is valid when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	AL1ENB to AL4ENB	Public variable	BOOL	Enable/disable alarm output (CH1 to CH4). (TRUE: Output enabled FALSE: Output disabled) Set the alarm output enabled/disabled in channels. It is valid when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	STB	Public variable	BOOL	Operation condition setting request Execute conversion enabled/disabled setting (CH1INH to CH4INH) and alarm output enabled/disabled setting (AL1ENB to AL4ENB) when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	RDY	Public variable	BOOL	Module READY (TRUE: ON FALSE: OFF). Store the status of module READY (Xn0). Perform temperature conversion processing when module READY (Xn0) is TRUE.	TRUE, FALSE	FALSE	System
Conversion processing	CHCNVENB	Public variable	BOOL	Enable conversion completed flag for each channel. Set the output condition of the temperature value. When the setting is TRUE, the channel-by-channel conversion completed flag is used as the output condition. When the setting is FALSE, the conversion completed flag (CNVCMPL) is used as the output condition.	TRUE, FALSE	FALSE	User
	CNVCMPL	Public variable	BOOL	Conversion completed flag (TRUE: ON FALSE: OFF) Store the status of conversion completion flag (XnE)	TRUE, FALSE	FALSE	System
	ERR	Public variable	BOOL	Error flag (TRUE: Error FALSE: No error) Store TRUE when writing error occurs.	TRUE, FALSE	FALSE	System
	BNAL	Public variable	BOOL	Wire break detection signal. Store TRUE when one of CH1 to CH4 of temperature input module is disconnected. (TRUE: Disconnection detected FALSE: Normal)	TRUE, FALSE	FALSE	System
	PRCAL	Public variable	BOOL	Alarm output signal. Store TRUE when one of CH1 to CH4 of temperature input module exceeds the set range of high/low limit value. (TRUE: Alarm occurs FALSE: Normal)	TRUE, FALSE	FALSE	System
	PLAL1 to PLAL4	Public variable	BOOL	CH1 to CH4 low limit value alarm (TRUE: Over FALSE: Normal) Store TRUE in channel if it exceeds the set low limit value.	TRUE, FALSE	FALSE	System
	PHAL1 to PHAL4	Public variable	BOOL	CH1 to CH4 high limit alarm (TRUE: Over FALSE: Normal) Store TRUE in channel when it exceeds the high limit value.	TRUE, FALSE	FALSE	System

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	BNOUT1 to BNOUT4	Public variable	BOOL	CH1 to CH4 wire break detection flag (TRUE: Wire break detected FALSE: Normal) Store TRUE in channel if disconnection occurs.	TRUE, FALSE	FALSE	System
	ADENB	Public variable	INT	Enable/disable conversion setting status. Store the setting status of conversion enabled/disabled. b15 to b3 b2 b1 b0 CH CH CH CH CH 4 3 2 1 0: Enable conversion 1: Disable conversion	0 to 15	0	System
Conversion processing	ERRCOD	Public variable	INT	Error code. Store error code detected by temperature input module. Refer to the RTD Input Module Channel Isolated RTD Input Module User's Manual.	-	0	System
	ALMENB	Public variable	INT	Alarm output enabled/disabled setting status. Store alarm output enabled/disabled setting status. b15 to b3 b2 b1 b0 CH CH CH CH CH CH 4 3 2 1 0: Alarm output disabled 1: Alarm output enabled	0 to 15	0	System
	CH1SCAL to CH4SCAL	Public variable	INT	CH1 to CH4 scaling value (%) Store the scaled value of scaling high/low limit value. (Refer to the RTD Input Module Channel Isolated RTD Input Module User's Manual.)	-32768 to 32767	0	System

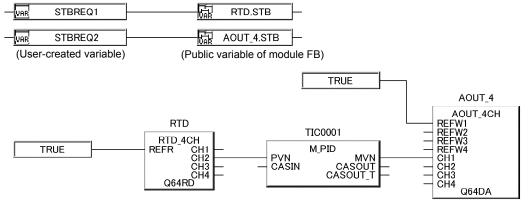
^{*1:} The public variable CHCNVENB can be set in the FB property window of PX Developer.

Use a program to perform read/write of the public variables other than CHCNVENB.

It will not be displayed in FB property window of PX Developer.

Item			Contents	S				
		Condition		Output (OHA to OHA)				
	Output condition signal (REFR)	Module READY (Xn0)	(*1)	Output (CH1 to CH4)				
Output condition	TRUE	TRUE	TRUE	Read temperature conversion value from temperature input module and output digital output the value in channels from output variable (CH1 to CH4).				
signal (REFR)			FALSE	Output variable CH1 to CH4 holds the previous				
(,		FALSE	TRUE or FALSE	value.				
	FALSE	TRUE or FALSE	TRUE or FALSE					
	*1 When the public variable CHCNVENB is TRUE: Channel-by-channel conversion flag (each bit of buffer memory address 10) When public variable CHCNVENB is FALSE: Conversion completed flag (batch by XnE)							
Others	For detailed information of all the processing, settings, channel-by-channel conversion flag and conversion completed flag of the corresponding module of this module FB, refer to the following manual.							
	RTD Input Module	Channel Isolated RTI	D Input Module User	's Manual.				

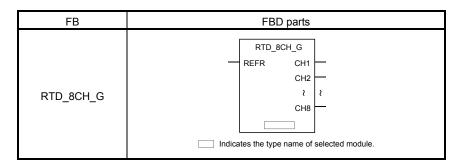
POINT


- It is recommended to use GX Configurator-TI for initial settings.
- Module FB is incompliant with the intelligent function module mounted to a MELSECNET/H remote I/O station.
 For details, refer to Section 2.10.2.

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

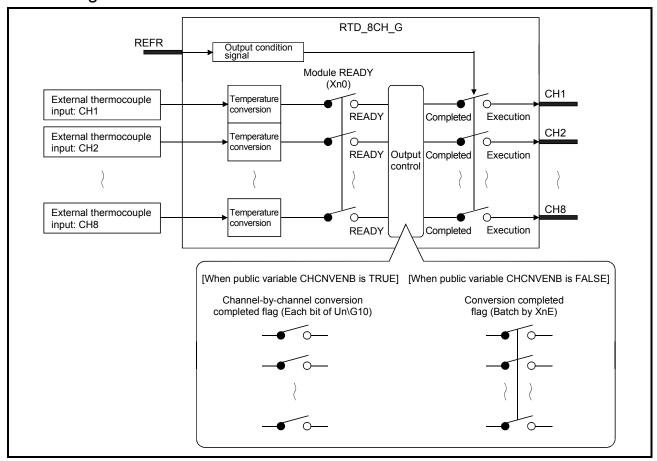
- Unable to communicate with temperature input module. (Error code: 1412)
- Abnormality of temperature input module has been detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)


Program Example

If STBREQ1 is TRUE, operation condition setting request (STB) of RTD will be executed. If STBREQ2 is TRUE, operation condition setting request (STB) of AOUT_4will be executed.

8 - 60 8 - 60

8.2.5 Channel-isolated 8 Channels Temperature-Measuring Resistor Input (RTD_8CH_G)



Corresponding module Q68RD3-G

Function overview: Read the temperature conversion value of 8 channels temperature input module that converts temperature - measuring resistor temperature signal to digital value, and output it from output variable (CH1 to CH8).

Function/FB classification name: Module FB

Block Diagram

Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range
Input	REFR	Input variable	BOOL	Output condition signal (TRUE: Execute, FALSE: Stop)	TRUE, FALSE
Output	CH1 to CH8	Output variable	REAL	CH1 to CH8 temperature conversion value	Due to input range and resolution mode.

8 - 61 8 - 61

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	ERRC	Public variable	BOOL	Error clear request (TRUE: Error clear request FALSE: —) When module error (ERR) is TRUE, set ERRC as TRUE to clear module error and make ERR FALSE.	TRUE, FALSE	FALSE	User
	CH1INH to CH8INH	Public variable	BOOL	Enable/disable conversion (CH1 to CH8). (TRUE: Disabled FALSE: Enabled) Set the output of temperature conversion value enabled/disabled in channels. It is valid when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	AL1ENB to AL8ENB	Public variable	BOOL	Enable/disable alarm output (CH1 to CH8). (TRUE: Output enabled FALSE: Output disabled) Set the alarm output enabled/disabled in channels. It is valid when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	STB	Public variable	BOOL	Operation condition setting request Execute conversion enabled/disabled setting (CH1INH to CH8INH) and alarm output enabled/disabled setting (AL1ENB to AL4ENB) when STB transforms from FALSE to TRUE.	TRUE, FALSE	FALSE	User
	RDY	Public variable	BOOL	Module READY (TRUE: ON FALSE: OFF). Store the status of module READY (Xn0). Perform temperature conversion processing when module READY (Xn0) is TRUE.	TRUE, FALSE	FALSE	System
Conversion processing	CHCNVENB	Public variable	BOOL	Enable conversion completed flag for each channel. Set the output condition of the temperature value. When the setting is TRUE, the channel-by-channel conversion completed flag is used as the output condition. When the setting is FALSE, the conversion completed flag (CNVCMPL) is used as the output condition.	TRUE, FALSE	FALSE	User
	CNVCMPL	Public variable	BOOL	Conversion completed flag (TRUE: ON FALSE: OFF) Store the status of conversion completion flag (XnE)	TRUE, FALSE	FALSE	System
	ERR	Public variable	BOOL	Error flag (TRUE: Error FALSE: No error) Store TRUE when writing error occurs.	TRUE, FALSE	FALSE	System
	BNAL	Public variable	BOOL	Wire break detection signal. Store TRUE when one of CH1 to CH8 of temperature input module is disconnected. (TRUE: Disconnection detected FALSE: Normal)	TRUE, FALSE	FALSE	System
	PRCAL	Public variable	BOOL	Alarm output signal. Store TRUE once process or rate abnormality occurs in any of CH1 to CH8 of temperature input module. (TRUE: Alarm occurs FALSE: Normal)	TRUE, FALSE	FALSE	System
	PLAL1 to PLAL8	Public variable	BOOL	Low limit value alarm of CH1 to CH8 process alarm (TRUE: Over FALSE: Normal) Store TRUE in channel if it exceeds the low limit value set.	TRUE, FALSE	FALSE	System
	PHAL1 to PHAL8	Public variable	BOOL	High limit value alarm of CH1 to CH8 process alarm (TRUE: Over FALSE: Normal) Store TRUE in channel when it exceeds the high limit value set.	TRUE, FALSE	FALSE	System

8 - 62 8 - 62

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	RTLAL1 to RTLAL8	Public variable	BOOL	Low limit alarm of CH1 to CH8 rate alarm (TRUE: over FALSE: normal) Store TRUE of the channel if it surpasses the low limit value of rate alarm.	TRUE, FALSE	FALSE	System
	RTHAL1 to RTHAL8	Public variable	BOOL	High limit alarm of CH1 to CH8 rate alarm (TRUE: over FALSE: normal) Store TRUE of the channel if it surpasses the high limit value of rate alarm.	TRUE, FALSE	FALSE	System
	BNOUT1 to BNOUT8	Public variable	BOOL	CH1 to CH8 wire break detection flag (TRUE: Wire break detected FALSE: Normal) Store TRUE in channel if disconnection occurs.	TRUE, FALSE	FALSE	System
	ADENB	Public variable	WORD	Enable/disable conversion setting status. Store the setting status of conversion enabled/disabled. b15 to b7 to b3 b2 b1 b0 0 0 CH CH CH CH CH CH 3 2 1 0: Enable conversion 1: Disable conversion	0 to 00FFн	Он	System
Conversion processing	ERRCOD	Public variable	INT	Error code. Store error code detected by temperature input module. Refer to the RTD Input Module Channel Isolated RTD Input Module User's Manual.	-	0	System
processing	ALMENB	Public variable	WORD	Alarm output enabled/disabled setting status. Store alarm output enabled/disabled setting status. b15 to b10 b9 b8 b7 to b2 b1 b0 CH B CH	0 to FFFFн	Он	System
	SCLENB	Public variable	WORD	Scaling enabled/disabled setting status. Store scaling enabled/disabled setting status. b15 to b7 to b3 b2 b1 b0 0 0 CH CH CH CH CH CH CH B CH		Он	System
	CH1SCAL to CH8SCAL	Public variable	INT	CH1 to CH8 scaling value (%) Store the scaled value of scaling high/low limit value. (Refer to the RTD Input Module Channel Isolated RTD Input Module User's Manual.)	-32768 to 32767	0	System

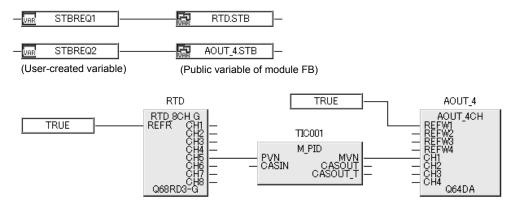
^{*1:} The public variable CHCNVENB can be set in the FB property window of PX Developer.

Use a program to perform read/write of the public variables other than CHCNVENB.

It will not be displayed in FB property window of PX Developer.

Item		Contents										
		Condition										
	Output condition signal (REFR)	Module READY (Xn0)	(*1)	Output (CH1 to CH8)								
Output condition	TRUE	TRUE	TRUE	Read temperature conversion value from temperature input module and output digital output the value in channels from output variable (CH1 to CH8).								
signal (REFR)			FALSE	Output variable CH1 to CH8 holds the previous								
(IXEI IX)		FALSE	TRUE or FALSE	value.								
	FALSE	TRUE or FALSE	TRUE or FALSE	value.								
	*1 When the public variable CHCNVENB is TRUE: Channel-by-channel conversion flag (each bit of buffer memory address 10) When public variable CHCNVENB is FALSE: Conversion completed flag (batch by XnE)											
Others		For detailed information of all the processing, settings, channel-by-channel conversion flag and conversion completed flag of the corresponding module of this module FB, refer to the following manual.										
	RTD Input Module (Channel Isolated RTI	D Input Module User	r's Manual.								

POINT


- It is recommended to use GX Configurator-TI for initial settings.
- Module FB is incompliant with the intelligent function module mounted to a MELSECNET/H remote I/O station.
 For details, refer to Section 2.10.2.

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

- Unable to communicate with temperature input module. (Error code: 1412)
- Abnormality of temperature input module has been detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)

Program Example

If STBREQ1 is TRUE, operation condition setting request (STB) of TC will be executed. If STBREQ2 is TRUE, operation condition setting request (STB) of AOUT_4 will be executed.

8 - 64 8 - 64

8.3 Counter Module FB

8.3.1 High-speed Counter (HIC_2CH)

FB	FBD part							
	HIC_2CH							
	REFR PV1							
	PRES1 EQ11							
	PRERQ1 EQ12							
	EQR11 PV2							
	— EQR12 EQ21 —							
HIC_2CH	PRES2 EQ22							
	PRERQ2							
	EQR21							
	EQR22							
	Indicates the type name of selected module.							

Corresponding module
QD62, QD62E, QD62D

Function overview: Read the pulse counter value and coincidence signal of high-speed counter module and output them from output variable.

Function/FB classification name: Module FB

Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range
	REFR	Input variable	BOOL	Refreshing request (TRUE: Request FALSE: No request)	TRUE, FALSE
	PRES1	Input variable	DINT	CH1 per-set set value	-2147483648 to 2147483647
	PRERQ1	Input variable	BOOL	CH1 pre-set command (TRUE: Command FALSE: No command)	TRUE, FALSE
	EQR11	Input variable	BOOL	CH1 coincidence signal No. 1 reset command (TRUE: Command FALSE: No command)	TRUE, FALSE
Input	EQR12	Input variable	BOOL	CH1 coincidence signal No.2 reset command (TRUE: Command FALSE: No command)	TRUE, FALSE
	PRES2	Input variable	DINT	CH2 pre-set set value	-2147483648 to 2147483647
	PRERQ2	Input variable	BOOL	CH2 pre-set command (TRUE: Command FALSE: No command)	TRUE, FALSE
	EQR21	Input variable	BOOL	CH2 coincidence signal No.1 reset command (TRUE: Command FALSE: No command)	TRUE, FALSE
	EQR22	Input variable	BOOL	CH2 coincidence signal No.2 reset command (TRUE: Command FALSE: No command)	TRUE, FALSE
	PV1	Output variable	DINT	CH1 current value	-2147483648 to 2147483647
	EQ11	Output variable	BOOL	CH1 coincidence signal No.1 (TRUE: Coincident FALSE: Not coincident)	TRUE, FALSE
Output	EQ12	Output variable	BOOL	CH1 coincidence signal No.2 (TRUE: Coincident FALSE: Not coincident)	TRUE, FALSE
Output	PV2	Output variable	DINT	CH2 current value	-2147483648 to 2147483647
	EQ21	Output variable	BOOL	CH2 coincidence signal No.1 (TRUE: Coincident FALSE: Not coincident)	TRUE, FALSE
	EQ22	Output variable	BOOL	CH2 coincidence signal No.2 (TRUE: Coincident FALSE: Not coincident)	TRUE, FALSE

Public Variable (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	RDY	Public variable	BOOL	Module READY (TRUE: READY completed FALSE: READY uncompleted). Store the status of module READY (Xn0). Perform counter processing when module READY (Xn0) is TRUE.	TRUE, FALSE	FALSE	System
	FBRK	Public variable	BOOL	Fuse break detected flag (TRUE: Fuse break FALSE: normal). Store TRUE when fuse break occurs.	TRUE, FALSE	FALSE	System
	CINH1 to CINH2	Public variable	BOOL	CH1 to CH2 counter enable command (TRUE: Counter disabled FALSE: Counter enabled). Set counter enabled/disabled in channel.	TRUE, FALSE	FALSE	User
	EXENB1 to EXENB2	Public variable	BOOL	CH1 to CH2 coincidence signal enable command. TRUE: External output when counter value is coincident (EQ11, EQ12/EQ21, EQ22 TRUE) FALSE: Not external output when counter value is coincident (EQ11, EQ12/EQ21, EQ22 FALSE) Set in channel whether output counter coincidence signal when counter value is coincident.	TRUE, FALSE	FALSE	User
Conversion processing	DECRQ1 to DECQR2	Public variable	BOOL	CH1 to CH2 down-counter instruction. (TRUE: Execute down count FALSE: Stop down count) Set whether executing down-counter in 1-phase pulse input mode in channels.	TRUE, FALSE	FALSE	User
	EXPRER1 to EXPRER2	Public variable	BOOL	CH1 to CH2 external pre-set detection reset command. Reset EXPRE1 to 2 when FALSE → TRUE.	TRUE, FALSE	FALSE	User
	EXPRE1 to EXPRE2	Public variable	BOOL	CH1 to CH2 external pre-set request detection. ON and LATCH via pre-set command signal from pre-set input variable. Reset EXPRER1 to EXPRER2 when FALSE→TRUE.	TRUE, FALSE	FALSE	System
	FSEL1 to FSEL2	Public variable	BOOL	CH1 to CH2 counter function selection start command. Execute counter function selection when FALSE →TRUE.	TRUE, FALSE	FALSE	User
	GT11	Public variable	BOOL	CH1 counter value is bigger (point No.1) When current value>coincident output point No.1 setting, TRUE is stored.	TRUE, FALSE	FALSE	System
	GT12	Public variable	BOOL	CH1 counter value is bigger (point No.2) When current value>coincident output point No.2 setting, TRUE is stored.	TRUE, FALSE	FALSE	System
	GT21	Public variable	BOOL	CH2 counter value is bigger (point No.1) When current value>coincident output point No.1 setting, TRUE is stored.	TRUE, FALSE	FALSE	System
	GT22	Public variable	BOOL	CH2 counter value is bigger (point No.2) When current value>coincident output point No.2 setting, TRUE is stored.	TRUE, FALSE	FALSE	System

8 - 66 8 - 66

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	LT11	Public variable	BOOL	CH1 counter value is smaller (point No.1) When current value <coincident is="" no.1="" output="" point="" setting,="" stored.<="" td="" true=""><td>TRUE, FALSE</td><td>FALSE</td><td>System</td></coincident>	TRUE, FALSE	FALSE	System
	LT12	Public variable	BOOL	CH1 counter value is smaller (point No.2) When current value <coincident is="" no.2setting,="" output="" point="" stored.<="" td="" true=""><td>TRUE, FALSE</td><td>FALSE</td><td>System</td></coincident>	TRUE, FALSE	FALSE	System
	LT21	Public variable	BOOL	CH2 counter value is smaller (point No.1) When current value <coincident is="" no.1="" output="" point="" setting,="" stored.<="" td="" true=""><td>TRUE, FALSE</td><td>FALSE</td><td>System</td></coincident>	TRUE, FALSE	FALSE	System
	LT22	Public variable	BOOL	CH2 counter value is smaller (point No.2) When current value <coincident is="" no.2="" output="" point="" setting,="" stored.<="" td="" true=""><td>TRUE, FALSE</td><td>FALSE</td><td>System</td></coincident>	TRUE, FALSE	FALSE	System
	PRE1 to PRE2	Public variable	DINT	CH1 to CH2 pre-set set value It indicates the pre-set value set in counter.	-2147483648 to 2147483647	0	System
	OVFL1 to OVFL2	Public variable	INT	CH1 to CH2 overflow detection (1: Overflow occurs 0: Not overflow) Store the occurrence status of counter overflow when the counter type is linear counter.	0,1	0	System
Conversion	CFLG1	Public variable	INT	CH1 sampling/periodic counter flag (1: Execution 2: Stop) Store the operation status of sampling or period counter tag of CH1.	0,1	0	System
processing	LATCH1	Public variable	DINT	CH1 latch count value Store latch counter value.	-2147483648 to 2147483647	0	System
	SAMP1	Public variable	DINT	CH1 sampling count value Store sampling count value.	-2147483648 to 2147483647	0	System
	PRVCYC LP1	Public variable	DINT	CH1 previous value of periodic pulse count Store the previous value of period pulse count.	-2147483648 to 2147483647	0	System
	NEWCYC LP1	Public variable	DINT	CH1 current value of periodic pulse count Store the current value of periodic pulse count.	-2147483648 to 2147483647	0	System
	CFLG2	Public variable	INT	CH2 sampling/periodic counter flag (1: Execution 0: Stop) Store the operation status of sampling or periodic counter flag of CH2.	0,1	0	System
	LTACH2	Public variable	DINT	CH2 latch count value Store the latch count value.	-2147483648 to 2147483647	0	System
	SAMP2	Public variable	DINT	CH2 sampling count value Store the sampling count value.	-2147483648 to 2147483647	0	System
	PRVCYC LP2	Public variable	DINT	CH2 previous value of periodic pulse count Store the previous value of periodic pulse count.	-2147483648 to 2147483647	0	System
	NEWCYC LP2	Public variable	DINT	CH2 current value of periodic pulse count Store the current value of periodic pulse count.	-2147483648 to 2147483647	0	System

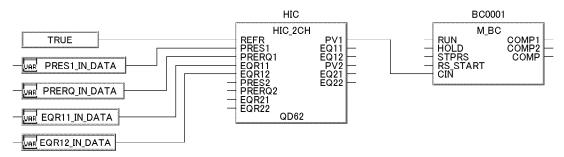
^{*1:} Please execute reading/writing via program.

It will not be displayed in FB property window of PX Developer.

Item	Contents											
	Conditi Output condition signal	ion Module READY (Xn0)	Output (CH1 to CH2)									
	(REFR)	Wodule KLADT (XIIO)										
Output condition signal (REFR)	TRUE	TRUE	Read pulse count value and coincidence signal from high-speed counter module and output CH1 value to output variable PV1 and output CH2 value to PV2.									
		FALSE	Output variable PV1, PV2 holds the previous value.									
	FALSE	TRUE or FALSE										
Others	For information about the processing and setting of corresponding module of this module FB, refer to the following manual: High-Speed Counter Module User's Manual.											

POINT

- It is recommended to use GX Configurator-CT for initial settings.
- Module FB is incompliant with the intelligent function module mounted to a MELSECNET/H remote I/O station.


For details, refer to Section 2.10.2.

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

- Unable to communicate with high-speed counter module. (Error code: 1412)
- The errors of high-speed count module have been detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)

Program Example

8 - 68 8 - 68

8.3.2 Channel-isolated 8 Channels Pulse Input (PIN_8CH_G)

FB	FBD part
PIN_8CH_G	FBD part PIN_8CH_G REFR PV1 — CSUM1 — INP1 — PV2 — CSUM2 — INP2 — PV3 — CSUM3 — INP3 — PV4 — CSUM4 — INP4 — PV5 — CSUM5 — INP5 — PV6 — CSUM6 — INP6 — PV7 — CSUM7 — INP7 — PV8 — CSUM8 — INP8 — I

Corresponding module
QD60P8-G

Function overview: Read the sampling pulse number of isolated pulse input module between 8 CHs channels for inputting pulse signal, accumulating count value and input pulse value, then output them from output variable.

Function/FB classification name: Module FB

Input and Output Pin

Pin	Variable name	Variable type	Data type	Content	Range
Input	REFR	Input variable	BOOL	Refreshing request (TRUE: Request FALSE: No request)	TRUE, FALSE
	PV1 to PV8	Output variable	INT	CH1 to CH8 sampling pulse number	0 to 32767
Output	CSUM1 to CSUM8	Output variable	DINT	CH1 to CH8 accumulating count value	0 to 99999999
	INP1 to INP8	Output variable	DINT	CH1 to CH8 input pulse value	0 to 2147483647

8 - 69 8 - 69

Public Variable (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	ERRC1 to ERRC8	Public variable	BOOL	CH1 to CH8 error reset request (TRUE: Error reset request FALSE: —) When the occurrence of CH1 to CH8 error (ERR1 to ERR8) is TRUE, ERRC1 to ERRC8 are set as TRUE, to clear errors and change ERR1 to ERRC8 setting into FALSE	TRUE, FALSE	FALSE	User
	CH1INH to CH8INH	Public variable	BOOL	Disable CH1 to CH8 count (TRUE: Count disabled, FLASE: Count enabled) Set count enabled/disabled on channels.	TRUE, FALSE	FALSE	User
	GEC1toGEC8	Public variable	BOOL	CH1 to CH8 comparison signal reset request (TRUE: Comparison signal reset request FALSE: —). When CH1 to CH8 accumulating count comparison flag (GE1 to GE8) is TRUE, clear the accumulating count comparison flag and GE1 to GE8 will become FALSE.	TRUE, FALSE	FALSE	User
	ALENBWR1 to ALENBWR8	Public variable	INT	CH1 to CH4 alarm output selection (1: alarm output enabled 0: alarm output disabled) Set alarm output enabled/disabled in each channel. STB is valid when it transforms from FLASE to TRUE.	0,1	0	User
Conversion processing	CRYOVRST1 to CRYOVRST8	Public variable	INT	CH1 to CH8 carry-over reset request (1: Carry-over reset request 0: —) When CH1 to CH8 carry-over occurrences (CRYOV1 to CRYOV8) are [1], clear carry-over by setting CRYOVRST1 to CRYOVRST8 as 1 and CRYOV1 to CRYOV8 will become 0 accordingly.	0,1	0	User
	CNTRST1 to CNTRST8	Public variable	INT	CH1 to CH8 count reset request (1: Count reset request 0: —) Clear the sampling pulse number accumulating countvalue and input pulse value of each channel by set CNTRST1 to CNTRST8 as 1.	0,1	0	User
	PRESCLSELWR1 to Public variable		INT	CH1 to CH8 pre-scale function selection <set value=""> 0: none $1: \times 1$ 2: \times 0.1 3: \times 0.01 4: \times 0.001 5: \times 0.0001 Set 0 to 5 for each channel STB is valid when it transforms from FALSE to TRUE.</set>	0 to 5	0	User
	PRESCLSVWR1 to PRESCLSVWR8	Public variable	INT	CH1 to CH8 pre-scale setting Set the pre-scale value. (When it is set as 0, sampling pulse number (PV1 to PV8) hold 0. Please pay attention to this phenomenon.) STB is valid when it transforms from FALSE to TRUE.	0 to 32767	0	User

8 - 70 8 - 70

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
	STB	Public variable	BOOL	Operation condition setting request. When STB transforms form FALSE to TRUE, the setting of alarm output selection (ALENBWR1 to ALENBWR8), pre-scale function selection (PRESCLSELWR1 to PRESCLSELWR8) and pre-scale setting value (PRESCLSVWR1 to PRESCLSVWR8) is valid.	TRUE, FALSE	FALSE	User
	RDY	Public variable	BOOL	Module READY (TRUE: Ready FALSE: Not ready) Store the status of module READY (Xn0) When the module READY (Xn0) is TRUE, execute pulse input processing.	TRUE, FALSE	FALSE	System
	ERR1 to ERR8	Public variable	BOOL	CH1 to CH8 error (TRUE: Error FALSE: no error) Store TRUE when over flow or initial value setting error occurs.	TRUE, FALSE	FALSE	System
	GE1 to GE8	Public variable	BOOL	CH1 to CH8 accumulating counter comparison flag. Store TRUE when the accumulating count value ≥ comparison output value if comparison output is selected as [with comparison output function].	TRUE, FALSE	FALSE	System
Conversion	ALENBRD1 to ALENBRD8	Public variable	INT	Alarm output selection status (1: alarm output enabled 0: alarm output disabled) Store the alarm output selection status.	0,1	0	System
processing	AL1 to AL8	Public variable	INT	CH1 to CH8 alarm output flag (1: Range over 0: normal). Store 1 when alarm input is selected as [with alarm output function] and sampling pulse number exceeds the high high limit or low low limit of alarm output set value.	0,1	0	System
	CRYOV1 to CRYOV8	Public variable	INT	CH1 to CH8 carry-over detection flag (1: Execute detection 0: not execute detection). Store 1 when the accumulating counter ring counter and value within the accumulating counter exceeds 99999999. Even if carry-over detection flag is 1, count operation continues.	0, 1	0	System
	OVFL1 to OVFL8	Public variable	INT	CH1 to CH8 carry-over detection flag (1: Execute detection 0: not execute detection). Store 1 when the accumulating counter linear counter and the value of accumulating counter exceeds 99999999.	0, 1	0	System
	ERRCOD1 to ERRCOD8	Public variable	INT	CH1 to CH8 error code Store the code of error that is detected by pulse input module. For detailed information about the error code, refer to Channel Isolated Pulse Input Module User's Manual.	_	0	System

8 - 71 8 - 71

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Conversion	PRESCLSELRD1 to PRESCLSELRD8	Public variable	INT	CH1 to CH8 pre-scale function selection status <set value=""> 0: none 1: \times 1 2: \times 0.1 3: \times 0.01 4: \times 0.001 5: \times 0.0001 Store the status of pre-scale function selection</set>	0 to 5	0	System
processing	PRESCLSVRD1 to PRESCLVRD8	Public variable	INT	CH1 to CH8 pre-scale setting status Store the pre-scale setting status. (When it is set to 0, sampling pulse number (PV1 to PV8) hold 0. Please pay attention to this phenomenon.)	0 to 32767	0	System

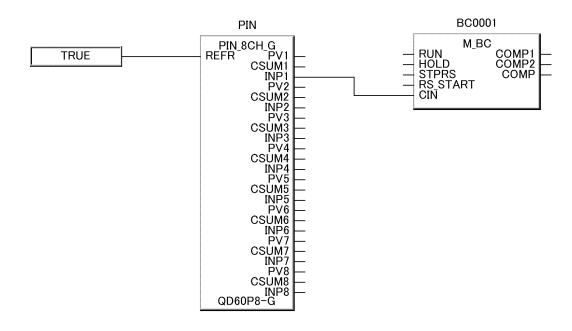
^{*1} Please execute reading/writing via program.
It will not be shown in FB property window of PX Developer.

Item	m Contents					
	Condition Input condition signal (REFR) Module READY (Xn0)		Output (CH1 to CH8)			
Output condition signal (REFR)	TRUE	TRUE	Read sampling pulse number, accumulating count value and input pulse value from pulse input module, then output sampling pulse number for each channel from output variable PV1 to PV8, accumulating count value for each channel from output variable CSUM1 to CSUM8 and input pulse value for each channel from output variable INP1 to INP8.			
		FALSE	The previous value is kept for output variable PV1 to			
	FALSE	TRUE, FALSE	PV8, CSUM1 to CSUM8 and INP1 to INP8.			
Others	For information about the processing and setting of corresponding module of this module FB, refer to the following manual: Channel Isolated Pulse Input Module User's Manual.					

POINT

- It is recommended to use GX Configurator-CT for initial settings.
- Module FB is incompliant with the intelligent function module mounted to a MELSECNET/H remote I/O station.
 - For details, refer to Section 2.10.2.

Error


Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

- Unable to communicate with pulse input module. (Error code: 1412)
- Abnormality of pulse input module has been detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)

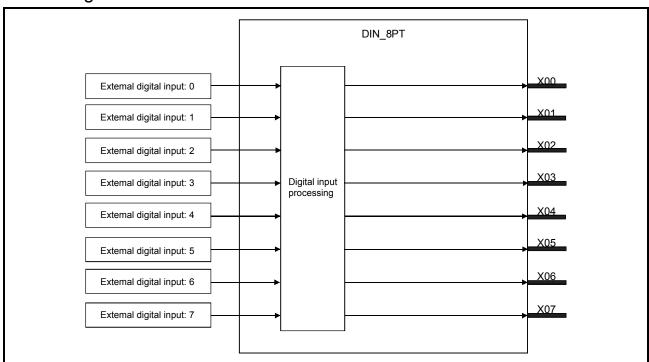
8 - 72 8 - 72

8 MODULE FB MELSOFT

Program Example

8.4 Digital I/O Module FB

8.4.1 8 Points Digital Input (DIN_8PT)

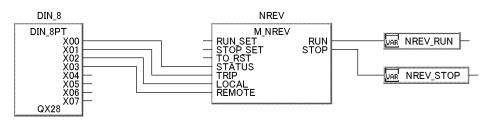

FB	FBD part				
DIN_8CH_G	DIN_8PT				

	Corresponding module
QX28	

Function overview: Read the ON/OFF input value of 8 points digital input module and output it from output variable.

Function/FB classification name: Module FB

Block Diagram


Input and Output Pin

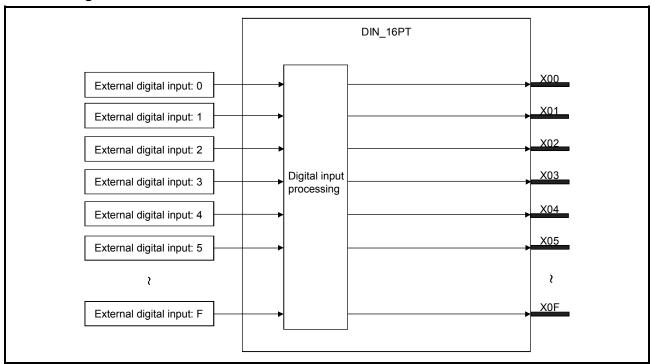
Pin	Variable name	Variable type	Data type	Contents	Range
Output	X00 to X07	Output variable	BOOL	Output signal (TRUE: ON FALSE: OFF)	TRUE, FALSE

8 - 74 8 - 74

Item	Contents
Digital input processing	For information about the processing and setting of corresponding module of this module FB, refer to the following manual. Building Block I/O Module User's Manual.

Program Example

8.4.2 16 Points Digital Input (DIN_16PT)

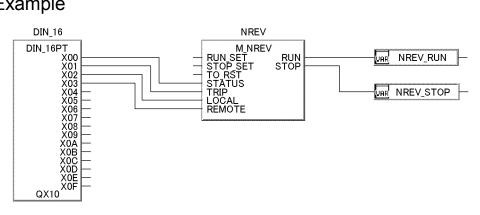

FB	FBD part			
DIN_16PT	DIN_16PT X00 X01 X02 X03 X04 X05 XOF Indicates the type name of the selected module.			

Corresponding module				
QX10, QX40, QX40-S1, QX50, QX70, QX80				

Function overview: Read the ON/OFF input value of 16 points digital input module and output it from output variable.

Function/FB classification name: Module FB

Block Diagram


Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range	
Output	X00 to X0F	Output variable	BOOL	Output signal (TRUE: ON FALSE: OFF)	TRUE, FALSE	

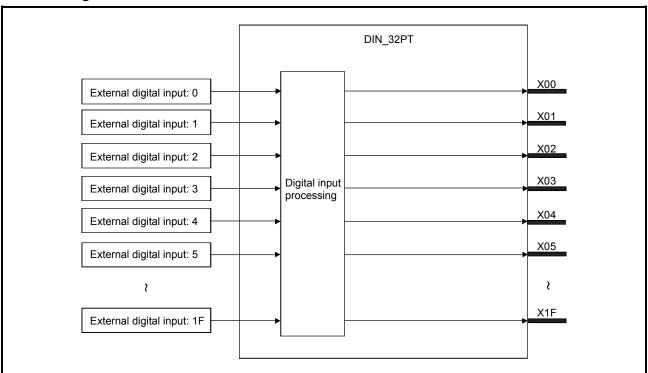
8 - 76 8 - 76

Item	Contents
Digital input processing	For information about the processing and setting of corresponding module of this module FB, refer to the following manual: Building Block I/O Module User's Manual.

Program Example

8.4.3 32 Points Digital Input (DIN_32PT)

FB	FBD part			
DIN_32PT	DIN_32PT x00 x01 x02 x03 x04 x05 t x1F Indicates the type name selected module.			

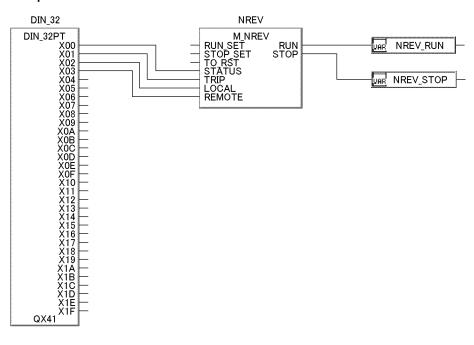

Corresponding module

QX41, QX41-S1, QX71, QX81

Function overview: Read the ON/OFF input value of 32 points digital input module and output it from output variable.

Function/FB classification name: Module FB

Block Diagram


Input and Output Pin

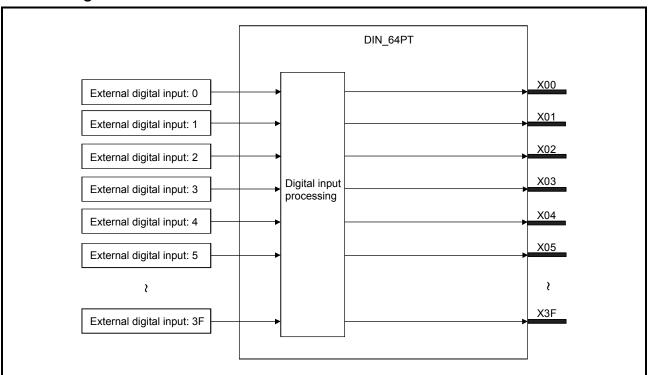
Pin	Variable name	Variable type	Data type	Contents	Range
Output	X00 to X1F	Output variable	BOOL	Output signal (TRUE: ON FALSE: OFF)	TRUE, FALSE

8 - 78 8 - 78

Item	Contents
Digital input processing	For information about the processing and setting of corresponding module of this module FB, refer to the following manual: Building Block I/O Module User's Manual.

Program Example

8.4.4 64 Points Digital Input (DIN_64PT)

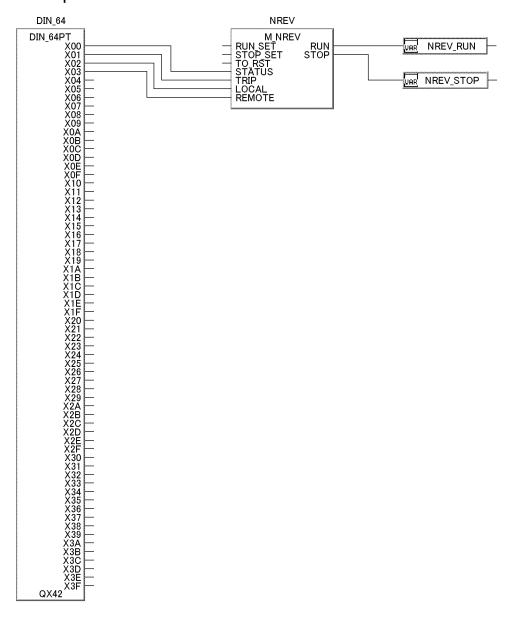

FB	FBD part
DIN_64PT	DIN_64PT x00 x01 x02 x03 x04 x05 x3F Indicates the type name selected module.

Corresponding module	
QX42, QX42-S1, QX72, QX82, QX82-S1	

Function overview: Read the ON/OFF input value of 64 points digital input module and output it from output variable.

Function/FB classification name: Module FB

Block Diagram


Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range
Output	X00 to X3F	Output variable	BOOL	Output signal (TRUE: ON FALSE: OFF)	TRUE, FALSE

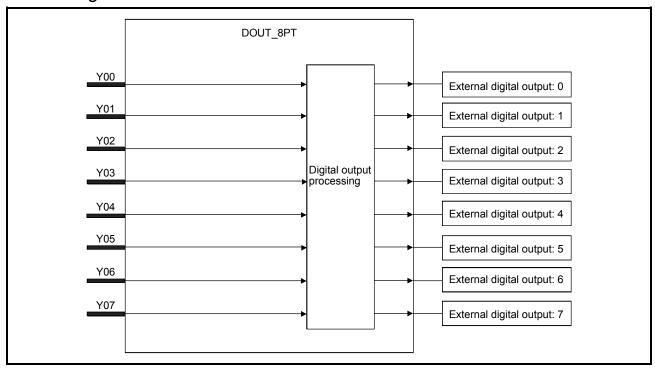
8 - 80 8 - 80

Item	Contents
Digital input processing	For information about the processing and setting of corresponding module of this module FB, refer to the following manual: Building Block I/O Module User's Manual.

Program Example

8 - 81 8 - 81

8.4.5 8 Points Digital Output (DOUT_8PT)

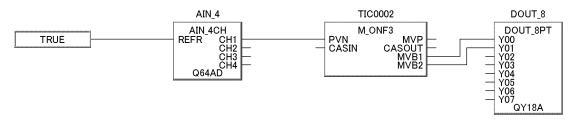

FB	FBD part
DOUT_8PT	DOUT_8PT

Corresponding module
QY18A, QY68A

Function overview: Write ON/OFF output value of input variable to 8 points digital output module.

Function/FB classification name: Module FB.

Block Diagram


Input and Output Pin

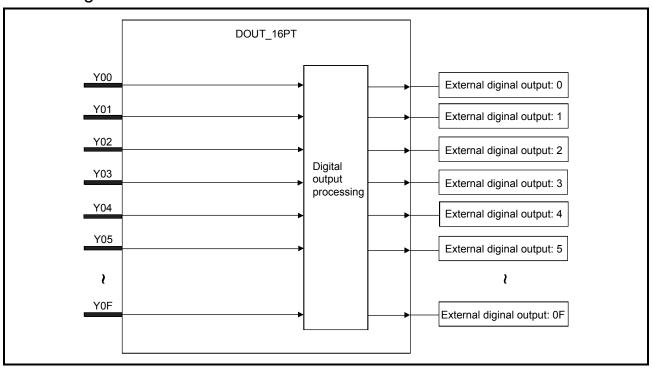
Pin	Variable name	Variable type	Data type	Contents	Range
Input	Y00 to Y07	Input variable	BOOL	Input signal (TRUE: ON FALSE: OFF)	TRUE, FALSE

8 - 82 8 - 82

Item	Contents
Digital output processing	For information about the processing and setting of corresponding module of this module FB, refer to the following manual: Building Block I/O Module User's Manual.

Program Example

8.4.6 16 Points Digital Output (DOUT_16PT)

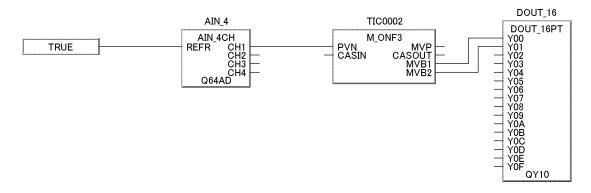

FB	FBD part
DOUT_16PT	DOUT_16PT Y00 Y01 Y02 Y03 Y04 Y05 Y0F Indicates the type name of the selected module.

Corresponding module	
QY10, QY22, QY40P, QY50, QY70, QY80	

Function overview: Write ON/OFF output value from input variable to 16 points digital output module.

Function/FB classification name: Module FB

Block Diagram


Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range
Input	Y00 to Y0F	Input variable	BOOL	Input signal (TRUE: ON FALSE: OFF)	TRUE, FALSE

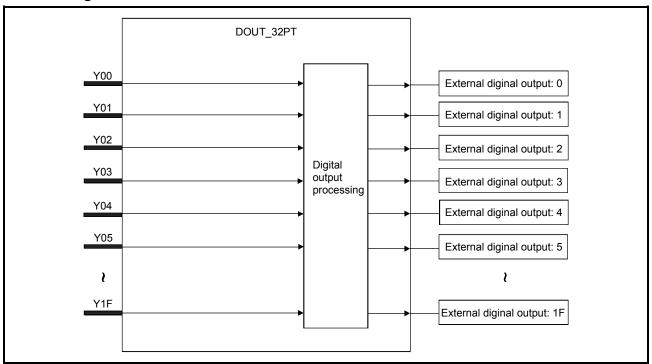
8 - 84 8 - 84

Item	Contents
Digital output processing	For information about the processing and setting of corresponding module of this module FB, refer to the following manual: Building Block I/O Module User's Manual.

Program Example

8.4.7 32 Points Digital Output (DOUT_32PT)

FB	FBD part					
DOUT_32PT	DOUT_32PT Y00 Y01 Y02 Y03 Y04 Y05 X Y1F Indicates the type name of the selected module.					

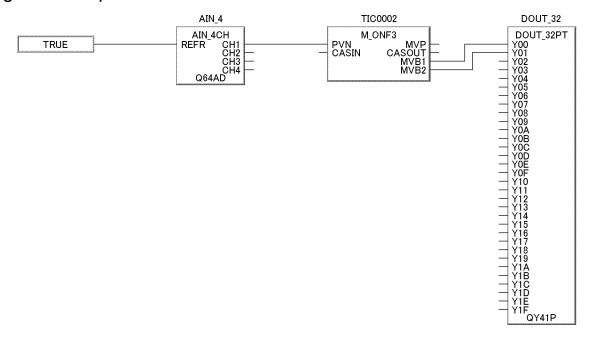

Corresponding module

QY41P, QY71, QY81P

Function overview: Write ON/OFF output value from input variable to 32 points digital output module.

Function/FB classification name: Module FB

Block Diagram


Input and Output Pin

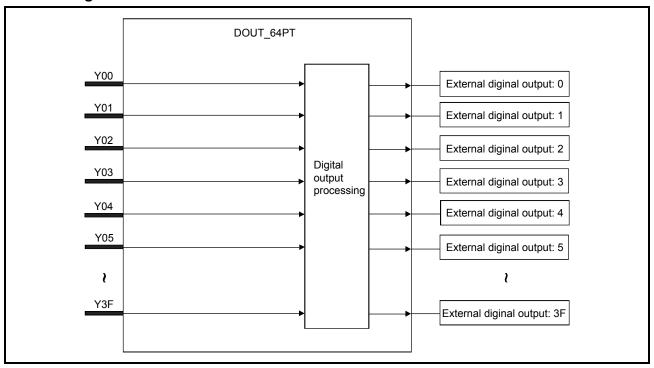
Pin	Variable name	Variable type	Data type	Contents	Range
Inpu	Y00 to Y1F	Input variable	BOOL	Input signal (TRUE: ON FALSE: OFF)	TRUE, FALSE

8 - 86 8 - 86

Item	Contents			
Digital output processing	For information about the processing and setting of corresponding module of this module FB, refer to the following manual: Building Block I/O Module User's Manual.			

Program Example

8.4.8 64 Points Digital Output (DOUT_64PT)

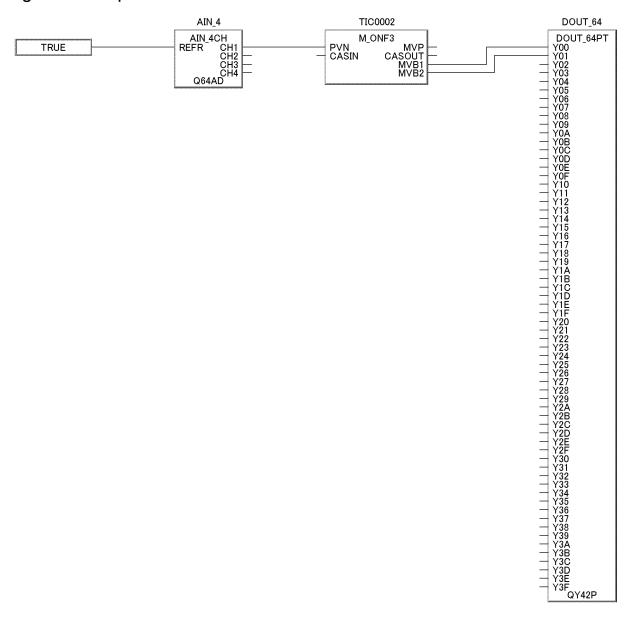

FB	FBD part					
Pin_8CH_G	DOUT_64PT Y00 Y01 Y02 Y03 Y04 Y05 X Y3F Indicates the type name of the selected module.					

	Corresponding module	
QY42P		

Function overview: Write ON/OFF output value from input variable to 64 Points digital output module.

Function/FB classification name: Module FB

Block Diagram


Input and Output Pin

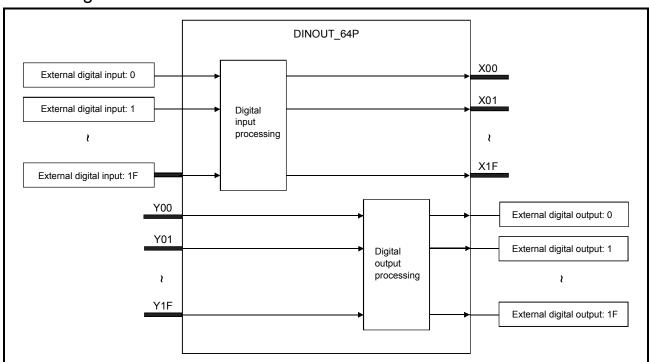
Pin	Variable name	Variable type	Data type	Contents	Range
Input	Y00 to Y3F	Input variable	BOOL	Input signal (TRUE: ON FALSE: OFF)	TRUE, FALSE

8 - 88 8 - 88

Item	Contents			
Digital output processing	For information about the processing and setting of corresponding module of this module FB, refer to the following manual: Building Block I/O Module User's Manual.			

Program Example

8.4.9 32 Points Input/32 Points Output I/O Mixed (DINOUT_64PT)

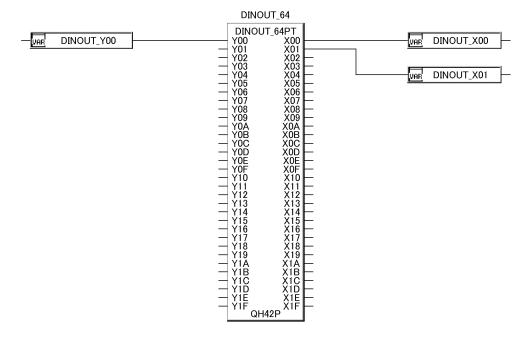

FB	FBD part				
DINOUT_64PT	DINOUT_64PT				

	Corresponding module
QH42P	

Function overview: Perform reading/writing ON/OFF input/output data on 64 points input/output mixed module (32 points digital input/32 points output).

Function/FB classification name: Module FB

Block Diagram


Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range
Input	Y00 to Y1F	Input variable	BOOL	Input signal (TRUE:ON FALSE:OFF)	TRUE, FALSE
Output	X00 to X1F	Output variable	BOOL	Output signal (TRUE:ON FALSE:OFF)	TRUE, FALSE

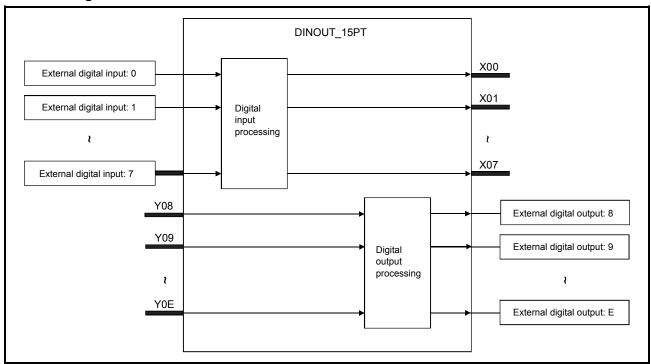
8 - 90 8 - 90

Item	Contents
Digital input processing Digital output processing	For information about the processing and setting of corresponding module of this module FB, refer to the following manual: • Building Block I/O Module User's Manual.

Program Example

8 - 91 8 - 91

8.4.10 8 Points Input/7 Points Output I/O Mixed (DINOUT_15PT)

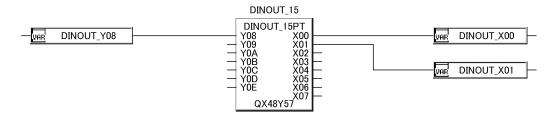

FB	FBD part					
DINOUT_15PT	— Y08 — Y09 — Y0A — Y0B — Y0C — Y0D — Y0E	X00 X01 X02 X03 X04 X05 ₹	the selected module.			

	Corresponding module
QX48Y57	

Function overview: Perform reading/writing ON/OFF input/output data for 15 points input/output mixed module (8 points digital input/7 points digital output).

Function/FB classification name: Module FB

Block Diagram



Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range
Input	Y08 to Y0E	Input variable	I BOOL	Input signal (TRUE:ON FALSE:OFF)	TRUE, FALSE
Output	X00 to X07	Output variable	I BOOL	Output signal (TRUE:ON FALSE:OFF)	TRUE, FALSE

Item	Contents
Digital input processing Digital output processing	For information about the processing and setting of corresponding module of this module FB, refer to the following manual: Building Block I/O Module User's Manual.

Program Example

8.5 CC-Link Module FB

8.5.1 CC-Link Remote Station Occupying 1 Station (CCLINK_1)

FB	FBD part		
CCLINK_1	CCLINK_1 REFR RWr0 REFW0 \ \ \ \ RWr3 REFW3 RX00_0F RWw0 RX10_1F RWw3 RY00_0F RY10_1F CC-Link Remote(1-station)		

CC-Link remote station occupying 1 station

Function overview: Read/write message of the remote station that occupies 1 station and is connected to CC-Link.

Function/FB classification name: Module FB

Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range
	REFR	Input variable	BOOL	RWr0 to RWr3 output condition signal (TRUE: Execute FALSE: Stop)	TRUE, FALSE
	REFW0 to REFW3	Input variable	BOOL	RWw0 to RWw3 input condition signal (TRUE: Enabled FALSE: Disabled)	TRUE, FALSE
Input	RWw0 to RWw3	Input variable	WORD	Input data of remote register RWw0 to RWw3.	0 to FFFFн
	RY00_0F Input variab		DWORD	Input data of remote output (RY00 to RY0F)	0 to FFFFFFFFH (refer to (3) in POINT)
	RY10_1F	Input variable	DWORD	Input data of remote output (RY10 to RY1F)	0 to FFFFFFFFH (refer to (3) in POINT)
	RWr0 to RWr3	Output variable	WORD	Output data from remote register RWr0 to RWr3	0 to FFFFн
Output	RX00_0F	RX00_0F Output variable		Output data of remote input (RX00 to RX0F)	0 to FFFF _H (refer to (4) in POINT)
	RX10_1F Output variable		WORD	Output data of remote input (RX10 to RX1F)	0 to FFFF _H (refer to (4) in POINT)

POINT

- (1) Input of remote register or remote output pin that are not connected to input pin can be performed via ladder program.
 - However, please be sure to pre-set the RWw \square input condition signal used on ladder program into FALSE in making input to remote register.
- (2) Remote output/input has nothing to do with REFR and REFW0 to REFW3, this module FB performs reading/writing to CC-Link master module during each execution.
- (3) Please use "BIND" function in remote output. (RY00_0F and RY10_1F are connected to OUT of BIND function)
- (4) Please use "UNBIND" function in remote input.

 (RX00_0F and RX10_1F are connected to IN of UNBIND function)

8 - 94 8 - 94

Public Variable (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Variable processing	MASTERRDY	Public variable	BOOL	Module ready of master station (TRUE: ON FALSE: OFF) Store the module READY status of master station. Execute input/output when module READY of master station is TRUE.	TRUE, FALSE	FALSE	System

^{*1} Please execute reading/writing via program.

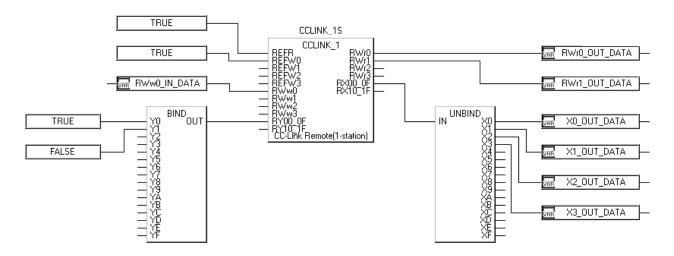
It will not be shown in FB property window of PX Developer.

Function

Con Input condition signal (REFW0 to REFW3)	dition Master module READY	
·	Master module READY	
,	(MASTERDY)	Input (RWw0 to RWw3)
TRUE	TRUE	Write the input value from input variable RWw0 to RWw3 into CC-Link module.
	FALSE	Not write the input value from input variable RWw0 to
FALSE	TRUE or FALSE	RWw3 into CC-Link module.
		Output (DM/r0 to DM/r2)
Output condition signal	Master module READY	Output (RWr0 to RWr3)
TRUE	TRUE	Read the value stored in CC-Link module and output them from output variable RWr0 to RWr3.
	FALSE	Keep the previous value of output variable RWr0 to
FALSE	TRUE or FALSE	RWr3.
	ing and settings of the corres	sponding module of this module FB, refer to the following
	FALSE Con Output condition signal (REFR) TRUE FALSE For details about all the process manual:	TRUE FALSE FALSE TRUE or FALSE Condition Output condition signal (REFR) (REFR) TRUE TRUE FALSE FALSE TRUE or FALSE FALSE TRUE or FALSE For details about all the processing and settings of the correspondence in the cor

POINT

- (1) Please do not set the auto refreshing parameter when using this module FB.
- (2) Please set network parameter through GX Developer.


Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

- Unable to communicate with CC-Link master module. (Error code: 1412)
- Abnormality of CC-Link master module is detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)

8 MODULE FB MELSOFT

Program Example

8 - 96 8 - 96

8.5.2 CC-Link Remote Station Occupying 2 Stations (CCLINK_2)

FB	FBD part			
		C	CLINK_2	
	_	REFR	RWr0	<u> </u>
		REFW0	1	≀
	ł	l	RWr7	-
	_	REFW7	RX00_0F	<u> </u>
	_	RWw0	RX10_1F	<u> </u>
CCLINK_2	ì	ı	RX20_2F	<u> </u>
_		RWw7	RX30_3F	<u> </u>
		RY00_0F		
	_	RY10_1F		
	_	RY20_2F		
	_	RY30 3F		
		_	Remote (2-station)	
				!

Corresponding module	
CC-Link remote station occupying 2 stations	

Function overview: Perform reading/writing message of the remote station that occupies 2 stations and is connected to CC-Link.

Function/FB classification name: Module FB

Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range
	REFR	Input variable	BOOL	RWR0 to RWR7 output condition signal (TRUE: Execute FALSE: Stop)	TRUE, FALSE
	REFW0 to REFW7	Input variable	BOOL	RWw0 to RWw7 input condition signal (TRUE: Enabled FALSE: Disabled)	TRUE, FALSE
	RWw0 to RWw7	Input variable	WORD	Input data to remote register RWw0 to RWw7.	0 to FFFFн
Input	RY00_0F	Input variable	DWORD	Input data of remote output (RY00 to RY0F)	0 to FFFFFFFFH (refer to (3) in POINT)
	RY10_1F	Input variable	DWORD	Input data of remote output (RY10 to RY1F)	0 to FFFFFFFF (refer to (3) in POINT)
	RY20_2F	Input variable	DWORD	Input data of remote output (RY20 to RY2F)	0 to FFFFFFFF (refer to (3) in POINT)
	RY30_3F	Input variable	DWORD	Input data of remote output (RY30 to RY3F)	0 to FFFFFFFFн (refer to (3) in POINT)
	RWr0 to RWr7	Output variable	WORD	Output data from remote register RWr0 to RWr7	0 to FFFFн
	RX00_0F	Output variable	WORD	Output data of remote input (RX00 to RX0F)	0 to FFFFн (refer to (4) in POINT)
Output	RX10_1F	Output variable	WORD	Output data of remote input (RX10 to RX1F)	0 to FFFFн (refer to (4) in POINT)
	RX20_2F	Output variable	WORD	Output data of remote input (RX20 to RX2F)	0 to FFFFн (refer to (4) in POINT)
	RX30_3F	Output variable	WORD	Output data of remote input (RX30 to RX3F)	0 to FFFFн (refer to (4) in POINT)

POINT

- (1) Input of remote register or remote output that are not connected to input pin can be performed via ladder program.
 - However, please be sure to pre-set the Rww \square to input condition signal used on ladder program into FALSE in making input to remote register.
- (2) Remote output/input has nothing to do with REFR and REFW0 to REFW7, this module FB performs reading/writing to CC-Link master module during each execution.
- (3) Please use "BIND" function in remote output.(RY00 0F to RY30 3F are connected to OUT of BIND function)
- (4) Please use "UNBIND" function in remote input.

 (RX00_0F to RX30_3F are connected to IN of UNBIND function)

Public Variable (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage	
Variable processing	MASTERRDY	Public variable	BOOL	Module ready of master station (TRUE: ON FALSE: OFF) Store the module READY status of master station. Execute input/output when module READY of master station is TRUE.	TRUE, FALSE	FALSE	System	

^{*1} Please execute reading/writing via program.

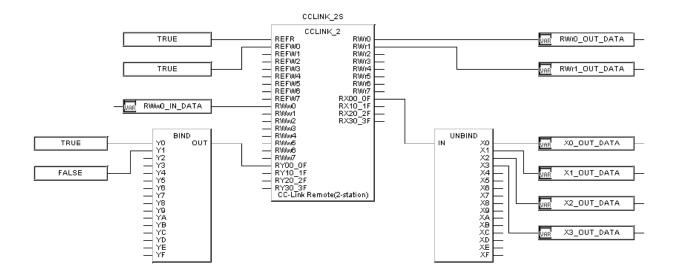
It will not be shown in FB property window of PX Developer.

Function

Item		Contents						
		Cond	dition					
Input condition		Input condition signal (REFW0 to REFW7)	Master module READY (MASTERDY)	Input (RWw0 to RWw7)				
signal (REFW0 to		I IRUE I '		Write the input value from input variable RWw0 to RWw7 into CC-Link module.				
REFW7)			FALSE	Not write the input value from input variable RWw0 to				
		FALSE	TRUE or FALSE	RWw7 into CC-Link module.				
			dition Master module READY	Output (RWr0 to RWr7)				
		Cond	dition					
Output condition		Output condition signal (REFR)	(MASTERDY)	,				
signal (REFR)		TRUE	TRUE	Read the value stored on CC-Link module and output them from output variable RWr0 to RWr7.				
(1 ()			FALSE	Keep the previous value of output variable RWr0 to				
		FALSE	TRUE or FALSE	RWr7.				
Others	For details about all the processing and settings of the corresponding module of this module FB, refer to the following manual: QJ61BT11 Control & Communication Link System Master/Local Module User's Manual.							

POINT

- (1) Please do not set the auto refreshing parameter when using this module FB.
- (2) Please set network parameter in GX Developer.


8 - 98 8 - 98

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

- Unable to communicate with CC-Link master module. (Error code: 1412)
- Abnormality of CC-Link master module is detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)

Program Example

8 - 99

8.5.3 CC-Link Remote Station Occupying 3 Stations (CCLINK_3)

FB	FBD	part
Pin_8CH_G	REFR REFW0	RWr0

Corresponding module	
CC-Link remote station occupying 3 stations	

Function overview: Reading/writing message of the remote station that occupies 3 stations and is connected to CC-Link.

Function/FB classification name: Module FB

Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range	
	REFR	Input variable	BOOL	RWr0 to RWrB output condition signal (TRUE: Execute FALSE: Stop)	TRUE, FALSE	
	REFW0 to REFWB	Input variable	BOOL	RWw0 to RWwB input condition signal (TRUE: Enabled FALSE: Disabled)	TRUE, FALSE	
	RWw0 to RWwB	Input variable	WORD	Input data to remote register RWw0 to RWwB.	0 to FFFFн	
	RY00_0F	Input variable	DWORD	Input data of remote output (RY00 to RY0F)	0 to FFFFFFFFн (refer to (3) in POINT)	
Input	RY10_1F	Input variable	DWORD	Input data of remote output (RY10 to RY1F)	0 to FFFFFFFFн (refer to (3) in POINT)	
	RY20_2F	Input variable	DWORD	Input data of remote output (RY20 to RY2F)	0 to FFFFFFFFн (refer to (3) in POINT)	
	RY30_3F	Input variable	DWORD	Input data of remote output (RY30 to RY3F)	0 to FFFFFFFFн (refer to (3) in POINT)	
	RY40_4F	Input variable	DWORD	Input data of remote output (RY40 to RY4F)	0 to FFFFFFFFн (refer to (3) in POINT)	
	RY50_5F	Input variable	DWORD	Input data of remote output (RY50 to RY5F)	0 to FFFFFFFFн (refer to (3) in POINT)	
	RWr0 to RWrB	Output variable	WORD	Output data from remote register RWr0 to RWrB	0 to FFFFн	
	RX00_0F	Output variable	WORD	Output data of remote input (RX00 to RX0F)	0 to FFFFн (refer to (4) in POINT)	
	RX10_1F	Output variable	WORD	Output data of remote input (RX10 to RX1F)	0 to FFFFн (refer to (4) in POINT)	
Output	RX20_2F	Output variable	WORD	Output data of remote input (RX20 to RX2F)	0 to FFFFн (refer to (4) in POINT)	
	RX30_3F	Output variable	WORD	Output data of remote input (RX30 to RX3F)	0 to FFFFн (refer to (4) in POINT)	
	RX40_4F	Output variable	WORD	Output data of remote input (RX40 to RX4F)	0 to FFFF _H (refer to (4) in POINT)	
	RX50_5F	Output variable	WORD	Output data of remote input (RX50 to RX5F)	0 to FFFFн (refer to (4) in POINT)	

8 - 100 8 - 100

POINT

- (1) Input of remote register or remote output pin that are not connected to input pin can be performed via ladder program.
 - However, please be sure to pre-set the RWw □ input condition signal used on ladder program into FALSE in making input to remote register.
- (2) Remote output/input has nothing to do with REFR and REFW0 to REFWB, this module FB performs reading/writing to CC-Link master module during each execution.
- (3) Please use "BIND" function in remote output. (RY00_0F and RY50_5F are connected to OUT of BIND function)
- (4) Please use "UNBIND" function in remote input. (RX00 0F and RX50 5F are connected to IN of UNBIND function)

Public Variable (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Variable processing	MASTERRDY	Public variable		Module ready signal of master station (TRUE: ON FALSE: OFF) Store the module READY status of master station. Execute input/output when module READY signal of master station is TRUE.	TRUE, FALSE	FALSE	System

^{*1} Please execute reading/writing via program.

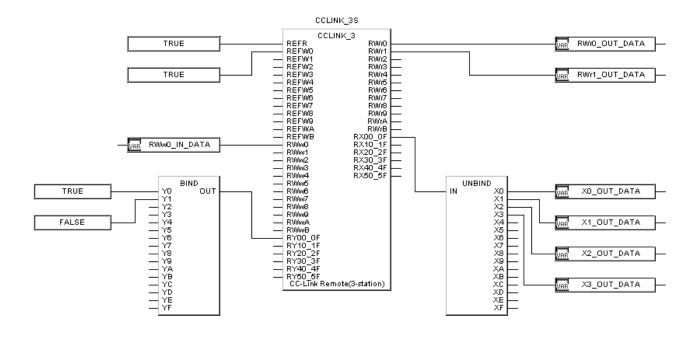
It will not be shown in FB property window of PX Developer.

Function

Item		Cont	ents	
Input condition signal (REFW0 to REFWB)	Сог	ndition		
	Input condition signal (REFW0 to REFWB)	Master module READY (MASTERRDY)	Input (RWw0 to RWwB)	
	TRUE	TRUE	Write the input value from input variable RWw0 to RWwB into CC-Link module.	
		FALSE	Not write the input value from input variable RWw0	
	FALSE	TRUE or FALSE	to RWwB into CC-Link module.	
Outruit	Cor Output condition signal	ndition Master module READY	Output (RWr0 to RWrB)	
Output	(REFR)	(MASTERRDY)	,	
condition signal (REFR)	TRUE	TRUE	Read the value stored in CC-Link module and output them from output variable RWr0 to RWrB.	
(NLI N)		FALSE	Keep the previous value of output variable RWr0 to	
	FALSE	TRUE or FALSE	RWrB.	
Others	following manual:	, ,	the corresponding module of this module FB, refer to the	

POINT

- (1) Please do not set the auto refreshing parameter when using this module FB.
- (2) Please set network parameter in GX Developer.


8 - 101 8 - 101

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

- Unable to communicate with CC-Link master module. (Error code: 1412)
- Abnormality of CC-Link master module is detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)

Program Example

8 - 102 8 - 102

8.5.4 CC-Link Remote Station Occupying 4 Stations (CCLINK_4)

FB	FBD part							
FB CCLINK_4	\rm \tau \rm \tau \rm \tau \rm \tau \rm	REFR REFW0 REFWF RWw0 RWwF RY00_0F	CCLINK_4 RWr0 RWrF RX00_0F RX10_1F RX20_2F RX30_3F RX40_4F	\ \ 				
	_ _ _ _	RY10_1F RY20_2F RY30_3F RY40_4F RY50_5F RY60_6F RY70_7F CC-Link	RX50_5F RX60_6F RX70_7F					

Corresponding module	
CC-Link remote station occupying 4 stations	

Function overview: Read/write message of the remote station that occupies 4 stations and is connected to CC-Link.

Function/FB classification name: Module FB

Input and Output Pin

Pin	Variable name	Variable type	Data type	Contents	Range	
	REFR	Input variable	BOOL	RWr0 to RWrF output condition signal (TRUE: Execute FALSE: Stop)	TRUE, FALSE	
	REFW0, REFWF	Input variable	BOOL	RWw0 to RWwF input condition signal (TRUE: Enabled FALSE: Disabled)	TRUE, FALSE	
	RWw0, RWwF	Input variable	WORD	Input data to remote register RWw0 to RWwF.	0 to FFFFн	
	RY00_0F	Input variable	DWORD	Input data of remote output (RY00 to RY0F)	0 to FFFFFFFFH (refer to (3) in POINT)	
Input	RY10_1F	Input variable	DWORD	Input data of remote output (RY10 to RY1F)	0 to FFFFFFFFH (refer to (3) in POINT)	
	RY20_2F	Input variable	DWORD	Input data of remote output (RY20 to RY2F)	0 to FFFFFFFFH (refer to (3) in POINT)	
	RY30_3F	Input variable	DWORD	Input data of remote output (RY30 to RY3F)	0 to FFFFFFFFH (refer to (3) in POINT)	
	RY40_4F	Input variable	DWORD	Input data of remote output (RY40 to RY4F)	0 to FFFFFFFFH (refer to (3) in POINT)	
	RY50_5F	Input variable	DWORD	Input data of remote output (RY50 to RY5F)	0 to FFFFFFFH (refer to (3) in POINT)	
	RY60_6F	Input variable	DWORD	Input data of remote output (RY60 to RY6F)	0 to FFFFFFFFH (refer to (3) in POINT)	
	RY70_7F	Input variable	DWORD	Input data of remote output (RY70 to RY7F)	0 to FFFFFFFFH (refer to (3) in POINT)	
	RWr0, RWrF	Output variable	WORD	Output data from remote register RWr0 to RWrF	0 to FFFFн	
	RX00_0F	Output variable	WORD	Output data of remote input (RX00 to RX0F)	0 to FFFF⊬ (refer to (4) in POINT)	
	RX10_1F	Output variable	WORD	Output data of remote input (RX10 to RX1F)	0 to FFFF⊬ (refer to (4) in POINT)	
L	RX20_2F	Output variable	WORD	Output data of remote input (RX20 to RX2F)	0 to FFFF⊬ (refer to (4) in POINT)	
Output	RX30_3F	Output variable	WORD	Output data of remote input (RX30 to RX3F)	0 to FFFF⊬ (refer to (4) in POINT)	
	RX40_4F	Output variable	WORD	Output data of remote input (RX40 to RX4F)	0 to FFFF⊬ (refer to (4) in POINT)	
	RX50_5F	Output variable	WORD	Output data of remote input (RX50 to RX5F)	0 to FFFFн (refer to (4) in POINT)	
	RX60_6F	Output variable	WORD	Output data of remote input (RX60 to RX6F)	0 to FFFFн (refer to (4) in POINT)	
	RX70_7F	Output variable	WORD	Output data of remote input (RX70 to RX7F)	0 to FFFF _H (refer to (4) in POINT)	

8 - 103 8 - 103

POINT

- (1) Input of remote register or remote output that are not connected to input pin can be performed via ladder program.
 - However, please be sure to pre-set the RWw \square input condition signal used on ladder program into FALSE in making input to remote register.
- (2) Remote output/input has nothing to do with REFR and REFW0 to REFWF, this module FB performs reading/writing to CC-Link master module during each execution.
- (3) Please use "BIND" function in remote output.
 (RY00 0F and RY70 7F are connected to OUT of BIND function)
- (4) Please use "UNBIND" function in remote input. (RX00_0F and RX70_7F are connected to IN of UNBIND function)

Public Variable (*1)

	Variable name	Variable type	Data type	Contents	Range	Initial value	Storage
Variable processing	MASTERRDY	Public variable	BOOL	Module ready of master station (TRUE: ON FALSE: OFF) Store the module READY status of master station. Execute input/output when module READY of master station is TRUE.	TRUE, FALSE	FALSE	System

^{*1} Please execute reading/writing via program.

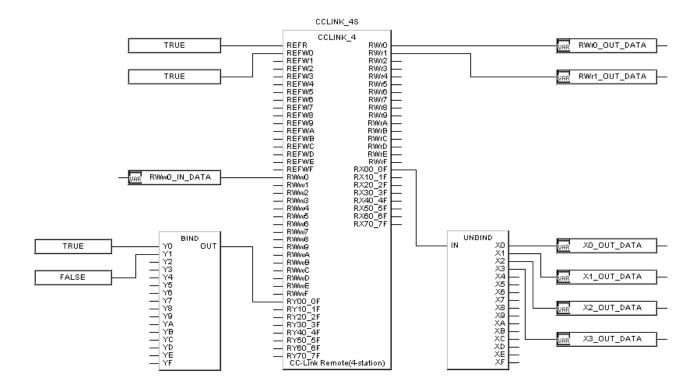
It will not be shown in FB property window of PX Developer.

Function

Item	Contents							
	Con	dition						
Input condition	Input condition signal (REFW0 to REFWF)	Master module READY (MASTERRDY)	Input (RWw0 to RWwF)					
signal (REFW0 to	TRUE	TRUE	Write the input value from input variable RWw0 to RWwF into CC-Link module.					
REFWF)		FALSE	Not write the input value from input variable RWw0 to					
	FALSE	TRUE or FALSE	RWwF into CC-Link module.					
	Con	dition						
Output	Con Output condition signal (REFR)	dition Master module READY (MASTERRDY)	Output (RWr0 to RWrF)					
condition	Output condition signal (REFR)	Master module READY (MASTERRDY)	Output (RWr0 to RWrF) Read the value stored in CC-Link module and output					
condition signal	Output condition signal	Master module READY (MASTERRDY) TRUE	, ,					
Output condition signal (REFR)	Output condition signal (REFR)	Master module READY (MASTERRDY)	Read the value stored in CC-Link module and output					

POINT

- (1) Please do not set the auto refreshing parameter when using this module FB.
- (2) Please set network parameter in GX Developer.


8 - 104 8 - 104

Error

Error may occur in the following cases, error code will be displayed on the FBD program diagnostics screen of PX Developer programming tool.

- Unable to communicate with CC-Link master module. (Error code: 1412)
- Abnormality of CC-Link master module is detected. (Error code: 1402)
- When the input and output number that is specified by the head I/O address of module FB declaration window is not intelligent function module. (Error code: 2110)

Program Example

8 - 105 8 - 105

APPENDIX

Appendix 1 List of Various Tag Type/Tag Data

The tag FB type parts hold their data area according to tag type (tag data). The appendix covers the lists and detailed information of all tag data, and all functions of tag FB/tag access FB that can be used on all tags.

For more details, please refer to the following.

- Data area (tag data) list for all tag types
 - \rightarrow refer to Appendix 1.1
- Detailed information about data area (tag data) of all tag types.
 - \rightarrow refer to Appendix 1.2
- List of tag FB/tag access FB and functions that can be used on all tag types.
 - \rightarrow refer to Appendix 1.3

List of data area (tag data) of all tag types.

Tag type list	Tag type	Name			
Loop tag	PID ······ Basic PID control				
	2PID2-Degree-of-	Freedom PID Control			
	2PIDH ······ 2-Degree-of	-Freedom Advanced PID Control			
	PIDP ·····Position type	PID control			
<u> </u>	SPI ····· Sample PI co	ontrol			
	I-PD ······I-PD control				
	BPI····· Blend PI con	itrol			
	R Ratio control				
	ONF2 ······· 2-position Ol	N/OFF control			
	ONF3 ········ 3-position O	N/OFF control			
<u> </u>	MONI Monitor				
<u> </u>	MWM ······ Manual outp	ut with monitoring			
	BC ····· Batch prepar	ration			
	PSUM ······ Puse integra	tor			
<u> </u>	SEL Loop selector	or			
	MOUT Manual outp	ut			
	PGS ····· Program set	ter			
	PGS2 ····· Multi-point p	rogram setter			
Status tag	NREV Motor irrever	rsible control			
	REV Motor revers	ible control			
	MVAL1ON/OFF con	trol 1(without intermediate value)			
	MVAL2······· ON/OFF cor	atrol 2(with intermediate value)			
	TIMER1 ······ Timer1(timer	stops when COMPLETE flag is ON)			
	TIMER2 ······ Timer2(timer	continues when COMPLETE flag is ON)			
	COUNT1 ····· Counter 1(co	ounter stops when COMPLETE flag is ON)			
	COUNT2 ····· Counter 2(co	ounter continues when COMPLETE flag is ON)			
Alarm tag ————	ALM····· Alarm				
Message tag ———	MSG ······ Message				

App

App - 1 App - 1

Appendix 1.1 Tag Data List of Various Tag Types

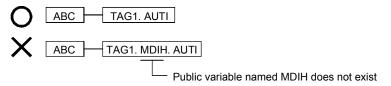
Data list for all tags is as follows.

Please refer to following 1) to 10) for details.

Data list explains from (1).

Table (1)-1 Tag memory table (PID) 1)

2)	3)	4)	5)	6)	7)	8)	9)	10)	11)
Offset	Item	Name	Setting/S rand Low limit	Ū	Unit	Initial value	Data type	Storage	Number of digits after the decimal point	Tag access FB


- 1) Table name: Tag types are indicated inside ().
- 2) Offset: indicates the offset word of memory data inside the tags.
- 3) Item: indicates tag data (tag member).
 - *1 This tag data consists of multiple BOOL type variables.

 Please refer to Appendix 1.2 (1) for details of BOOL type variables.

Besides, the items of this tag data are not public variables, while the BOOL type variables that form the items are public variables.

When it is applied on FBD program, please use BOOL type variables described in Appendix 1.2(1).

(E.g.) Replace the "AUTI" of tag FB variable name with variable "ABC"

- 4) Name: Indicates the name of tag data (tag member)
- 5) Setting/Storage range: Indicates the setting range of all items (*1)(*2)
 - *1 Please refer to following range for PH, PL, HH, LL setting/storage range.

PV high limit alarm value (PH) : (RL) to (RH) and (PL) < (PH)

PV low limit alarm value (PL) : (RL) to (RH) and (PL) < (PH)

PV high high limit alarm value (HH): (RL) to (RH) and PH) ≤ (HH)

PV low low limit alarm value (LL) : (RL) to (RH) and (LL) \leq (PL)

*2 Please set the control cycle (CT) to the integral multiple of the execution cycle. An execution cycle can be the execution cycle set by project parameter of PX Developer, timer execution cycle set in program execution setting item and interruption interval of fixed scan interruption execution.

App

App - 2 App - 2

6) Unit: Indicate unit.

7) Initial value: Indicate default value.

8) Data type: Indicate the memory data configuration.

INT : Integer data (1 word)DINT : Integer data (2 words)

REAL : Floating point real data (2 words)WORD : Hexadecimal integral data (1 word)

9) Storage: To show whether it is allowed to read/write tag data via user program.

User

It is allowed to read/write.

However, tag data with (condition *) can only be written only under the following conditions.

Condition 1: When changing control mode (MODE) via user program, please do it by P_MCHG of tag access FB.

Switch to the control mode (MODE) with TRUE as the corresponding bit item of mode inhibition (MDIH) is not allowed.

Condition 2: Stop alarm (SPA) of alarm (ALM) is written via user program.

When the user program sets stop alarm (SPA) as TRUE, stop alarm in the corresponding loop is processed.

Additionally, the bit items except stop alarm (SPA) of alarm (ALM) are written by system. Please don't write by user.

Condition 3: It is allowed to write only when the control modes are MAN and CMV.

System

It is allowed to read by user. Please don't write.

The operations are not guaranteed in the case of writing.

These are not displayed on FB property window of programming tool.

Tag data access control

Tag data access control can only be written from ActiveX Control application program which uses this control.

For details about tag data access control, please refer to PX Developer Operating Manual (Monitor Tool).

- 10) Number of digits after decimal point: Indicate the number of digits after the decimal point. N is indicated by number of digits after decimal point of + 9[N].
- 11) Tag access FB:Indicate the tag access FB which reads/writes the corresponding tag data.

App - 3 App - 3

(1) List of loop tag data List of loop tag data is as follows.

Table(1)-1 Tag memory table (PID)

Offset Item					rage range					Number of	
1	Offset	Item	Name			Unit			Storage	digits after the	Tag access FB
Hold					High limit		14.46	1,700		decimal point	
1-1 MUDE (*1) Control mode	+0	FUNC	Tag function code	1	1	_	1	INT		_	_
Alam	+1	MODE (*1)	Control mode	0	FFFFH	_	0008н	WORD		_	P_MCHG/PID(_T)/ OUT1/DUTY
ALM (1) Alam 0	+2	MDIH (*1)	Disable mode	0	FFFFH	_	0600н	WORD	User		P_MCHG
+5	+3	ALM (*1)	Alarm	0	FFFFH	_	0000н	WORD		-	Pubic
+6	+4	INH (*1)	Disable alarm detection	0	FFFFH	_	0000н	WORD	User	=	Pubic
+6	+5	ALML (*1)	Alarm level	0	FFFFH	_	0000н	WORD	User	_	_
+7	+6		Lockout tag No.	0	32	_	0	INT	Svstem	_	_
+8		CTFN		0	0002н	_	0000н			_	_
19			-	0		_				_	_
Hole PV			Number of digits after			_				_	_
Horizon Hori	+10	PV		RL	RH	UNIT	0.0	REAL	System	N	P PHPL
Head									User		P_OUT1/PID(_T)
Head DV	+14	SV	Set value	RL	RH	UNIT	0.0	REAL	` '	N	P PID(T)
+20 ML MV low limit -10 110 % 0.0 REAL User 1 P_OUT1/PID(+22 RH PV engineering value 999999 999999 UNIT 100.0 REAL User N P_PHPL +24 RL PV engineering value 999999 999999 UNIT 100.0 REAL User N P_PHPL +26 PH PV high limit alarm value RL RH UNIT 100.0 REAL User N P_PHPL +28 PL PV low limit alarm Value RL RH UNIT 100.0 REAL User N P_PHPL +30 HH PV high high limit alarm RL RH UNIT 100.0 REAL User N P_PHPL +32 LL PV low low limit alarm Value RL RH UNIT 100.0 REAL User N P_PHPL +34 SH SV high limit value RL RH UNIT 100.0 REAL User N P_PHPL +36 SL SV low limit value RL RH UNIT 100.0 REAL User N P_PHPL +38 ALPHA PV filter coefficient 0 1 - 0.2 REAL User 2 P_IN +40 HS PV high/low limit alarm 0 100 % 0.0 REAL User 2 P_PHPL +42 CTIM Variation rate alarm 0 9999 s 0.0 REAL User 2 P_PHPL +44 DPL Variation rate alarm 0 100 % 100.0 REAL User 2 P_PHPL +48 DML Dupt variation rate 0 100 % 100.0 REAL User 1 P_PHPL +48 DML Dupt variation rate 0 100 % 100.0 REAL User 1 P_PUI(T) +55 P Gain 0 9999 s 1.00 REAL User 1 P_DUI(T) +55 P Gain 0 9999 s 1.00 REAL User 1 P_DUI(T) +56 D Derivative time 0 9999 s 1.00 REAL User 1 P_DUI(T) +56 D Derivative time 0 9999 s 1.00 REAL User 1 P_DUI(T) +56 D Derivative time 0 9999 s 1.00 REAL User 1 P_DUI(T) +56 D Derivative time 0 9999 s 1.00 REAL User 1 P_DUI(T) +56 D Derivative time 0 9999 s 1.00 REAL User 1 P_DUI(T) +56 D Derivative time 0 9999 s 1.00 REAL User 1 P_DUI(T) +56 D Derivative time 0 9999 s 1.00 REAL User 1 P_DUI(T) +56 D Derivative time 0 9999 s 1.00		DV				%	0.0		System		
+22 RH PV engineering value high limit -999999 999999 UNIT 100.0 REAL User N P_PHPL +24 RL PV engineering value low limit -999999 999999 UNIT 0.0 REAL User N P_PHPL +26 PH PV high limit alarm value value RL RH UNIT 100.0 REAL User N P_PHPL +28 PL PV low low limit alarm value RL RH UNIT 100.0 REAL User N P_PHPL +30 HH PV low low limit alarm value RL RH UNIT 100.0 REAL User N P_PHPL +32 LL PV low low limit alarm value RL RH UNIT 100.0 REAL User N P_PHPL +33 SL SV low limit value RL RH UNIT 100.0 REAL User N — +36 SL SV low limit value	+18	MH	MV high limit	-10	110	%	100.0	REAL	User	1	P_OUT1/PID(_T)
122 NR	+20	ML		-10	110	%	0.0	REAL	User	1	P_OUT1/PID(_T)
+26	+22	RH	high limit	-999999	999999	UNIT	100.0	REAL	User	N	P_PHPL
Year	+24	RL		-999999	999999	UNIT	0.0	REAL	User	N	P_PHPL
+30	+26	PH	_	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+30 HH value RL RH UNIT 100.0 REAL User N P_PHPL +32 LL PV low low limit alarm value RL RH UNIT 0.0 REAL User N P_PHPL +34 SH SV high limit value RL RH UNIT 100.0 REAL User N — +36 SL SV low limit value RL RH UNIT 0.0 REAL User N — +38 ALPHA PV filter coefficient 0 1 — 0.2 REAL User 2 P_IN +40 HS PV high/low limit alarm hysterisis 0 100 % 0.0 REAL User 1 P_PHPL +42 CTIM Variation rate alarm check time 0 9999 s 0.0 REAL User 2 P_IPHPL +44 DPL Variation rate alarm 0 100 % 100.0 REAL User 1 P_PHPL +45 CT Control cycle 0 9999 s 1.00 REAL User 2 PID(_T) +48 DML high limit value 0 100 % 100.0 REAL User 2 PID(_T) +50 DVL Deviation limit value 0 100 % 100.0 REAL User 1 P_OUT1/DUT 1.50 DVL Deviation limit value 0 100 % 100.0 REAL User 2 PID(_T) +55 D DVL Deviation limit value 0 100 % 100.0 REAL User 1 P_PID(_T) +56 D D Derivative time 0 9999 s 0.0 REAL User 1 P_PID(_T) +58 GW Gap width 0 100 % 0.0 REAL User 1 P_PID(_T) +60 GG Gap gain 0 999 — 1.0 REAL User 1 P_PID(_T) +60 GG Gap gain 0 999 — 1.0 REAL User 1 P_PID(_T) +60 GG Gap gain 0 999 — 1.0 REAL User 1 P_PID(_T) +60 MVP MV internal operation 1 9999 s 1.0 REAL User 1 P_PID(_T) +68 CTDUTY Control output cycle 0 9999 s 1.0 REAL User 2 P_DID(_T) +70 AT1STEPMV Step Manipulated variable for AT1 +72 AT1ST Sampling interval time 0 9999 s 1.0 REAL System 1 P_PID(_T) +73 AT1ST Sampling interval time 0 9999 s 1.0 REAL System 1 P_PID(_T)	+28	PL	PV low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+32	+30	НН		RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+36 SL SV low limit value RL RH UNIT 0.0 REAL User N — +38 ALPHA PV filter coefficient 0 1 — 0.2 REAL User 2 P_IN +40 HS PV high/low limit alarm hysterisis 0 100 % 0.0 REAL User 1 P_PHPL +42 CTIM Variation rate alarm check time 0 9999 s 0.0 REAL User 1 P_PHPL +44 DPL Variation rate alarm check time 0 100 % 100.0 REAL User 1 P_PHPL +44 DPL Variation rate alarm value 0 100 % 100.0 REAL User 1 P_PHPL +44 DPL Variation rate alarm value 0 100 % 100.0 REAL User 1 P_PHPL +44 DPL Output variation rate alarm value 0	+32	LL		RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
ALPHA PV filter coefficient O 1 O.2 REAL User 2 P_IN	+34	SH	SV high limit value	RL	RH	UNIT	100.0	REAL	User	N	_
HS	+36	SL	SV low limit value	RL	RH	UNIT	0.0	REAL	User	N	-
HS	+38	ALPHA	PV filter coefficient	0	1	_	0.2	REAL	User	2	P_IN
+42 CTIM check time 0 9999 \$ 0.0 REAL User 2 P_PHPL +44 DPL Variation rate alarm value 0 100 % 100.0 REAL User 1 P_PHPL +46 CT Control cycle 0 9999 \$ 1.00 REAL User 2 PID(_T) +48 DML Output variation rate high limit value 0 100 % 100.0 REAL User 1 P_OUT1/DUT +50 DVL Deviation limit value 0 100 % 100.0 REAL User 1 P_PID(_T) +52 P Gain 0 999 - 1.00 REAL User 1 P_PID(_T) +54 I Integral time 0 9999 \$ 10.0 REAL User 1 P_PID(_T) +56 D Derivative time 0 9999 \$ 0.0 REAL User 1 P_PID(_T) +58 GW <td>+40</td> <td>HS</td> <td>_</td> <td>0</td> <td>100</td> <td>%</td> <td>0.0</td> <td>REAL</td> <td>User</td> <td>1</td> <td>P_PHPL</td>	+40	HS	_	0	100	%	0.0	REAL	User	1	P_PHPL
+44 DPL value 0 100 % 100.0 REAL User 1 P_PHPL +46 CT Control cycle 0 9999 s 1.00 REAL User 2 PID(_T) +48 DML Output variation rate high limit value 0 100 % 100.0 REAL User 1 P_OUT1/DUT +50 DVL Deviation limit value 0 100 % 100.0 REAL User 1 P_PID(_T) +52 P Gain 0 999 - 1.00 REAL User 2 P_PID(_T) +54 I Integral time 0 9999 s 10.0 REAL User 1 P_PID(_T) +56 D Derivative time 0 9999 s 0.0 REAL User 1 P_PID(_T) +58 GW Gap width 0 100 % 0.0 REAL	+42	СТІМ		0	9999	s	0.0	REAL	User	2	P_PHPL
+48 DML Output variation rate high limit value 0 100 % 100.0 REAL User 1 P_OUT1/DUT +50 DVL Deviation limit value 0 100 % 100.0 REAL User 1 P_PID(_T) +52 P Gain 0 999 — 1.00 REAL User 2 P_PID(_T) +54 I Integral time 0 9999 s 10.0 REAL User 1 P_PID(_T) +56 D Derivative time 0 9999 s 0.0 REAL User 1 P_PID(_T) +58 GW Gap width 0 100 % 0.0 REAL User 1 P_PID(_T) +60 GG Gap gain 0 99 — 1.0 REAL User 1 P_PID(_T) +62 MVP MV internal operation value 9999999 s 1.0 REAL <t< td=""><td>+44</td><td>DPL</td><td></td><td>0</td><td>100</td><td>%</td><td>100.0</td><td>REAL</td><td>User</td><td>1</td><td>_</td></t<>	+44	DPL		0	100	%	100.0	REAL	User	1	_
+48 DML high limit value 0 100 % 100.0 REAL User 1 P_OUT/JUI +50 DVL Deviation limit value 0 100 % 100.0 REAL User 1 P_PID(_T) +52 P Gain 0 999 — 1.00 REAL User 2 P_PID(_T) +54 I Integral time 0 9999 s 10.0 REAL User 1 P_PID(_T) +56 D Derivative time 0 9999 s 0.0 REAL User 1 P_PID(_T) +58 GW Gap width 0 100 % 0.0 REAL User 1 P_PID(_T) +60 GG Gap gain 0 99 — 1.0 REAL User 1 P_PID(_T) +62 MVP MV internal operation value -9999999 s 1.0 REAL System	+46	CT	Control cycle	0	9999	s	1.00	REAL	User	2	PID(_T)
+52 P Gain 0 999 — 1.00 REAL User 2 P_PID(_T) +54 I Integral time 0 9999 s 10.0 REAL User 1 P_PID(_T) +56 D Derivative time 0 9999 s 0.0 REAL User 1 P_PID(_T) +58 GW Gap width 0 100 % 0.0 REAL User 1 P_PID(_T) +60 GG Gap gain 0 99 — 1.0 REAL User 1 P_PID(_T) +62 MVP MV internal operation value -999999 999999 — 0.0 REAL System 1 — +68 CTDUTY Control output cycle 0 9999 s 1.0 REAL System 1 P_PID(_T) +72 AT1ST Sampling interval time 0 9999 s 1.00 REAL	+48	DML	•	0	100	%	100.0	REAL	User	1	P_OUT1/DUTY
+54 I Integral time 0 9999 s 10.0 REAL User 1 P_PID(_T) +56 D Derivative time 0 9999 s 0.0 REAL User 1 P_PID(_T) +58 GW Gap width 0 100 % 0.0 REAL User 1 P_PID(_T) +60 GG Gap gain 0 99 — 1.0 REAL User 1 P_PID(_T) +62 MVP MV internal operation value -999999 999999 — 0.0 REAL System 1 — +68 CTDUTY Control output cycle 0 9999 s 1.0 REAL User 2 P_DUTY +70 AT1ST Sampling interval time 0 9999 s 1.00 REAL System 1 P_PID(_T)						%					
+56 D Derivative time 0 9999 s 0.0 REAL User 1 P_PID(_T) +58 GW Gap width 0 100 % 0.0 REAL User 1 P_PID(_T) +60 GG Gap gain 0 99 — 1.0 REAL User 1 P_PID(_T) +62 MVP MV internal operation value -999999 999999 — 0.0 REAL System 1 — +68 CTDUTY Control output cycle 0 9999 s 1.0 REAL User 2 P_DUTY +70 AT1STEPMV Step Manipulated variable for AT1 -100 100 % 0.0 REAL System 1 P_PID(_T)											
+58 GW Gap width 0 100 % 0.0 REAL User 1 P_PID(_T) +60 GG Gap gain 0 99 — 1.0 REAL User 1 P_PID(_T) +62 MVP MV internal operation value -999999 999999 — 0.0 REAL System 1 — +68 CTDUTY Control output cycle 0 9999 s 1.0 REAL User 2 P_DUTY +70 AT1STEPMV Step Manipulated variable for AT1 -100 100 % 0.0 REAL System 1 P_PID(_T) +72 AT1ST Sampling interval time 0 9999 s 1,00 REAL System 2 P_PID(_T)											
+60 GG Gap gain 0 99 — 1.0 REAL User 1 P_PID(_T) +62 MVP MV internal operation value -999999 999999 — 0.0 REAL System 1 — +68 CTDUTY Control output cycle 0 9999 s 1.0 REAL User 2 P_DUTY +70 AT1STEPMV Step Manipulated variable for AT1 -100 100 % 0.0 REAL System 1 P_PID(_T) +72 AT1ST Sampling interval time 0 9999 s 1.00 REAL System 2 P_PID(_T)											
+62 MVP MV internal operation value -999999 999999 — 0.0 REAL System 1 — +68 CTDUTY Control output cycle 0 9999 s 1.0 REAL User 2 P_DUTY +70 AT1STEPMV Step Manipulated variable for AT1 -100 100 % 0.0 REAL System 1 P_PID(_T) +72 AT1ST Sampling interval time 0 9999 s 1.00 REAL System 2 P_PID(_T)											
+68 CTDUTY Control output cycle 0 9999 s 1.0 REAL User 2 P_DUTY +70 AT1STEPMV Step Manipulated variable for AT1 -100 100 % 0.0 REAL System 1 P_PID(_T) +72 AT1ST Sampling interval time 0 9999 s 1 00 REAL System 2 P_PID(_T)			MV internal operation								F_FID(_1)
+70 AT1STEPMV Step Manipulated variable for AT1 -100 100 % 0.0 REAL System 1 P_PID(_T) +72 AT1ST Sampling interval time 0 9999 S 1.00 REAL System 2 P_PID(_T)	+68	CTDUTY		0	9999	s	1.0	RFAI	User	2	P DUTY
+72 AT1ST Sampling interval time 0 9999 s 1.00 REAL System 2 P. PID(T)			Step Manipulated								
	+72	AT1ST		0	9999	s	1.00	REAL	System	2	P_PID(_T)
+74 AT1TOUT1 Time-out period for AT1 0 9999 s 100.0 REAL System 1 P_PID(_T)	+74	AT1TOUT1		0	9999	s	100.0	REAL	System	1	P PID(T)

Offset	Item	Name	Setting/Storage range		Unit	Initial	Data	Storage	Number of digits after the	Tag access FB
Oliset	ile	Name	Low limit	High limit		value	type	Storage	decimal point	ray access r b
+76	AT1TOUT2	Time-out period after Maximum slope for AT1	0	9999	s	10.0	REAL	System	1	P_PID (_T)
+94	DOM (*1)	Monitor output buffer	0	FFFFH	I	0000н	WORD	Tag data access control	I	
+95	DIM (*1)	Monitor input buffer	0	FFFFH	1	0000н	WORD	System		Ī

^{*1} This tag data consist of multiple BOOL type variables.
Please refer to Appendix 1.2 (1) and 1.2 (1) (a) for details of BOOL type variables.

Table(1)-2 Tag storage table (2PID)

,				, -	J	ge labit	,			ı
Offset	Item	Name	Setting/Stor	rage range High limit	Unit	Initial value	Data type	Storage	Number of digits after the decimal point	Tag access FB
+0	FUNC	Tag function code	14	14	_	14	INT	System	_	_
+1	MODE (*1)	Control mode	0	FFFFH	_	0008н	WORD	User	_	P_MCHG/2PID
								(condition 1)		(_T) /OUT1/DUTY
+2	MDIH (*1)	Disable mode	0	FFFFH		0600н	WORD	User		P_MCHG
+3	ALM (*1)	Alarm	0	FFFFH	_	0000н	WORD	User (condition 2)	_	Public
+4	INH (*1)	Disable alarm detection	0	FFFFH	Ī	0000н	WORD	User	ı	Public
+5	ALML (*1)	Alarm level	0	FFFFH	_	0000н	WORD	User	_	_
+6	CTNO	Lockout tag No.	0	32	_	0	INT	System	-	_
+7	CTFN	Lockout tag function	0	0002н		0000н	WORD	System	_	-
+8	UNIT	Unit	0	127		0	INT	User	=	=
+9	N	Digits number after decimal point	0	4	1	1	INT	User	1	_
+10	PV	Process value	RL	RH	UNIT	0.0	REAL	System	N	P_PHPL
+12	MV	Manipulated variable	-10	110	%	0.0	REAL	User (condition 3)	1	P_OUT1/2PID(_T)
+14	SV	Set value	RL	RH	UNIT	0.0	REAL	User	N	2PID(T)
+16	DV	Deviation	-110	110	%	0.0	REAL	System	1	2PID(T)
+18	MH	MV high limit value	-10	110	%	100.0	REAL	User	1	P_OUT1/2PID(_T)
+20	ML	MV low limit value	-10	110	%	0.0	REAL	User	1	P_OUT1/2PID(_T)
+22	RH	PV engineering value high limit	-999999	999999	UNIT	100.0	REAL	User	N	P_PHPL
+24	RL	PV engineering value low limit	-999999	999999	UNIT	0.0	REAL	User	N	P_PHPL
+26	PH	PV high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+28	PL	PV low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+30	НН	PV high high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+32	LL	PV low low limit alarm value for	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+34	SH	SV high limit value	RL	RH	UNIT	100.0	REAL	User	N	_
+36	SL	SV low limit value	RL	RH	UNIT	0.0	REAL	User	N	_
+38	ALPHA	PV filter coefficient	0	1		0.2	REAL	User	2	P_IN
+40	HS	PV high/low limit alarm hysteresis	0	100	%	0.0	REAL	User	1	P_PHPL
+42	CTIM	Variation rate alarm check time	0	9999	s	0.0	REAL	User	2	P_PHPL
+44	DPL	Variation rate alarm value	0	100	%	100.0	REAL	User	1	P_PHPL
+46	CT	Control cycle	0	9999	S	1.0	REAL	User	2	P_2PID(_T)
+48	DML	Output variation rate high limit value	0	100	%	100.0	REAL	User	1	P_OUT1
+50	DVL	Deviation limit value	0	100	%	100.0	REAL	User	1	P_2PID(_T)
+52	Р	Gain	0	999		1.00	REAL	User	2	P_2PID(_T)
+54		Integral time	0	9999	S	10.0	REAL	User	1	P_2PID(_T)
+56	D	Derivative time	0	9999	S	0.0	REAL	User	1	P_2PID(_T)
+58	GW	Gap width	0	100	%	0.0	REAL	User	1	P_2PID(_T)
+60	GG MVP	Gap gain MV internal	-999999	999 999999		0.0	REAL REAL	User System	1	P_2PID(_T)
+64	ALPHA2	operation value 2-degree-of-freedom	0	1	_	0.00	REAL	User	2	P 2PID(T)
	BETA2	parameter α 2-degree-of-freedom	0	1				User		
+66		parameter β			_	1.00	REAL		2	P_2PID(_T)
+68	CTDUTY	Control output cycle	0	9999	S	1.0	REAL	User	2	P_DUTY
+70	AT1STEPMV	Step Manipulated variable for AT1 use	-100	100	%	0.0	REAL	System	1	P_2PID(_T)
+72	AT1ST	Sampling period for AT1 use	0	9999	s	1.00	REAL	System	2	P_2PID(_T)
+74	AT1TOUT1	Time-out period for AT1.	0	9999	s	100.0	REAL	System	1	P_2PID(_T)
+76	AT1TOUT2	Time-out period after maximal slope for AT1	0	9999	s	10.0	REAL	System	1	P_2PID(_T)
		ALI								

Offset	Item	Name	Setting/Stor	age range	Unit	Initial	Data	Storage	Number of digits after the	Tag assess FD
	Name	Low limit	High limit	Offic	value	type	Storage	decimal point	Tag access FB	
+94	DOM (*1)	Monitor output buffer	0	FFFFH	ı	0000н	WORD	Tag data access control	_	_
+95	DIM (*1)	Monitor input buffer	0	FFFFH	_	0000н	WORD	System	_	_

^{*1} This tag data consist of multiple BOOL type variables.

Please refer to Appendix 1.2 (1) and Appendix 1.2 (1) (a) for details of BOOL type variables.

App - 7 App - 7

Table(1)-3 Tag storage table (2PIDH)

				(1)-3 Tag	, otora	go tabi	C (21 1D	,	Number of digits	
Offset	Item	Name	Setting/Sto Low limit	rage range High limit	Unit	Initial value	Data type	Storage	after the decimal point	Tag access FB
+0	FUNC	Tag function code	17	17	_	17	INT	System	_	_
+1	MODE (*1)	Control mode	0	FFFFH	_	0008н	WORD	User (condition 1)	_	P_MCHG/ P_2PIDH(_T)_/ P_OUT3_/DUTY
+2	MDIH (*1)	Disable mode	0	FFFFH	_	0600н	WORD	User	_	P_MCHG
+3	ALM (*2)	Alarm	0	FFFFH	_	0000н	WORD	User (condition 2)	-	Public
+4	INH (*2)	Disable alarm detection	0	FFFFH	=	0000н	WORD	User	_	Public
+5	ALML (*2)	Alarm level	0	FFFFH	_	0000н	WORD	User	_	_
+6	CTNO	Lockout tag No.	0	32	_	0	INT	System	_	1
+7	CTFN	Lockout tag function	0	0002н	_	0000н	WORD	System	_	_
+8	UNIT	Unit	0	127		0	INT	User	_	_
+9	N	Digits number after decimal point	0	4	_	1	INT	User	_	l
+10	PV	Process value	RL	RH	UNIT	0.0	REAL	System	N	P_PHPL
+12	MV	Manipulated variable	-10	110	%	0.0	REAL	User (condition 3)	1	P_OUT3_/ P_2PIDH(_T)_
+14	SVC	Set value (current)	RL	RH	UNIT	0.0	REAL	System	N	P_2PIDH(_T)_
+16	DV	Deviation	-110	110	%	0.0	REAL	System	1	P_2PIDH(_T)_
+18	MH	MV high limit value	-10	110	%	100.0	REAL	User	1	P_OUT3_/ P_2PIDH(_T)_
+20	ML	MV low limit value	-10	110	%	0.0	REAL	User	1	P_OUT3_/ P_2PIDH(_T)_
+22	RH	PV engineering value high limit	-999999	999999	UNIT	100.0	REAL	User	N	P_PHPL
+24	RL	PV engineering value low limit	-999999	999999	UNIT	0.0	REAL	User	N	P_PHPL
+26	PH	PV high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+28	PL	PV low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+30	НН	PV high high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+32	LL	PV low low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+34	SH	SV high limit value	RL	RH	UNIT	100.0	REAL	User	N	P 2PIDH(T)
+36	SL	SV low limit value	RL	RH	UNIT	0.0	REAL	User	N	P_2PIDH(_T)_
+38	ALPHA	PV filter coefficient	0	1	_	0.2	REAL	User	2	P_IN
+40	HS	PV high/low limit alarm hysteresis	0	100	%	0.0	REAL	User	1	P_PHPL
+42	CTIM	Variation rate alarm check time	0	9999	S	0.0	REAL	User	2	P_PHPL
+44	DPL	Variation rate alarm value	0	100	%	100.0	REAL	User	1	P_PHPL
+46	СТ	Control cycle	0	9999	S	1.0	REAL	User	2	P_2PIDH(_T)_
+48	DML	Output variation rate high limit value	0	100	%	100.0	REAL	User	1	P_OUT3_
+50	DVL	Deviation limit value	0	100	%	100.0	REAL	User	1	P_2PIDH(_T)_)
+52	P	Gain	0	999	-	1.00	REAL	User	2	P 2PIDH(T)
+54	I	Integral time	0	9999	s	10.0	REAL	User	1	P_2PIDH(_T)_
+56	D	Derivative time	0	9999	S	0.0	REAL	User	1	P_2PIDH(_T)_
+58	GW	Gap width	0	100	_	0.0	REAL	User	1	P_2PIDH(_T)_
+60	GG	Gap gain	0	99	_	1.0	REAL	User	1	P_2PIDH(_T)_
+62	MVP	MV internal operation value	-999999	999999	_	0.0	REAL	System	1	_
+64	ALPHA2	2-degree-of-freedom parameter α	0	1	-	0.00	REAL	User	2	P_2PIDH(_T)_
+66	BETA2	2-degree-of-freedom parameter β	0	1	_	1.00	REAL	User	2	P_2PIDH(_T)_
+68	CTDUTY	Control output cycle	0	9999	S	1.00	REAL	User	2	P_DUTY
+70	AT1STEPMV	Step Manipulated variable for AT1 use	-100	100	%	0.0	REAL	System	1	P_2PIDH(_T)_
+72	AT1ST	Sampling period for AT1 use	0	9999	s	1.00	REAL	System	2	P_2PIDH(_T)_

Offset	Item	Name	Setting/Sto	rage range	Unit	Initial	Data	Storage	Number of digits after the decimal	Tag access FB
Oliset	il biii	Name	Low limit	High limit	Offic	value	type	Storage	point	rag access r B
+74	AT1TOUT1	Time-out period for AT1/AT2	0	9999	s	100.0	REAL	System	1	P_2PIDH(_T)_
+76	AT1TOUT2	Time-out period after maximal slope for AT1	0	9999	s	10.0	REAL	System	1	P_2PIDH(_T)_
+78	AT2HS	Hysterisis for AT2	0	10	%	1.0	REAL	System	1	P_2PIDH(_T)_
+80	AT2MVH	Output High Limit Value for AT2	0	100	%	100.0	REAL	System	1	P_2PIDH(_T)_
+82	AT2MVL	Output Low Limit Value for AT2	0	100	%	0.0	REAL	System	1	P_2PIDH(_T)_
+86	ATTYPE (*3)	Control Type for AT	0	4	_	1	INT	System	_	P_2PIDH(_T)_
+87	ALM2 (*1)	Alarm 2	0	FFFFH	_	0000н	WORD	System	_	Public
+88	INH2 (*1)	Disable alarm2 detection	0	FFFFH	_	0000н	WORD	User	_	Public
+89	ALML2 (*1)	Alarm level 2	0	FFFFH	1	0000н	WORD	User	_	Public
+90	SV	Set value (target)	RL	RH	UNIT	0.0	REAL	User	N	_
+92	DSVL	SV variation rate high limit value	0	100	%	100.0	REAL	User	1	P_2PIDH(_T)_
+94	DOM (*1)	Monitor output buffer	0	FFFFH	I	0000н	WORD	Tag data access control	_	_
+95	DIM (*1)	Monitor input buffer	0	FFFFH	_	0000н	WORD	System	_	_

- *1: This tag data consist of multiple BOOL type variables.

 Please refer to Appendix 1.2 (1) (b) for details of BOOL type variables.
- *2: This tag data consist of multiple BOOL type variables.

 Please refer to Appendix 1.2 (1) for details of BOOL type variables.
- *3: Control type for AT specifies auto tuning type and control type.

ATTYPE	TYPE (Control type)
0	Step Response method
1	Limit Cycle method (Constant-value PI control)
2	Limit Cycle method (Constant-value PID control)
3	Limit Cycle method (Follow-up PI control)
4	Limit Cycle method (Follow-up PID control)

Table(1)-4 Tag storage table (PIDP)

			1	rage range			1		Number of	
Offset	Item	Name	Low limit	High limit	Unit	Initial value	Data type	Storage	digits after the decimal point	Tag access FB
+0	FUNC	Tag function code	2	2	_	2	INT	System	_	_
+1	MODE (*1)	Control mode	0	FFFFH	_	0008н	WORD	User (condition 1)	_	P_MCHG/PIDP (_T)
+2	MDIH (*1)	Disable mode	0	FFFFH	_	0600н	WORD	User	_	P_MCHG (*2)
+3	ALM (*1)	Alarm	0	FFFFH	_	0000н	WORD	User (condition 2)	_	Public
+4	INH (*1)	Disable alarm detection	0	FFFFH	_	0000н	WORD	User	=	Public
+5	ALML (*1)	Alarm level	0	FFFFH	_	0000н	WORD	User	_	_
+6	CTNO	Lockout tag No.	0	32	_	0	INT	System	_	_
+7	CTFN	Lockout tag function	0	0002н	_	0000н	WORD	System	_	_
+8	UNIT	Unit	0	127	_	0	INT	User	_	=
+9	N	Number of digits after the decimal point	0	4	_	1	INT	User	_	_
+10	PV	Process value	RL	RH	UNIT	0.0	REAL	System	N	P_PHPL
+12	MV	Manipulated variable	-10	110	%	0.0	REAL	User (condition 3)	1	P_PIDP (_T) (*2)
+14	SV	Set value	RL	RH	UNIT	0.0	REAL	User	N	P_PIDP (_T) (*2)
+16	DV	Deviation	-110	110	%	0.0	REAL	System	1	P_PIDP (_T) (*2)
+18	MH	MV high limit value	-10	110	%	100.0	REAL	User	1	P_PIDP (_T) (*2)
+20	ML	MV low limit value	-10	110	%	0.0	REAL	User	1	P_PIDP (_T) (*2)
+22	RH	PV engineering value high limit	-999999	999999	UNIT	100.0	REAL	User	N	P_PHPL
+24	RL	PV engineering value low limit	-999999	999999	UNIT	0.0	REAL	User	N	P_PHPL
+26	PH	PV high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+28	PL	PV low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+30	НН	PV high high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+32	LL	PV low low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+34	SH	SV high limit value	RL	RH	UNIT	100.0	REAL	User	N	_
+36	SL	SV low limit value	RL	RH	UNIT	0.0	REAL	User	N	_
+38	ALPHA	PV filter coefficient	0	1	_	0.2	REAL	User	2	P_IN
+40	HS	PV high/low limit alarm value hysteresis	0	100	%	0.0	REAL	User	1	P_PHPL
+42	CTIM	Variation rate alarm check time	0	9999	s	0.0	REAL	User	2	P_PHPL
+44	DPL	Variation rate alarm value	0	100	%	100.0	REAL	User	1	P_PHPL
+46	CT	Control cycle	0	9999	S	1.0	REAL	User	2	P_PIDP(_T) (*2)
+48	DML	Variation rate high limit value	0	100	%	100.0	REAL	User	1	P_PIDP(_T) (*2)
+50	DVL	Deviation limit value	0	100	%	100.0	REAL	User	1	P_PIDP(_T) (*2)
+52	P	Gain	0	999	_	1.00	REAL	User	2	P_PIDP(_T) (*2)
+54	<u> </u>	Integral time	0	9999	S	10.0	REAL	User	1	P_PIDP(_T) (*2)
+56	D CW	Derivation time	0	9999	S 0/	0.0	REAL	User	1	P_PIDP(_T) (*2)
+58	GW	Gap width	0	100	%	0.0	REAL	User	1	P_PIDP(_T) (*2)
+60	GG	Gap gain	0	99	_	1.0	REAL	User	1	P_PIDP(_T) (*2)
+94	DOM (*1)	Monitor output buffer	0	FFFFH	_	0000н	WORD	System	_	_

^{*1} This tag data consist of multiple BOOL type variables.
Please refer to Appendix 1.2(1) for details of every BOOL type variable.
*2 "P_PIDP_EX(_T)_" is included.

App - 10 App - 10

Table(1)-5 Tag memory table (SPI)

Off- :	и	N1=	Setting/Sto	rage range	1.1-2	Initial	Data	C+	Number of	Tag 55
Offset	Item	Name	Low limit	High limit	Unit	value	type	Storage	digits after the decimal points	Tag access FB
+0	FUNC	Tag function code	3	3	_	3	INT	System	-	_
+1	MODE (*1)	Control mode	0	FFFFH	_	0008н	WORD	User (condition 1)		P_MCHG/SPI(_T) /OUT1/DUTY
+2	MDIH (*1)	Disable mode	0	FFFFH	_	0600н	WORD	User	ĺ	P_MCHG
+3	ALM (*1)	Alarm	0	FFFFH	_	0000н	WORD	User (condition 2)	_	Public
+4	INH (*1)	Disable alarm detection	0	FFFFH	=	0000н	WORD	User	_	Public
+5	ALML (*1)	Alarm level	0	FFFFH	_	0000н	WORD	User	_	_
+6	CTNO	Lockout tag No.	0	32	_	0	INT	System	_	_
+7	CTFN	Lockout tag function	0	0002н	_	0000н	WORD	System	_	=
+8	UNIT	Unit	0	127	_	0	INT	User	_	_
+9	N	Number of digits after the decimal points	0	4	_	1	INT	User	-	_
+10	PV	Process value	RL	RH	UNIT	0.0	REAL	System	N	P_PHPL
+12	MV	Manipulated variable	-10	110	%	0.0	REAL	User (condition 3)	1	P_OUT1
+14	SV	Set value	RL	RH	UNIT	0.0	REAL	User	N	P_SPI (_T)
+16	DV	Deviation	-110	110	%	0.0	REAL	System	1	P_SPI (_T)
+18	MH	MV high limit value	-10	110	%	100.0	REAL	User	1	P_OUT1
+20	ML RH	MV low limit value PV engineering value	-10 -999999	110 999999	% UNIT	100.0	REAL REAL	User User	1 N	P_OUT1 P PHPL
+24	RL	high limit PV engineering value low limit	-999999	999999	UNIT	0.0	REAL	User	N	P_PHPL
+26	PH	PV high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+28	PL	PV low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+30	НН	PV high high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+32	LL	PV low low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+34	SH	SV high limit value	RL	RH	UNIT	100.0	REAL	User	N	_
+36	SL	SV low limit value	RL	RH	UNIT	0.0	REAL	User	N	_
+38	ALPHA	PV filter coefficient	0	1	_	0.2	REAL	User	2	P_IN
+40	HS	PV high/low alarm value hysteresis	0	100	%	0.0	REAL	User	1	P_PHPL
+42	CTIM	Variation rate alarm check time	0	9999	s	0.0	REAL	User	2	P_PHPL
+44	DPL	Variation rate alarm value	0	100	%	100.0	REAL	User	1	P_PHPL
+46	ST	Operation time	0	9999	s	0.0	REAL	User	1	P_SPI (_T)
+48	DML	Output variation rate high limit value	0	100	%	100.0	REAL	User	1	P_OUT1/DUTY
+50	DVL	Deviation limit value	0	100	%	100.0	REAL	User	1	P_SPI (_T)
+52	P .	Gain	0	999	_	1.00	REAL	User	2	P_SPI (_T)
+54	l OTUT	Integral time	0	9999	S	10.0	REAL	User	1	P_SPI (_T)
+56	STHT	Sampling period	0	9999	S 0/	0.0	REAL	User	1	P_SPI (_T)
+58	GW	Gap width	0	100	%	0.0	REAL	User	1	P_SPI (_T) P SPI (T)
+60	GG MVP	Gap gain MV internal operation	-999999	99	_	0.0	REAL REAL	User System	1	
+68	CTDUTY	value Control output cycle	0	9999		1.0	REAL	User	2	P DUTY
+94	DOM (*1)	Monitor output buffer	0	FFFFH	_ S	0000н	WORD	System		F_D011
ا ن ا	DOWI (I)	monitor output buner	J	1111		UUUUII	MOUD	Oyaleiii	_	ı — —

^{*1} This tag data consist of multiple BOOL type variables. Please refer to Appendix 1.2 (1) for details of BOOL type variables.

App - 11 App - 11

Table(1)-6 Tag memory table (IPD)

Offset	lto	Nama	Setting/Sto	rage range	Unit	Initial	Data	Storess	Number of	Tog goeses ED
Offset	Item	Name	Low limit	High limit	Unit	value	type	Storage	digits after the decimal point	Tag access FB
+0	FUNC	Tag function code	4	4	_	4	INT	System		_
+1	MODE (*1)	Control mode	0	FFFFH	_	0008н	WORD	User (condition 1)	_	P_MCHG/IPD (_T) /OUT1/DUTY
+2	MDIH (*1)	Disable mode	0	FFFFH	_	0600н	WORD	User	_	P_MCHG
+3	ALM (*1)	Alarm	0	FFFFH	_	0000н	WORD	User (condition 2)	_	Public
+4	INH (*1)	Disable alarm detection	0	FFFFH	=	0000н	WORD	User	_	Public
+5	ALML (*1)	Alarm level	0	FFFFH	-	0000н	WORD	User	_	_
+6	CTNO	Lockout tag No.	0	32	_	0	INT	System	_	_
+7	CTFN	Lockout tag function	0	0002н	_	0000н	WORD	System	_	_
+8	UNIT	Unit	0	127	_	0	INT	User	_	_
+9	N	Number of digits after the decimal point	0	4	_	1	INT	User	=	_
+10	PV	Process value	RL	RH	UNIT	0.0	REAL	System	N	P_PHPL
+12	MV	Manipulated variable	-10	110	%	0.0	REAL	User (condition 3)	1	P_OUT1
+14	SV	Set value	RL	RH	UNIT	0.0	REAL	User	N	P_IPD (_T)
+16	DV	Deviation	-110	110	%	0.0	REAL	System	1	P_IPD (_T)
+18	MH	MV high limit value	-10	110	%	100.0	REAL	User	1	P_OUT1
+20	ML	MV low limit value	-10	110	%	0.0	REAL	User	1	P_OUT1
+22	RH	PV engineering value high limit	-999999	999999	UNIT	100.0	REAL	User	N	P_PHPL
+24	RL	PV engineering value low limit	-999999	999999	UNIT	0.0	REAL	User	N	P_PHPL
+26	PH	PV high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+28	PL	PV low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+30	HH	PV high high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+32	LL	PV low low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+34	SH	SV high limit value	RL	RH	UNIT	100.0	REAL	User	N	_
+36	SL	SV low limit value	RL	RH	UNIT	0.0	REAL	User	N	
+38	ALPHA	PV filter coefficient	0	1	_	0.2	REAL	User	2	P_IN
+40	HS	PV high/low alarm value hysteresis	0	100	%	0.0	REAL	User	1	P_PHPL
+42	CTIM	Variation rate alarm check time	0	9999	s	0.0	REAL	User	2	P_PHPL
+44	DPL	Variation rate alarm value	0	100	%	100.0	REAL	User	1	P_PHPL
+46	СТ	Control cycle	0	9999	S	1.0	REAL	User	2	P_IPD (_T)
+48	DML	Output variation rate high limit value	0	100	%	100.0	REAL	User	1	P_OUT1/DUTY
+50	DVL	Deviation limit value	0	100	%	100.0	REAL	User	1	P_IPD (_T)
+52	P	Gain	0	999	_	1.00	REAL	User	2	P_IPD (_T)
+54	I D	Integral time Derivation time	0	9999 9999	S	10.0	REAL REAL	User User	1	P_IPD (_T) P_IPD (_T)
+56 +58	GW	Gap width	0	100	s %	0.0	REAL	User	1	P IPD (_1)
+60	GG	Gap width	0	99		1.0	REAL	User	1	P_IPD (_T)
+62	MVP	MV internal operation value	-999999	999999	_	0.0	REAL	System	1	
+68	CTDUTY	Control output cycle	0	9999	s	1.0	REAL	User	2	P_DUTY
+94	DOM (*1)	Monitor output buffer	0	FFFFH	_	0000н	WORD	System	_	_

^{*1} This tag data consist of multiple BOOL type variables.
Please refer to Appendix 1.2 (1) for details of BOOL type variables.

App - 12 App - 12

Table(1)-7 Tag memory table (BPI)

				rage range		Initial	Data		Numbers of	
Offset	Item	Name	Low limit	High limit	Unit	value	type	Storage	digits after the decimal points	Tag access FB
+0	FUNC	Tag function code	5	5	_	5	INT	System	_	_
+1	MODE (*1)	Control mode	0	FFFFH	_	0008н	WORD	User (condition 1)	_	P_MCHG/BPI(_T) /OUT1/DUTY
+2	MDIH (*1)	Disable mode	0	FFFFH	_	0600н	WORD	User	_	P_MCHG
+3	ALM (*1)	Alarm	0	FFFFH	=	0000н	WORD	User (condition 2)	_	Public
+4	INH (*1)	Disable alarm detection	0	FFFFH	_	0000н	WORD	User	_	Public
+5	ALML (*1)	Alarm level	0	FFFFH	_	0000н	WORD	User	_	_
+6	CTNO	Lockout tag No.	0	32		0	INT	System	=	=
+7	CTFN	Lockout tag function	0	0002н		0000н	WORD	System	_	=
+8	UNIT	Unit	0	127	_	0	INT	User	_	_
+9	N	Numbers of digits after the decimal points	0	4	_	1	INT	User	_	_
+10	PV	Process value	RL	RH	UNIT	0.0	REAL	System	N	P_PHPL
+12	MV	Manipulated variable	-10	110	%	0.0	REAL	User (condition 3)	1	P_OUT1
+14	SV	Set value	RL	RH	UNIT	0.0	REAL	User	N	P_BPI (_T)
+16	DV	Deviation	-110	110	%	0.0	REAL	System	1	P_BPI (_T)
+18	MH	MV high limit value	-10	110	%	100.0	REAL	User	1	P_OUT1
+20	ML	MV low limit value	-10	110	%	0.0	REAL	User	1	P_OUT1
+22	RH	PV engineering value high limit	-999999	999999	UNIT	100.0	REAL	User	N	P_PHPL
+24	RL	PV engineering value low limit	-999999	999999	UNIT	0.0	REAL	User	N	P_PHPL
+26	PH	PV high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+28	PL	PV low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+30	НН	PV high high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+32	LL	PV low low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+34	SH	SV high limit value	RL	RH	UNIT	100.0	REAL	User	N	_
+36	SL	SV low limit value	RL	RH	UNIT	0.0	REAL	User	N	_
+38	ALPHA	PV filter coefficient	0	1	_	0.2	REAL	User	2	P_IN
+40	HS	PV high/low limit alarm hysteresis	0	100	%	0.0	REAL	User	1	P_PHPL
+42	CTIM	Variation rate alarm check time	0	9999	s	0.0	REAL	User	2	P_PHPL
+44	DPL	Variation rate alarm value	0	100	%	100.0	REAL	User	1	P_PHPL
+46	CT	Control cycle	0	9999	s	1.0	REAL	User	2	P_BPI(_T)
+48	DML	Output variation rate high limit value	0	100	%	100.0	REAL	User	1	P_OUT1/DUTY
+50	DVL	Deviation limit value	0	100	%	100.0	REAL	User	1	P_BPI(_T)
+52	Р	Gain	0	999	_	1.00	REAL	User	2	P_BPI(_T)
+54	1	Integral time	0	9999	s	10.0	REAL	User	1	P_BPI(_T)
+56	SDV	DV cumulative value	-999999	999999	_	0.0	REAL	System	1	P_BPI(_T)
+58	GW	Gap width	0	100	%	0.0	REAL	User	1	P_BPI(_T)
+60	GG	Gap gain	0	99	_	1.0	REAL	User	1	P_BPI(_T)
+62	MVP	MV internal operation value	-999999	999999	-	0.0	REAL	System	1	_
+68	CTDUTY	Control output cycle	0	9999	s	1.0	REAL	User	2	P_DUTY
+94	DOM (*1)	Monitor output buffer	0	FFFFH		0000н	WORD	System		

^{*1} This tag data consist of multiple BOOL type variables.
Please refer to Appendix 1.2 (1) for details of BOOL type variables.

Table(1)-8 Tag memory table(R)

			iabi	e(1)-8 18	ag ilic	illory ta	DIC(IX)			
Offset	Item	Name	Setting/Sto		Unit	Initial value	Data type	Storage	Number of digits after the	Tag access FB
			Low limit	High limit		value	type		decimal point	
+0	FUNC	Tag function code	6	6	_	6	INT	System	_	_
+1	MODE (*1)	Control mode	0	FFFFH	_	0008н	WORD	User (condition 1)	_	P_MCHG/R (_T) /OUT2
+2	MDIH (*1)	Disable mode	0	FFFFH	_	0600н	WORD	User	_	P_MCHG
+3	ALM (*1)	Alarm	0	FFFFH	_	0000н	WORD	User (condition 2)	_	Public
+4	INH (*1)	Disable alarm detection	0	FFFFH	_	0000н	WORD	User	_	Public
+5	ALML (*1)	Alarm level	0	FFFFH	_	0000н	WORD	User	_	_
+6	CTNO	Lockout tag No.	0	32	_	0	INT	System	_	_
+7	CTFN	Lockout tag function	0	0002н	_	0000н	WORD	System	_	_
+8	UNIT	Unit	0	127	_	0	INT	User	_	_
+9	N	Digits number after decimal point	0	4	_	1	INT	User	_	_
+10	PV	Process value	RL	RH	UNIT	0.0	REAL	System	N	P_PHPL
+12	MV	Manipulated variable	-10	110	%	0.0	REAL	User (condition 3)	1	P_OUT2
+14	SV	Set value (SPR)	RMIN	RMAX	%	0.0	REAL	User	1	P_R(_T)
+16	BIAS	Bias	-999999	999999	_	0.0	REAL	User	1	P_R(_T)
+18	MH	MV high limit value	-10	110	%	100.0	REAL	User	1	P_OUT2
+20	ML	MV low limit value	-10	110	%	0.0	REAL	User	1	P_OUT2
+22	RH	PV engineering value high limit	-999999	999999	UNIT	100.0	REAL	User	N	P_PHPL
+24	RL	PV engineering value low limit	-999999	999999	UNIT	0.0	REAL	User	N	P_PHPL
+26	PH	PV high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+28	PL	PV low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+30	НН	PV high high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+32	LL	PV low low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+34	SH	SV high limit value	RMIN	RMAX	%	100.0	REAL	User	N	_
+36	SL	SV low limit value	RMIN	RMAX	%	0.0	REAL	User	N	_
+38	ALPHA	PV filter coefficient	0	1		0.2	REAL	User	2	P_IN
+40	HS	PV high/low alarm value hysteresis	0	100	%	0.0	REAL	User	1	P_PHPL
+42	CTIM	Variation rate alarm check time	0	9999	S	0.0	REAL	User	2	P_PHPL
+44	DPL	Variation rate alarm value	0	100	%	100.0	REAL	User	1	P_PHPL
+46	СТ	Control cycle	0	9999	S	1.0	REAL	User	2	P_R (_T)
+48	DML	Output variation rate high limit value	0	100	%	100.0	REAL	User	1	P_OUT2
+50	DR	Variation rate limit value	0	999999	%	100.0	REAL	User	1	P_R (_T)
+52	RMAX	Ratio high limit value	0	999999	%	100.0	REAL	User	1	P_R (_T)
+54	RMIN	Ratio low limit value	0	999999	%	0.0	REAL	User	1	P_R (_T)
+56	RN	Ratio current value	0	999999	%	0.0	REAL	System	1	P_R (T)
+94	DOM (*1)	Monitor output buffer	0	FFFFH	_	0000н	WORD	System	_	_

^{*1} This tag data consist of multiple BOOL type variables.
Please refer to Appendix 1.2 (1) for details of BOOL type variables.

App - 14 App - 14

Table(1)-9 Tag storage table (ONF2)

				rage range		Initial	Data		Number of	
Offset	Item	Name	Low limit	High limit	Unit	value	type	Storage	digits after the decimal point	Tag access FB
+0	FUNC	Tag function code	7	7	_	7	INT	System	_	_
+1	MODE (*1)	Control mode	0	FFFFH	_	0008н	WORD	User (condition 1)	_	P_MCHG/ONF2 (_T)
+2	MDIH (*1)	Disable mode	0	FFFFH	_	0600н	WORD	User	_	P_MCHG
+3	ALM (*1)	Alarm	0	FFFFH	1	0000н	WORD	User (condition 2)	_	Public
+4	INH (*1)	Disable alarm detection	0	FFFFH	_	0000н	WORD	User	_	Public
+5	ALML (*1)	Alarm level	0	FFFFH	_	0000н	WORD	User	_	_
+6	CTNO	Lockout tag No.	0	32	1	0	INT	System	_	_
+7	CTFN	Lockout tag function	0	0002н	_	0000н	WORD	System	_	_
+8	UNIT	Unit	0	127	1	0	INT	User	_	_
+9	N	Digits number after decimal point	0	4	_	1	INT	User	_	_
+10	PV	Process value	RL	RH	UNIT	0.0	REAL	System	N	P_PHPL
+12	MV	Manipulated variable	-10	110	%	0.0	REAL	User (condition 3)	1	ONF2 (_T)
+14	SV	Set value	RL	RH	UNIT	0.0	REAL	User	N	ONF2 (_T)
+16	DV	Deviation	-110	110	%	0.0	REAL	System	1	ONF2 (_T)
+18	HS0	Hysteresis	0	100	%	0.0	REAL	User	1	ONF2 (_T)
+22	RH	PV engineering value high limit	-999999	999999	UNIT	100.0	REAL	User	N	P_PHPL
+24	RL	PV engineering value low limit	-999999	999999	UNIT	0.0	REAL	User	N	P_PHPL
+26	PH	PV high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+28	PL	PV low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+30	НН	PV high high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+32	LL	PV low low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+34	SH	SV high limit value	RL	RH	UNIT	100.0	REAL	User	N	_
+36	SL	SV low limit value	RL	RH	UNIT	0.0	REAL	User	N	_
+38	ALPHA	PV filter coefficient	0	1	_	0.2	REAL	User	2	P_IN
+40	HS	PV high/low alarm value hysteresis	0	100	%	0.0	REAL	User	1	P_PHPL
+42	CTIM	Variation rate alarm detection time	0	9999	s	0.0	REAL	User	2	P_PHPL
+44	DPL	Variation rate alarm value	0	100	%	100.0	REAL	User	1	P_PHPL
+46	CT	Control cycle	0	9999	S	1.0	REAL	User	2	ONF2 (_T)
+94	DOM (*1)	Monitor output buffer	0	FFFFH		0000н	WORD	System	_	_

^{*1} This tag data consist of multiple BOOL type variables. Please refer to Appendix 1.2 (1) for details of BOOL type variables.

Table(1)-10 Tag memory table (ONF3)

	-		Setting/Sto	rage range		Initial	Data		Number of	
Offset	Item	Name	Low limit	High limit	Unit	value	type	Storage	digits after the decimal point	Tag access FB
+0	FUNC	Tag function code	8	8	_	8	INT	System	_	_
+1	MODE (*1)	Control mode	0	FFFFH	_	0008н	WORD	User (condition 1)	_	P_MCHG/ONF3 (_T)
+2	MDIH (*1)	Disable mode	0	FFFFH	_	0600н	WORD	User	_	P_MCHG
+3	ALM (*1)	Alarm	0	FFFFH		0000н	WORD	User (condition 2)	_	Public
+4	INH (*1)	Disable alarm detection	0	FFFFH	_	0000н	WORD	User	_	Public
+5	ALML (*1)	Alarm level	0	FFFFH	_	0000н	WORD	User	_	_
+6	CTNO	Lockout tag No.	0	32	_	0	INT	System	_	_
+7	CTFN	Lockout tag function	0	0002н	_	0000н	WORD	System	_	_
+8	UNIT	Unit	0	127	_	0	INT	User	_	_
+9	N	Digits number after decimal point	0	4		1	INT	User	_	_
+10	PV	Process value	RL	RH	UNIT	0.0	REAL	System	N	P_PHPL
+12	MV	Manipulated variable	-10	110	%	0.0	REAL	User (condition 3)	1	ONF3 (_T)
+14	SV	Set value	RL	RH	UNIT	0.0	REAL	User	N	ONF3 (_T)
+16	DV	Deviation	-110	110	%	0.0	REAL	System	1	ONF3 (_T)
+18	HS0	Hysteresis	0	100	%	0.0	REAL	User	1	ONF3 (_T)
+20	HS1	Hysteresis	0	100	%	0.0	REAL	User	1	ONF3 (_T)
+22	RH	PV engineering value high limit	-999999	999999	UNIT	100.0	REAL	User	N	P_PHPL
+24	RL	PV engineering value low limit	-999999	999999	UNIT	0.0	REAL	User	N	P_PHPL
+26	PH	PV high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+28	PL	PV low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+30	НН	PV high high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+32	LL	PV low low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+34	SH	SV high high limit value	RL	RH	UNIT	100.0	REAL	User	N	
+36	SL	SV low low limit value	RL	RH	UNIT	0.0	REAL	User	N	
+38	ALPHA	PV filter coefficient	0	1	_	0.2	REAL	User	2	P_IN
+40	HS	PV high/low alarm value hysteresis	0	100	%	0.0	REAL	User	1	P_PHPL
+42	CTIM	Variation rate alarm check time	0	9999	s	0.0	REAL	User	2	P_PHPL
+44	DPL	Variation rate alarm value	0	100	%	100.0	REAL	User	1	P_PHPL
+46	CT	Control cycle	0	9999	S	1.0	REAL	User	2	ONF3 (_T)
+94	DOM (*1)	Monitor output buffer	0	FFFFH	_	0000н	WORD	System	_	

^{*1} This tag data consist of multiple BOOL type variables.
Please refer to Appendix 1.2 (1) for details of BOOL type variables.

App - 16 App - 16

Table(1)-11 Tag memory table (MONI)

Offset	Item	Name	_	rage range	Unit	Initial	Data	Storage	Number of digits after the	Tag access FB
			Low limit	High limit		value	type	Ç	decimal point	,
+0	FUNC	Tag function code	11	11	_	11	INT	System	_	ĺ
+1	MODE (*1)	Control mode	0	FFFFH	_	0008н	WORD	System	_	_
+2	MDIH (*1)	Disable mode	0	FFFFH	_	0000н	WORD	User	_	_
+3	ALM (*1)	Alarm	0	FFFFH	=	0000н	WORD	User (condition 2)	_	Public
+4	INH (*1)	Disable alarm detection	0	FFFFH	=	0000н	WORD	User	_	Public
+5	ALML (*1)	Alarm level	0	FFFFH	_	0000н	WORD	User	_	_
+6	CTNO	Lockout tag No.	0	32	_	0	INT	System	_	_
+7	CTFN	Lockout tag function	0	2	_	0000н	WORD	System	_	_
+8	UNIT	Unit	0	127	_	0	INT	User	=	_
+9	N	Digits number after decimal point	0	4	_	1	INT	User	_	-
+10	PV	Process value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+22	RH	PV engineering value high limit	-999999	999999	UNIT	100.0	REAL	User	N	P_PHPL
+24	RL	PV engineering value low limit	-999999	999999	UNIT	0.0	REAL	User	N	P_PHPL
+26	PH	PV high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+28	PL	PV low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+30	НН	PV high high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+32	LL	PV low low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+38	ALPHA	PV filter coefficient	0	1	_	0.2	REAL	User	2	P_IN
+40	HS	PV high/low alarm value hysteresis	0	100	%	0.0	REAL	User	1	P_PHPL
+42	CTIM	Variation rate alarm check time	0	9999	s	0.0	REAL	User	2	P_PHPL
+44	DPL	Variation rate alarm value	0	100	%	100.0	REAL	User	1	P_PHPL
+94	DOM (*1)	Monitor output buffer	0	FFFFH	_	0000н	WORD	System	_	_

^{*1} This tag data consist of multiple BOOL type variables.
Please refer to Appendix 1.2 (1) for details of BOOL type variables.

App - 17 App - 17

Table(1)-12 Tag memory table (MWM)

			`	rage range		lory table	<u> </u>		Number of	
Offset	Item	Name			Unit	Initial value	Data type	Storage	digits after the	Tag access FB
			Low limit	High limit			1,700		decimal point	
+0	FUNC	Tag function code	12	12	_	12	INT	System	_	
+1	MODE (*1)	Control mode	0	FFFFH	_	0008н	WORD	User (condition 1)	=	P_MCHG/MOUT
+2	MDIH (*1)	Disable mode	0	FFFFH	_	0630н	WORD	User	_	P_MCHG
+3	ALM (*1)	Alarm	0	FFFFH	=	0000н	WORD	User (condition 2)	-	Public
+4	INH (*1)	Disable alarm detection	0	FFFFH	_	0000н	WORD	User	_	Public
+5	ALML (*1)	Alarm level	0	FFFFH	_	0000н	WORD	User	_	=
+6	CTNO	Lockout tag No.	0	32	_	0	INT	System	_	-
+7	CTFN	Lockout tag function	0	0002н	_	0000н	WORD	System	_	_
+8	UNIT	Unit	0	127	_	0	INT	User	_	_
+9	N	Digits number after decimal point	0	4	_	1	INT	User	_	_
+10	PV	Process value	RL	RH	UNIT	0.0	REAL	System	N	P_PHPL
+12	MV	Manipulated variable	-10	110	%	0.0	REAL	User (condition 3)	1	P_MOUT
+18	MH	MV high limit value	-10	110	%	100.0	REAL	User	1	P_MOUT
+20	ML	MV low limit value	-10	110	%	0.0	REAL	User	1	P_MOUT
+22	RH	PV engineering value high limit	-999999	999999	UNIT	100.0	REAL	User	N	P_PHPL
+24	RL	PV engineering value low limit	-999999	999999	UNIT	0.0	REAL	User	N	P_PHPL
+26	PH	PV high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+28	PL	PV low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+30	НН	PV high high limit alarm value	RL	RH	UNIT	100.0	REAL	User	N	P_PHPL
+32	LL	PV low low limit alarm value	RL	RH	UNIT	0.0	REAL	User	N	P_PHPL
+38	ALPHA	PV filter coefficient	0	1	_	0.2	REAL	User	2	P_IN
+40	HS	PV high/low alarm value hysteresis	0	100	%	0.0	REAL	User	1	P_PHPL
+42	CTIM	Variation rate alarm check time	0	9999	s	0.0	REAL	User	2	P_PHPL
+44	DPL	Variation rate alarm value	0	100	%	100.0	REAL	User	1	P_PHPL
+94	DOM (*1)	Monitor output buffer	0	FFFFH		0000н	WORD	System	_	_

^{*1} This tag data consist of multiple BOOL type variables.
Please refer to Appendix 1.2 (1) for details of BOOL type variables.

App - 18 App - 18

Table(1)-13 Tag memory table (BC)

Offset	Item	Name	Setting/Sto	orage range	Unit	Initial value	Data type	Storage	Number of digits after the	Tag access
Oliset	item	Ivaille	Low limit	High limit	Offic	Illiliai value	Data type	Storage	decimal point	FB
+0	FUNC	Tag function code	15	15	_	15	INT	System	Ī	_
+3	ALM (*1)	Alarm	0	FFFFH	_	0000н	WORD	User (condition 2)		Public
+4	INH (*1)	Disable alarm detection	0	FFFFH	_	0000н	WORD	User		Public
+5	ALML (*1)	Alarm level	0	FFFFH	_	0000н	WORD	User	I	_
+6	CTNO	Lockout tag No.	0	32	_	0	INT	System	_	_
+7	CTFN	Lockout function	0	0002н	_	0000н	WORD	System	_	_
+8	UNIT	Unit	0	127	_	0	INT	User		_
+10	PV	Process value (integral part)	0	99999999	UNIT	0	DINT	System	_	P_PSUM
+12	SUM2	Process value (decimal part)	0	999	_	0	DINT	System	_	P_PSUM
+14	SV1	Set value 1 (preset)	0	99999999	UNIT	0	DINT	User	I	P_BC
+16	SV2	Set value 2 (preset)	0	99999999	UNIT	0	DINT	User	I	P_BC
+18	SV	Set value	0	99999999	UNIT	0	DINT	User	_	_
+26	PH	PV high limit alarm value	0	99999999	UNIT	0	DINT	User	_	P_BC
+42	CTIM	Variation rate alarm check time	0	9999	s	0.0	REAL	User	2	P_BC
+44	DPL	Variation rate alarm value	0	99999999	UNIT	99999999	DINT	User	_	P_BC
+94	DOM (*1)	Monitor output buffer	0	FFFFH	_	0000н	WORD	Tag data access control	_	_
+95	DIM (*1)	Monitor input buffer	0	FFFFH	_	0000н	WORD	System		-

^{*1} This tag data consist of multiple BOOL type variables. Please refer to Appendix 1.2 (1) and 1.2(1) (c) for details of BOOL type variables.

Table(1)-14 Tag memory table (PSUM)

Offset	Item	Name	Setting/Sto	rage range	Unit	Initial value	Data type	Storage	Number of digits after the	Tag access
			Low limit	High limit			, , ,	- Citage	decimal point	FB
+0	FUNC	Tag function code	16	16	_	16	INT	System		_
+6	CTNO	Lockout tag No.	0	32	_	0	INT	System		_
+7	CTFN	Lockout function	0	0002н	_	0000н	WORD	System		_
+8	UNIT	Unit	0	127	_	0	INT	User	ı	_
+10	PV	Process value (integral part)	0	99999999	UNIT	0	DINT	System	ĺ	P_PSUM
+12	SUM2	Process value (decimal part)	0	999	_	0	DINT	System	I	P_PSUM
+94	DOM (*1)	Monitor output buffer	0	FFFFH		0000н	WORD	Tag data access control	1	_
+95	DIM (*1)	Monitor input buffer	0	FFFFH	_	0000н	WORD	System		=

^{*1} These tag data consist of multiple BOOL type variables.
For details about each BOOL type variable, please refer to Appendix 1.2(1) (d).

App - 19 App - 19

Table(1)-15 Tag memory table (SEL)

				• •		1	1	l	Number of digits	
Offset	Item	Name	Setting/Sto	rage range High limit	Unit	Initial value	Data type	Storage	after the decimal	Tag access FB
				Ŭ					'	
+0	FUNC	Tag function code	13	13		13	INT	System	_	
+1	MODE (*1)	Control mode	0	FFFFH	_	0008н	WORD	User (condition 1)	_	P_MCHG/SEL (_T1)(_T2)
+2	MDIH (*1)	Disable mode	0	FFFFH	_	0600н	WORD	User	_	P_MCHG
+3	ALM (*1)	Alarm	0	FFFFH	_	0000н	WORD	User (condition 2)	_	Public
+4	INH (*1)	Disable alarm detection	0	FFFFH	_	0000н	WORD	User	_	Public
+5	ALML (*1)	Alarm level	0	FFFFH	_	0000н	WORD	User	_	_
+6	CTNO	Lockout tag No.	0	32	-	0	INT	System	_	_
+7	CTFN	Lockout tag function	0	0002н	ı	0000н	WORD	System	_	_
+8	UNIT	Unit	0	127	-	0	INT	User	_	_
+9	N	Number of digits after the decimal point	0	4		1	INT	User	_	_
+10	PV	Select Process value	RL	RH	UNIT	0.0	REAL	System	N	P_SEL (_T1) (_T2)
+12	MV	Manipulated variable	-10	110	%	0.0	REAL	User (condition 3)	1	P_SEL (_T1) (_T2)
+14	PV1	Process value 1	RL	RH	UNIT	0.0	REAL	System	N	P_SEL (_T1) (_T2)
+16	PV2	Process value 2	RL	RH	UNIT	0.0	REAL	System	N	P_SEL (_T1) (_T2)
+18	МН	MV high limit value	-10	110	%	100.0	REAL	User	1	P_SEL (_T1) (_T2)
+20	ML	MV low limit value	-10	110	%	0.0	REAL	User	1	P_SEL (_T1) (_T2)
+22	RH	PV engineering value high limit	-999999	999999	UNIT	100.0	REAL	User	N	P_SEL (_T1) (_T2)
+24	RL	PV engineering value low limit	-999999	999999	UNIT	0.0	REAL	User	N	P_SEL (_T1) (_T2)
+26	SLNO	Selection No.	0	1	1	0	INT	System		P_SEL (_T1) (_T2)
+48	DML	Output variation rate high limit	0	100	%	100.0	REAL	User	1	P_SEL (_T1) (_T2)

^{*1} This tag data consist of multiple BOOL type variables. Please refer to Appendix 1.2 (1) for details of BOOL type variables.

Table(1)-16 Tag memory table (MOUT)

Offset	Item	Name	Setting/Sto	orage range	Unit	Initial value	Data type	Storage	Number of digits after the decimal	Tag access FB
Oliset	пеш	Ivaille	Low limit	High limit	Oill	II IIIIai value	Data type	Storage	point	Tay access I b
+0	FUNC	Tag function code	10	10	_	10	INT	System		_
+1	MODE(*1)	Control mode	0	FFFFH	_	0008н	WORD	User (condition 1)	-	P_MCHG/ MOUT
+2	MDIH(*1)	Disable mode	0	FFFFH		0630н	WORD	User		P_MCHG
+3	ALM(*1)	Alarm	0	FFFFH	İ	0000н	WORD	User (condition 2)	_	Public
+5	ALML(*1)	Alarm level	0	FFFFH	_	0000н	WORD	User	_	_
+6	CTNO	Lockout tag No.	0	32	_	0	INT	System	_	_
+7	CTFN	Lockout function	0	0002н	_	0000н	WORD	System	-	_
+8	UNIT	Unit	0	127	_	0	INT	User	_	_
+9	N	Number of digits after the decimal point	0	4	ĺ	1	INT	User	_	_
+12	MV	Manipulated variable	-10	110	%	0.0	REAL	User (condition 3)	1	P_MOUT
+18	MH	MV high limit value	-10	110	%	100.0	REAL	User	1	P_MOUT
+20	ML	MV low limit value	-10	110	%	0.0	REAL	User	1	P_MOUT

^{*1} This tag data consist of multiple BOOL type variables.
Please refer to Appendix 1.2 (1) for details of BOOL type variables.

App - 20 App - 20

Table(1)-17 Tag memory table (PGS)

						I	· ,		Number of digits	
Offset	Item	Name	Low limit	rage range High limit	Unit	Initial value	Data type	Storage	after the decimal point	Tag access FB
+0	FUNC	Tag function code	9	9	_	9	INT	System	_	_
+1	MODE (*1)	Control mode	0	FFFFH	_	0008н	WORD	User (condition 1)	_	P_MCHG/PGS
+2	MDIH (*1)	Disable mode	0	FFFFH	_	0600н	WORD	User	_	P MCHG
+3	ALM (*1)	Alarm	0	FFFFH	_	0000н	WORD	User (condition 2)	_	Public
+4	INH (*1)	Disable alarm detection	0	FFFFH	_	0000н	WORD	User	_	Public
+5	ALML (*1)	Alarm level	0	FFFFH	_	0000н	WORD	User	_	_
+6	CTNO	Lockout tag No.	0	32	_	0	INT	System	_	-
+7	CTFN	Lockout function	0	0002н	_	0000н	WORD	System	_	_
+8	UNIT	Unit	0	127	_	0	INT	User	_	_
+9	N	Digits number after decimal point	0	4	_	1	INT	User	_	_
+10	PTNO	The number of points	0	16	_	0	INT	User	_	P_PGS
+12	MV	Manipulated volume	-10	110	%	0.0	REAL	User (condition 3)	N	P_PGS
+14	SV	Set value	0	999999	s	0.0	REAL	User	1	P_PGS
+16	TYP	Operation type	0	1	_	0	INT	User	_	P_PGS
+18	MH	MV high limit value	-10	110	%	100.0	REAL	User	N	P_PGS
+20	ML	MV low limit value	-10	110	%	0.0	REAL	User	N	P_PGS
+22	SV1	Setting time 1	0	999999	s	0.0	REAL	User	1	P_PGS
+24	SV2	Setting time 2	0	999999	s	0.0	REAL	User	1	P_PGS
+26	SV3	Setting time 3	0	999999	S	0.0	REAL	User	1	P_PGS
+28	SV4	Setting time 4	0	999999	S	0.0	REAL	User	1	P_PGS
+30	SV5	Setting time 5	0	999999	S	0.0	REAL	User	1	P_PGS
+32	SV6	Setting time 6	0	999999	S	0.0	REAL	User	1	P_PGS
+34	SV7	Setting time 7	0	999999	S	0.0	REAL	User	1	P_PGS
+36	SV8	Setting time 8	0	999999	S	0.0	REAL	User	1	P_PGS
+38	SV9	Setting time 9	0	999999	S	0.0	REAL	User	1	P_PGS
+40	SV10	Setting time 10	0	999999	S	0.0	REAL	User	1	P_PGS
+42	SV11	Setting time 11	0	999999	S	0.0	REAL	User	1	P_PGS
+44	SV12	Setting time 12	0	999999	S	0.0	REAL	User	1	P_PGS P_PGS
+46	SV13 SV14	Setting time 13	0	999999 999999	S	0.0	REAL REAL	User	1	P_PGS P_PGS
+48	SV14	Setting time 14 Setting time 15	0	999999	S	0.0	REAL	User User	1	P PGS
+52	SV15	Setting time 15	0	999999	s s	0.0	REAL	User	1	P_PGS
+54	MV1	Setting output 1	-10	110	%	0.0	REAL	User	N	P_PGS
+56	MV2	Setting output 2	-10	110	%	0.0	REAL	User	N	P PGS
+58	MV3	Setting output 3	-10	110	%	0.0	REAL	User	N	P PGS
+60	MV4	Setting output 4	-10	110	%	0.0	REAL	User	N	P PGS
+62	MV5	Setting output 5	-10	110	%	0.0	REAL	User	N	P PGS
+64	MV6	Setting output 6	-10	110	%	0.0	REAL	User	N	P_PGS
+66	MV7	Setting output 7	-10	110	%	0.0	REAL	User	N	P_PGS
+68	MV8	Setting output 8	-10	110	%	0.0	REAL	User	N	P_PGS
+70	MV9	Setting output 9	-10	110	%	0.0	REAL	User	N	P_PGS
+72	MV10	Setting output 10	-10	110	%	0.0	REAL	User	N	P_PGS
+74	MV11	Setting output 11	-10	110	%	0.0	REAL	User	N	P_PGS
+76	MV12	Setting output 12	-10	110	%	0.0	REAL	User	N	P_PGS
+78	MV13	Setting output 13	-10	110	%	0.0	REAL	User	N	P_PGS
+80	MV14	Setting output 14	-10	110	%	0.0	REAL	User	N	P_PGS
+82	MV15	Setting output 15	-10	110	%	0.0	REAL	User	N	P_PGS
+84	MV16	Setting output 16	-10	110	%	0.0	REAL	User	N	P_PGS

^{*1} This tag data consist of multiple BOOL type variables. Please refer to Appendix 1.2 (1) for details of BOOL type variables.

App - 21 App - 21

Table(1)-18 Tag memory table (PGS2)

			1	(1)-10 12	19	1101 y tai	J.O (. O	<i>-</i>	N c	
Offset	Item	Name	Setting/Sto Low limit	rage range High limit	Unit	Initial value	Data type	Storage	Number of digits after the decimal point	Tag access FB
+0	FUNC	Tag function code	18	18	_	18	INT	System		_
+1	MODE(*1)	Control mode	0	FFFFH	-	0008н	WORD	User (condition 1)	-	P_MCHG/P_PGS2_
+2	MDIH(*1)	Disable mode	0	FFFFH	-	0000н	WORD	User	_	P_MCHG
+3	ALM(*1)	Alarm	0	FFFFH	_	0000н	WORD	User (condition 2)	-	Public
+4	INH(*1)	Disable alarm detection	0	FFFFH	_	0000н	WORD	User	_	Public
+5	ALML(*1)	Alarm level	0	FFFFH	_	0000н	WORD	User	-	-
+6	CTNO	Lockout tag No.	0	32	_	0	INT	System	-	_
+7	CTFN	Lockout tag function	0	0002н	_	0000н	WORD	System	_	-
+8	UNIT	Unit	0	127	_	0	INT	User	-	_
+9	N	Digit number after decimal point	0	4	-	1	INT	User	_	_
+10	STNO	Number of step setting	0	32	_	0	INT	User	_	P_PGS2_
+11	PVSTART	PV start type	0	2	_	0	INT	User		P_PGS2_
+12	SV	Set value	RL	RH	UNIT	0.0	REAL	User (condition 3)	N	P_PGS2_
+14	STC	Executing step No.	0	32	_	0	INT	User	-	P_PGS2_
+15	Т	Time in the step	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+16	PV	Process value	RL	RH	UNIT	0.0	REAL	System	N	P_PGS2_
+18	SH	SV high limit value	-32768	32767	UNIT (*2)	100	INT	User	_	P_PGS2_
+19	SL	SV low limit value	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_
+20	TYP(*1)	Operation type	0	FFFFH	-	0001н	WORD	User	_	P_PGS2_
+21	WAIT	Wait width	0	32767	UNIT (*2)	0	INT	User	_	P_PGS2_
+22	RH	Engineering value high limit	-32768	32767	UNIT (*2)	100	INT	User	_	P_PGS2_
+23	RL	Engineering value low limit	-32768	32767	UNIT (*2)	0	INT	User	-	P_PGS2_
+26	SV0	Start point	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_
+27	SV0C	Start point (current)	-32768	32767	UNIT (*2)	0	INT	System	_	P_PGS2_
+28	T1	Step 1 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+29	SV1	Step 1 set value	-32768	32767	UNIT (*2)	0	INT	User	-	P_PGS2_
+30	T2	Step 2 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+31	SV2	Step 2 set value	-32768	32767	UNIT (*2)	0	INT	User	-	P_PGS2_
+32	Т3	Step 3 time span	0	32767	s (min) (*3)	0	INT	User		P_PGS2_
+33	SV3	Step 3 set value	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_

^{*1:} This tag data consist of multiple BOOL type variables.

Please refer to Appendix 1.2 (1) for details of BOOL type variables.

^{*2:} The tag data is set in integer, ignoring the digit number after decimal point (N).

If the setting after the decimal point is required depending on the engineering value range, set the tag data as follows.

(Example) When the set value is 1.5MPa, convert its unit to 1500kPa to fit in the range from -32768 to 32767.

^{*3:} When the unit of time (TUNIT) is FALSE, "s" is used and "min" is used for TRUE.

			Setting/Sto	rage range		Initial	Data		Number of	
Offset	Item	Name	Low limit	High limit	Unit	value	type	Storage	digits after the decimal point	Tag access FB
+34	T4	Step 4 time span	0	32767	s (min) (*3)	0	INT	User	-	P_PGS2_
+35	SV4	Step 4 set value	-32768	32767	UNIT (*2)	0	INT	User	-	P_PGS2_
+36	T5	Step 5 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+37	SV5	Step 5 set value	-32768	32767	UNIT (*2)	0	INT	User	-	P_PGS2_
+38	Т6	Step 6 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+39	SV6	Step 6 set value	-32768	32767	UNIT (*2)	0	INT	User	-	P_PGS2_
+40	T7	Step 7 time span	0	32767	s (min) (*3)	0	INT	User		P_PGS2_
+41	SV7	Step 7 set value	-32768	32767	UNIT (*2)	0	INT	User	-	P_PGS2_
+42	Т8	Step 8 time span	0	32767	S (min) (*3)	0	INT	User	_	P_PGS2_
+43	SV8	Step 8 set value	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_
+44	Т9	Step 9 time span	0	32767	s (min) (*3)	0	INT	User	-	P_PGS2_
+45	SV9	Step 9 set value	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_
+46	T10	Step 10 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+47	SV10	Step 10 set value	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_
+48	T11	Step 11 time span	0	32767	s (min) (*3)	0	INT	User		P_PGS2_
+49	SV11	Step 11 set value	-32768	32767	UNIT (*2)	0	INT	User	-	P_PGS2_
+50	T12	Step 12 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+51	SV12	Step 12 set value	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_
+52	T13	Step 13 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+53	SV13	Step 13 set value	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_
+54	T14	Step 14 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+55	SV14	Step 14 set value	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_

^{*2:} The tag data is set in integer, ignoring the digit number after decimal point (N).

If the setting after the decimal point is required depending on the engineering value range, set the tag data as follows.

(Example) When the set value is 1.5MPa, convert its unit to 1500kPa to fit in the range from -32768 to 32767.

^{*3:} When the unit of time (TUNIT) is FALSE, "s" is used and "min" is used for TRUE.

			Setting/Sto	rage range		Initial	Data		Number of	
Offset	Item	Name	Low limit	High limit	Unit	value	type	Storage	digits after the decimal point	Tag access FB
+56	T15	Step 15 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+57	SV15	Step 15 set value	-32768	32767	UNIT (*2)	0	INT	User	-	P_PGS2_
+58	T16	Step 16 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+59	SV16	Step 16 set value	-32768	32767	UNIT (*2)	0	INT	User	-	P_PGS2_
+60	T17	Step 17 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+61	SV17	Step 17 set value	-32768	32767	UNIT (*2)	0	INT	User	-	P_PGS2_
+62	T18	Step 18 time span	0	32767	s (min) (*3)	0	INT	User		P_PGS2_
+63	SV18	Step 18 set value	-32768	32767	UNIT (*2)	0	INT	User	-	P_PGS2_
+64	T19	Step 19 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+65	SV19	Step 19 set value	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_
+66	T20	Step 20 time span	0	32767	s (min) (*3)	0	INT	User		P_PGS2_
+67	SV20	Step 20 set value	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_
+68	T21	Step 21 time span	0	32767	s (min) (*3)	0	INT	User		P_PGS2_
+69	SV21	Step 21 set value	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_
+70	T22	Step 22 time span	0	32767	s (min) (*3)	0	INT	User		P_PGS2_
+71	SV22	Step 22 set value	-32768	32767	UNIT (*2)	0	INT	User	-	P_PGS2_
+72	T23	Step 23 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+73	SV23	Step 23 set value	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_
+74	T24	Step 24 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+75	SV24	Step 24 set value	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_
+76	T25	Step 25 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+77	SV25	Step 25 set value	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_

^{*2:} The tag data is set in integer, ignoring the digit number after decimal point (N).

If the setting after the decimal point is required depending on the engineering value range, set the tag data as follows.

(Example) When the set value is 1.5MPa, convert its unit to 1500kPa to fit in the range from -32768 to 32767.

^{*3:} When the unit of time (TUNIT) is FALSE, "s" is used and "min" is used for TRUE.

Offset	Item	Name	Setting/Sto	rage range	Unit	Initial	Data	Storage	Number of digits after the	Tag access FB
Oliset	пеш	Name	Low limit	High limit	Offic	value	type	Storage	decimal point	ray access FB
+78	T26	Step 26 time span	0	32767	s (min) (*3)	0	INT	User	-	P_PGS2_
+79	SV26	Step 26 set value	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_
+80	T27	Step 27 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+81	SV27	Step 27 set value	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_
+82	T28	Step 28 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+83	SV28	Step 28 set value	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_
+84	T29	Step 29 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+85	SV29	Step 29 set value	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_
+86	T30	Step 30 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+87	SV30	Step 30 set value	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_
+88	T31	Step 31 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+89	SV31	Step 31 set value	-32768	32767	UNIT (*2)	0	INT	User	_	P_PGS2_
+90	T32	Step 32 time span	0	32767	s (min) (*3)	0	INT	User	_	P_PGS2_
+91	SV32	Step 32 set value	-32768	32767	UNIT (*2)	0	INT	User	-	P_PGS2_
+94	DOM(*1)	Monitor output buffer	0	FFFFH	-	0000н	WORD	Tag data access control	_	_
+95	DIM(*1)	Monitor input buffer	0	FFFFH	_	0000н	WORD	System	_	

^{*1:} This tag data consist of multiple BOOL type variables.

Please refer to Appendix 1.2 (1) for details of BOOL type variables.

*3: When the unit of time (TUNIT) is FALSE, "s" is used and "min" is used for TRUE.

^{*2:} The tag data is set in integer, ignoring the digit number after decimal point (N).

If the setting after the decimal point is required depending on the engineering value range, set the tag data as follows.

(Example) When the set value is 1.5MPa, convert its unit to 1500kPa to fit in the range from -32768 to 32767.

(2) List of state tag data List of state tag data is as follows.

Table(2)-1 Memory table (NREV)

			Setting/Sto	orage range		Initial			Number of
Offset	Item	Name	Low limit	High limit	Unit	value	Data type	Storage	digits after the decimal point
+0	FUNC	Tag function code	128	128	_	128	INT	System	_
+1	MODE (*1)	Control mode	0	FFFFH	-	0008н	WORD	User (condition 1)	
+2	MDIH (*1)	Disable mode	0	FFFFH	_	0620н	WORD	User	_
+3	ALM (*1)	Alarm	0	FFFFH	l	0000н	WORD	User (condition 2)	_
+4	INH (*1)	Disable alarm detection	0	FFFFH		0000н	WORD	User	_
+5	ALML (*1)	Alarm level	0	FFFFH		0000н	WORD	User	_
+6	CTNO	Lockout tag No.	0	32		0	INT	System	_
+7	CTFN	Lockout function	0	0002н	_	0000н	WORD	System	_
+8	FPNO	Faceplate display pattern	1	50		1	INT	System	_
+9	DOM (*1)	Monitor output buffer	0	FFFFH	ı	0000н	WORD	Tag data access control	_
+10	DIM (*1)	Monitor input buffer	0	FFFFH		0000н	WORD	System	_
+14	ТОТ	Time-out timer	0	99	s	5	INT	User	_
+15	DOT	Command pulse period	0	9	S	1	INT	User	_
+16	SIMT	Simulation answer period	0	99	s	3	INT	User	_

^{*1} This tag data consist of multiple BOOL type variables.

Please refer to Appendix 1.2 (1) and 1.2 (2) (a) for details of BOOL type variables.

Table (2)-2 Memory table (REV)

			Setting/Sto	orage range		Initial			Number of digits
Offset	Item	Name	Low limit	High limit	Unit	value	Data type	Storage	after the decimal point
+0	FUNC	Tag function code	129	129	_	129	INT	System	_
+1	MODE (*1)	Control mode	0	FFFFH	_	0008н	WORD	User (condition 1)	_
+2	MDIH (*1)	Disable mode	0	FFFFH	_	0620н	WORD	User	_
+3	ALM (*1)	Alarm	0	FFFFH	-	0000н	WORD	User (condition 2)	_
+4	INH (*1)	Disable alarm detection	0	FFFFH	_	0000н	WORD	User	_
+5	ALML (*1)	Alarm level	0	FFFFH	_	0000н	WORD	User	_
+6	CTNO	Lockout tag No.	0	32	_	0	INT	System	_
+7	CTFN	Lockout function	0	0002н	_	0000н	WORD	System	_
+8	FPNO	Faceplate display pattern	1	50	_	1	INT	System	_
+9	DOM (*1)	Monitor output buffer	0	FFFFH	_	0000н	WORD	Tag data access control	_
+10	DIM (*1)	Monitor input buffer	0	FFFFH	_	0000н	WORD	System	_
+14	TOT	Time-out timer	0	99	S	5	INT	User	_
+15	DOT	Command pulse period	0	9	s	1	INT	User	_
+16	SIMT	Simulation answer period	0	99	S	3	INT	User	_

^{*1} This tag data consist of multiple BOOL type variables.
Please refer to Appendix 1.2 (2) and Appendix 1.2 (2) (b) for the details about BOOL type variables.

App - 26 App - 26

Table(2)-3 Memory	table ((MVAL1)
---------	------------	---------	---------

			Setting/Sto	rage range		Initial			Number of
Offset	Item	Name	Low limit	High limit	Unit	value	Data type	Storage	digits after the decimal point
+0	FUNC	Tag function code	130	130	-	130	INT	System	_
+1	MODE (*1)	Control mode	0	FFFFH		0008н	WORD	User (condition 1)	_
+2	MDIH (*1)	Disable mode	0	FFFFH		0620н	WORD	User	=
+3	ALM (*1)	Alarm	0	FFFFH		0000н	WORD	User (condition 2)	_
+4	INH (*1)	Disable alarm detection	0	FFFFH	l	0000н	WORD	User	_
+5	ALML (*1)	Alarm level	0	FFFFH	l	0000н	WORD	User	_
+6	CTNO	Lockout tag No.	0	32	l	0	INT	System	=
+7	CTFN	Lockout tag function	0	2	1	0000н	WORD	System	=
+8	FPNO	Faceplate display pattern	1	50	l	1	INT	System	_
+9	DOM (*1)	Monitor output buffer	0	FFFFH	I	0000н	WORD	Tag data access control	_
+10	DIM (*1)	Monitor input buffer	0	FFFFH	1	0000н	WORD	System	_
+14	тот	Time-out timer	0	99	s	5	INT	User	-
+15	DOT	Command pulse period	0	9	S	1	INT	User	=
+16	SIMT	Simulation answer period	0	99	s	3	INT	User	_

^{*1} This tag data consist of multiple BOOL type variables. For details about each BOOL type variable, please refer to Appendix 1.2(2) and Appendix 1.2(2) (c).

Table(2)-4 Memory table (MVAL2)

			Setting/Sto	rage range		Initial			Number of
Offset	Item	Name	Low limit	High limit	Unit	value	Data type	Storage	digits after the decimal point
+0	FUNC	Tag function code	131	131	_	131	INT	System	-
+1	MODE (*1)	Control mode	0	FFFFH	_	0008н	WORD	User (condition 1)	_
+2	MDIH (*1)	Disable mode	0	FFFFH	_	0620н	WORD	User	_
+3	ALM (*1)	Alarm	0	FFFFH	ĺ	0000н	WORD	User (condition 2)	_
+4	INH (*1)	Disable alarm detection	0	FFFFH	1	0000н	WORD	User	
+5	ALML (*1)	Alarm level	0	FFFFH	_	0000н	WORD	User	1
+6	CTNO	Lockout tag No.	0	32	_	0	INT	System	_
+7	CTFN	Lockout tag function	0	0002н	_	0000H	WORD	System	_
+8	FPNO	Faceplate display pattern	1	50	_	1	INT	System	=
+9	DOM (*1)	Monitor output buffer	0	FFFFH	ı	0000н	WORD	Tag data access control	ı
+10	DIM (*1)	Monitor input buffer	0	FFFFH		0000н	WORD	System	
+14	тот	Time-out timer	0	99	s	5	INT	User	_
+15	DOT	Command pulse period	0	9	s	1	INT	User	_
+16	SIMT	Simulation answer period	0	99	S	3	INT	User	_

^{*1} This tag data consist of multiple BOOL type variables. For details about each BOOL type variable, please refer to Appendix 1.2(2) and Appendix 1.2(2) (d).

Offset	Item	Name	1	g/Storage inge	Unit	Initial value	Data type	Storage	Number of digits after the decimal
Oliset	щет	ivanie	Low limit	High limit	Offic	ilililai value		Storage	point
+0	FUNC	Tag function code	132	132	_	132	INT	System	_
+6	CTNO	Lockout tag No.	0	32	=	0	INT	System	_
+7	CTFN	Lockout tag function	0	0002н		0000н	WORD	System	_
+9	DOM (*1)	Monitor output buffer	0	FFFFH		0000н	WORD	Tag data access control	_
+10	DIM (*1)	Monitor input buffer	0	FFFFH	_	0000н	WORD	System	_
+14	UNIT	Unit	0	127	l	0	INT	User	_
+16	PV	Process value	RL	RH	UNIT	0	DINT	System	_
+18	PSV	Set value (preset)	RL	RH	UNIT	0	DINT	User	_
+20	SV	Set value	RL	RH	UNIT	0	DINT	User	_
+22	MULT	Multiplying factor (0: second, 1: minute)	0	1	ı	1	INT	User	_
+24	RH	Timer high limit	0	99999999	UNIT	99999999	DINT	User	_
+26	RL	Timer low limit	0	99999999	UNIT	0	DINT	User	=

^{*1} These tag data consist of multiple BOOL type variables.
For details about each BOOL type variable, please refer to Appendix 1.2(2) (e).

Table (2)-6 Memory table (TIMER2)

Offset	Item	Nome	`	g/Storage ange	Unit	Initial value	Data tuna	Ctorogo	Number of digits after the decimal
Oliset	item	Name	Low low limit	High High limit	Offic	miliai value	Data type	Storage	point
+0	FUNC	Tag function code	133	133	ı	133	INT	System	
+6	CTNO	Lockout tag No.	0	32	1	0	INT	System	_
+7	CTFN	Lockout tag function	0	0002н	_	0000н	WORD	System	_
+9	DOM (*1)	Monitor output buffer	0	FFFFH	_	0000н	WORD	Tag data access control	_
+10	DIM (*1)	Monitor input buffer	0	FFFFH	_	0000н	WORD	System	_
+14	UNIT	Unit	0	127	1	0	INT	User	-
+16	PV	Process value	RL	RH	UNIT	0	DINT	System	
+18	PSV	Set value (preset)	RL	RH	UNIT	0	DINT	User	
+20	SV	Set value	RL	RH	UNIT	0	DINT	User	_
+22	MULT	Multiplying factor (0: second, 1: minute)	0	1		1	INT	User	_
+24	RH	Timer high limit	0	99999999	UNIT	99999999	DINT	User	_
+26	RL	Timer low limit	0	99999999	UNIT	0	DINT	User	_

^{*1} These tag data consist of multiple BOOL type variables.

For details about each BOOL type variable, please refer to Appendix 1.2(2) (f).

Table(2)-7	Memory table	(COUNT1)
------------	--------------	----------

Offset	Item	Name	Setting/Sto	orage range High limit	Unit	Initial value	Data type	Storage	Number of digits after the decimal point
+0	FUNC	Tag function code	134	134	=	134	INT	System	_
+6	CTNO	Lockout tag No.	0	32	_	0	INT	System	_
+7	CTFN	Lockout tag function	0	0002н	_	0000н	WORD	System	_
+9	DOM (*1)	Monitor output buffer	0	FFFFH		0000н	WORD	Tag data access control	_
+10	DIM (*1)	Monitor input buffer	0	FFFFH	I	0000н	WORD	System	_
+14	UNIT	Unit	0	127	I	0	INT	User	_
+16	PV	Process value	RL	RH	UNIT	0	DINT	System	_
+18	PSV	Set value (preset)	RL	RH	UNIT	0	DINT	User	_
+20	SV	Set value	RL	RH	UNIT	0	DINT	User	_
+22	MULT	Multiplying factor	1	999	ĺ	1	INT	User	_
+24	RH	Counter high limit	0	99999999	UNIT	99999999	DINT	User	_
+26	RL	Counter low limit	0	99999999	UNIT	0	DINT	User	_

^{*1} These tag data consist of multiple BOOL type variables.

For details about each BOOL type variable, please refer to Appendix 1.2(2) (g).

Table(2)-8 Memory table (COUNT2)

0#	lt a ma	Name	Setting/Sto	orage range	11-4	laitial calca	Data to a	04	Number of digits
Offset	Item	Name	Low limit	High limit	Unit	Initial value	Data type	Storage	after the decimal point
+0	FUNC	Tag function code	135	135	-	135	INT	System	_
+6	CTNO	Lockout tag No.	0	32	_	0	INT	System	_
+7	CTFN	Lockout tag function	0	0002н	_	0000н	WORD	System	_
+9	DOM (*1)	Monitor output buffer	0	FFFFH	_	0000н	WORD	Tag data access control	
+10	DIM (*1)	Monitor input buffer	0	FFFFH	_	0000н	WORD	System	_
+14	UNIT	Unit	0	127	_	0	INT	User	
+16	PV	Process value	RL	RH	UNIT	0	DINT	System	_
+18	PSV	Set value (preset)	RL	RH	UNIT	0	DINT	User	_
+20	SV	Set value	RL	RH	UNIT	0	DINT	User	_
+22	MULT	Multiplying factor	1	999	_	1	INT	User	_
+24	RH	Counter high limit	0	99999999	UNIT	99999999	DINT	User	_
+26	RL	Counter low limit	0	99999999	UNIT	0	DINT	User	

^{*1} These tag data consist of multiple BOOL type variables.

For details about each BOOL type variable, please refer to Appendix 1.2(2) (h).

(3) List of alarm tag data List of alarm tag data is as follows.

Table(3)-1 Memory table (ALM)

Offset	Item	Name	Setting/Sto	orage range High limit	Unit	Initial value	Storage	Data type
-			LOW IIIIII	TilgiTillilli				
+0	FUNC	Tag function code	256	256	_	256	System	INT
+1	ALM (*1)	Alarm	0	00FFн	_	0000н	System	WORD
+2	ALML (*1)	Alarm level	0	00FFн	-	0000н	User	WORD
+4	ALM1NO	Alarm 1 name No.	0	10000	_	0	User	INT
+5	ALM2NO	Alarm 2 name No.	0	10000	_	0	User	INT
+6	ALM3NO	Alarm 3 name No.	0	10000	_	0	User	INT
+7	ALM4NO	Alarm 4 name No.	0	10000	_	0	User	INT
+8	ALM5NO	Alarm 5 name No.	0	10000	-	0	User	INT
+9	ALM6NO	Alarm 6 name No.	0	10000	_	0	User	INT
+10	ALM7NO	Alarm 7 name No.	0	10000	_	0	User	INT
+11	ALM8NO	Alarm 8 name No.	0	10000	_	0	User	INT

^{*1} This tag data consist of multiple BOOL type variables.
Please refer to Appendix 1.2 (3) for details of BOOL type variables.

(4) List of message tag data List of message tag data is as follows.

Table(4)-1 Memory table (MSG)

		1	1					
Offset	Item	Name	Setting/Sto	rage range	Unit	Initial value	Storage	Data type
Oliset	item	Name	Low limit	High limit	Offic	iriiliai vaiue	Storage	Data type
+0	FUNC	Tag function code	272	272	l	272	System	INT
+1	MSG (*1)	Message	0	00FFн	_	0000н	System	WORD
+2	MSGCHK (*1)	Message check	0	00FFн	ı	0000н	User	WORD
+4	MSG1NO	Message 1 name No.	0	10000	l	0	User	INT
+5	MSG2NO	Message 2 name No.	0	10000	l	0	User	INT
+6	MSG3NO	Message 3 name No.	0	10000	l	0	User	INT
+7	MSG4NO	Message 4 name No.	0	10000	l	0	User	INT
+8	MSG5NO	Message 5 name No.	0	10000	1	0	User	INT
+9	MSG6NO	Message 6 name No.	0	10000	l	0	User	INT
+10	MSG7NO	Message 7 name No.	0	10000	_	0	User	INT
+11	MSG8NO	Message 8 name No.	0	10000	_	0	User	INT

^{*1} This tag data consist of multiple BOOL type variables. Please refer to Appendix 1.2 (4) for details of BOOL type variables.

Appendix 1.2 Detailed Information About Tag Data Of Various Tag Types

Marks in the table User : can be read/written by user program (Read/Write).

User *1 : write by using P_MCHG of tag access FB.
User *2 : it will not be displayed on FB property window.
System : only can be read by user program (Read). Please do

not execute writing, and the operation during writing is

not guaranteed.

Meanwhile, the system will not be displayed on FB.

Tag data access control: Tag data access control can only write from

ActiveX Control application program which uses this

control.

For details about tag data access control, please refer to PX Developer Operating Manual (Monitor Tool).

(1) Loop tag memory

Offset	Item	b15	b14	b13	b12	b11	b10	b9	
	MODE						CSV COMPUTER SV	CMV COMPUTER MV	
⊦ 1	Control Mode						User *1*2	User *1*2	
							TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	
	MDIH Disable mode	SIMI Disable SIMULATION	OVRI Disable OVERRIDE	ATI Disable Auto tuning			CSVI Disable COMPUTER SV	CMVI Disable COMPUTER MV	
2	change	User	User	User			User	User	
		TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid			TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	
			SPA Stop alarm			DMLA Output variation rate limit	OOA Output open	SEA Sensor error	
+3	ALM Alarm		User *2			System	User	System	
			TRUE:Occur FALSE: Reset			TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset	

^{*} For +1 and +2 of 2PIDH, refer to (a).

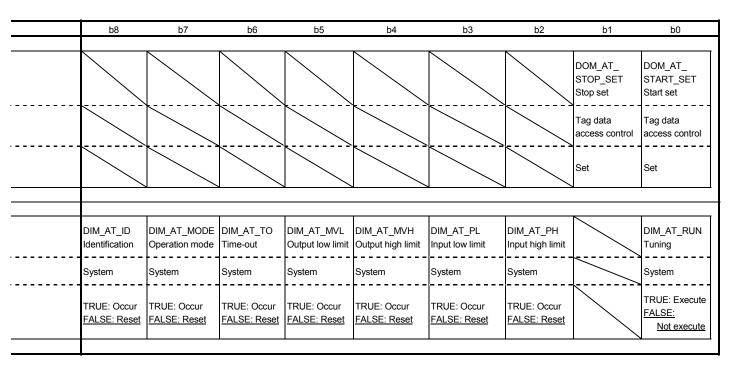
App - 31 App - 31

^{*} For +1, +2, and +3 of PGS2, refer to (e).

______: The underscore indicates the initial value of each tag data.(But when the tag type is MWM or MOUT, the initial value of AUTI and CASI for "Disable mode change (MDIH)" are TRUE.)

b8	b7	b6	b5	b4	b3	b2	b1	b0
			CAS CASCADE	AUT AUTO	MAN MANUAL			
			User *1*2	User *1*2	User *1*2			
			TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid			
			CASI Disable CASCADE	AUTI Disable AUTO	MANI Disable MANUAL			
			User	User	User			
			TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid			
HHA Input high high limit	LLA Input low low limit	PHA Input high limit	PLA Input low limit	DPPA Positive variation rate	DPNA Negative variation rate	DVLA Large deviation	MHA Output high limit	MLA Output low limit
System	System	System	System	System	System	System	System	System
TRUE :Occur	TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset	TRUE: Occi FALSE: Res

Offset	Item	b15	b14	b13	b12	b11	b10	b9	
+4	INH Disable Alarm	ERRI Disable all alarms		TRKF Tracking flag		DMLI Disable output variation rate limit alarm		SEI Disable sensor error alarm	
	Detection	User		System		User		User	
		TRUE: Valid FALSE: Invalid		TRUE: Valid FALSE: Invalid		TRUE: Valid FALSE: Invalid		TRUE: Valid FALSE: Invalid	
			SPL Alarm level of stop Alarm			DMLL Alarm level of output variation rate limit alarm	OOL Output open level	SENL Alarm level of sensor error alarm	
+5	ALML Alarm level		User			User	User	User	
			TRUE: Major alarm <u>FALSE:</u> <u>Minor alarm</u>		,	TRUE: Major alarm <u>FALSE:</u> <u>Minor alarm</u>	TRUE: Major alarm <u>FALSE:</u> <u>Minor alarm</u>	TRUE: Major alarm FALSE: Minor alarm	


^{*} For +4 and +5 of PGS2, refer to (e).

(a) Loop tag memory (PID, 2PID)*

Offset	Item	b15	b14	b13	b12	b11	b10	b9
	DOM		OVR Override					
+94	Monitor output buffer		Tag data access control					
			TRUE: Valid FALSE: Invalid					
⊦ 95	DIM Monitor input buffer							
				<u>-</u>				

^{*} The other loop data with SIM and OVR are in the same bit position. For details about having or not having SIM and OVR, please refer to Appendix 1.3(4).

b8	b7	b6	b5	b4	b3	b2	b1	b0
HHI Disable input high high limit alarm	LLI Disable input low low limit alarm	PHI Disable input high limit alarm	PLI Disable input low limit alarm	DPPI Disable positive variation rate alarm	DPNI Disable negative variation rate alarm	DVLI Disable large deviation alarm	MHI Disable output high limit alarm	MLI Disable output low limit alarm
 User	User	User	User	User	User	User	User	User
 TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid
HHL Alarm level of input high high limit alarm	LLL Alarm level of input low low limit alarm	PHL Alarm level of input high limit alarm	PLL Alarm level of input low limit alarm	DPPL Alarm level of positive variation rate alarm	DPNL Alarm level of negative variation rate alarm	DVLL Alarm level of large deviation alarm	MHL Alarm level of output high limit alarm	MLL Alarm level of output low limit alarm
 User	User	User	User	User	User	User	User	User
 TRUE: Major alarm <u>FALSE:</u> Minor alarm	TRUE: Major alarm <u>FALSE:</u> Minor alarm	TRUE: Major alarm <u>FALSE:</u> Minor alarm	TRUE: Major alarm FALSE: Minor alarm	TRUE: Major alarm FALSE: Minor alarm	TRUE: Major alarm FALSE: Minor alarm	TRUE: Major alarm FALSE: Minor alarm	TRUE: Major alarm FALSE: Minor alarm	TRUE: Major alarm FALSE: Minor alarm

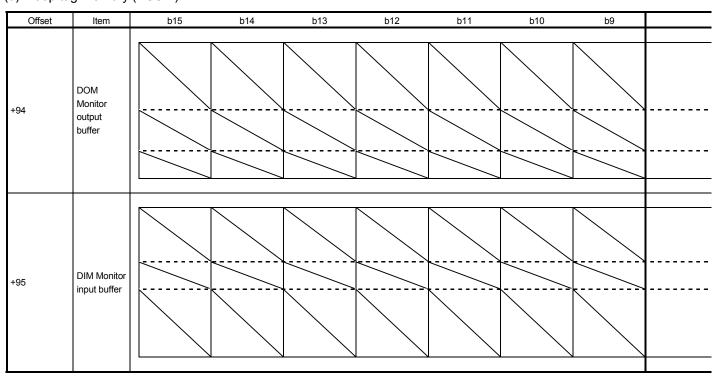
(b) Loop tag memory (2PIDH)

Offset	Item	b15	b14	b13	b12	b11	b10	b9	
	MODE					CASDR CASCADE DIRECT *3	CSV COMPUTER SV	CMV COMPUTER MV	
+1	Control					User	User	User	
	Mode					TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	
	MDIH Disable	SIMI Disable SIMULATION	OVRI Disable OVERRIDE	ATI Disable Auto tuning	TSTPI Disable Tag stop	CASDRI Disable CADCADE DIRECT	CSVI Disable COMPUTER SV	CMVI Disable COMPUTER MV	
+2	mode	User	User	User	User	User	User	User	
	change	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	

^{*3} In CASCADE DIRECT mode, both values of CAS (b5 of offset +1) and CASDR (b11 of offset +1) are TRUE.

Offset	Item	b15	b14	b13	b12	b11	b10	b9	
		DSVLA SV variation rate limit	SVHA SV high limit	SVLA SV low limit					
+87	ALM2 Alarm 2	System	System	System					
		TRUE :Occur FALSE: Reset	TRUE :Occur FALSE: Reset	TRUE :Occur FALSE: Reset					
	INH2	DSVLI SV variation rate limit invalid	SVHI SV high limit invalid	SVLI SV low limit invalid					
+88	Disable alarm2	User	User	User					
	detection	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid					
		DSVLL SV variation rate limit level	SVHL SV high limit level	SVLL SV low limit level					
+89	ALML2	User	User	User					
	Alarm level 2	TRUE: Major alarm <u>FALSE:</u> <u>Minor alarm</u>	TRUE: Major alarm <u>FALSE:</u> <u>Minor alarm</u>	TRUE: Major alarm <u>FALSE:</u> <u>Minor alarm</u>					

	b7	b6	b5	b4	b3	b2	b1	b0
b8								
			CAS CASCADE *3	AUT AUTO	MAN MANUAL			
			User	User	User			
			TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid			
			CASI Disable CASCADE	AUTI Disable AUTO	MANI Disable MANUAL			
			User	User	User			
			TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid			
b8	b7	b6	b5	b4	b3	b2	b1	b0
				N	<u> </u>			
								_
		>	<u> </u>	<u></u>	· · · · · · · · ·	, <u> </u>		


Offset	Item	b15	b14	b13	b12	b11	b10	b9	
		SIM Simulation	OVR Override	TSTP TAG STOP					
+94	DOM Monitor output buffer	Tag data access control	Tag data access control	Tag data access control					
	burrer	TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Stop FALSE: Execute					
	DIM					DIM_MVTRK MV tracking	DIM_MVHLD MV hold	DIM_PREMV Preset MV	
+95	Monitor input buffer					TRUE: Execute FALSE: Not execute	System TRUE: Execute FALSE: Not execute	System TRUE: Execute FALSE: Not execute	

b8	b7	b6	b5	b4	b3	b2	b1	b0
						DOM_AT_TYPE Command type	DOM_AT_ STOP_SET Stop set	DOM_AT_ START_SET Start set
						Tag data access control	Tag data access control	Tag data access control
						Set only TRUE: Limit Cycle method FALSE: Step Response method	Set	Set
		•						
DIM_AT_ID Identification	DIM_AT_MODE Operation mode	DIM_AT_TO Time-out	DIM_AT_MVL Output low limit	DIM_AT_MVH Output high limit	DIM_AT_PL Input low limit	DIM_AT_PH Input high limit		DIM_AT_RUN Tuning
System	System	System	System	System	System	System	,	System
TRUE: Occur FALSE: Rese	TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset		TRUE: Execute FALSE: Not execute

(c) Loop tag memory (BC)

Offset	Item	b15	b14	b13	b12	b11	b10	b9	
	DOM								
+94	Monitor output buffer								
+95	DIM Monitor input								
	buffer								

(d) Loop tag memory (PSUM)

b8	b7	b6	b5	b4	b3	b2	b1	b0
					Reset/start by	DOM_STOP_ RESET_SET Stop/reset by PC	DOM_HOLD_ SET Hold by PC	DOM_RUN_ SET Run by PC
					Tag data access control	Tag data access control	Tag data access control	Tag data access control
					Set	Set	Set	Set
				•	•		•	
	DIM_COMP Complete	DIM_PRE_ COMP2 Pre-complete 2	DIM_PRE_ COMP1 Pre-complete 1			DIM_STOP_ RESET Stop reset	DIM_HOLD Hold	DIM_RUN Run
	System	System	System			System	System	System
	TRUE: Completed FALSE:	TRUE: Completed FALSE:	TRUE: Completed FALSE:			TRUE: Execute FALSE: Not execute	TRUE: Execute FALSE: Not execute	TRUE: Execute FALSE: Not execute

b8	b7	b6	b5	b4	b3	b2	b1	b0
					DOM_RESET_ START_SET Reset/start by PC	DOM_STOP_ RESET_SET Stop/reset by PC	COM_HOLD_ SET Hold by PC	DOM_RUN_ SET Run by PC
					Tag data access control	Tag data access control	Tag data access control	Tag data access control
					Set	Set	Set	Set
						DIM_STOP_ RESET Stop reset	DIM_HOLD Hold	DIM_RUN Run
						System	System	System
						TRUE: Execute FALSE: Not execute	TRUE: Execute FALSE: Not execute	TRUE: Execute FALSE: Not execute

App - 40 App - 40

(e) Loop tag memory (PGS2)

Offset	Item	b15	b14	b13	b12	b11	b10	b9	
+1	MODE Control mode								
+2	MDIH Disable mode				TSTPI Disable TAG STOP User TRUE: Valid FALSE: Invalid				
+3	ALM Alarm		SPA Stop alarm User *2 TRUE: Occur FALSE: Reset						
+4	INH Disable alarm detection	ERRI Disable all alarms User TRUE: Valid FALSE: Invalid							
+5	ALML Alarm level		SPL Stop alarm level User TRUE: Major alarm FALSE: Minor alarm						

App - 41 App - 41

b8	b7	b6	b5	b4	b3	b2	b1	b0
				T	T		_	_
				AUT	MAN			
 				AUTO	MANUAL			
				User *1 *2	User *1 *2			
				TRUE: Valid	TRUE: Valid			
				FALSE: Invalid	FALSE: Invalid			
				AUTI	MANI			
				Disable AUTO	Disable MANUAL			
 	·····	````		User	User			
 ····	···· ·	<u> </u>	<u> </u>	TRUE: Valid	TRUE: Valid	·		
				FALSE: Invalid	FALSE: Invalid			
				I ALOL. IIIValia	TALOL. IIIValiu			
							SVHA	SVLA
							SV high limit	SV low limit
 							<	
 · · · · · · · ·							System	System
							TRUE: Occur	TRUE: Occur
							FALSE: Reset	FALSE: Reset
								1
							SVHI	SVLI
 							Disable SV high limit	Disable SV low
							User	User
							TRUE: Valid	TRUE: Valid
							FALSE: Invalid	FALSE: Invalid
		`	`		`	`	J	
							SVHL	SVLL
							SV high limit level	SV low limit leve
 	·····	`			****		User	User
 ·	····	····	<u> </u>	<u> </u>	····	<u> </u>	TRUE: Major alarm	TRUE: Major al
	_	_	_		_	_	FALSE: Minor alarm	FALSE: Minor a

App - 42 App - 42

Offset	Item	b15	b14	b13	b12	b11	b10	b9	
+20	TYP Operation type								
+94	DOM Monitor output buffer			TSTP TAG STOP Tag data access control TRUE: Stop FALSE: Execute					
+95	DIM Monitor input buffer								

b8	b7	b6	b5	b4	b3	b2	b1	b0
TUNIT						TYP_CYCLIC	TYP_RETURN	TYP_HOLD
 Unit of time						CYCLIC	RETURN	HOLD
 User						User	User	User
 TRUE: Minute						TRUE: Valid	TRUE: Valid	TRUE: Valid
FALSE: Second						FALSE: Invalid	FALSE: Invalid	FALSE: Invalid
								DOM_ADV_START
								Advance command
 	<u> </u>	·····		·····		·····		Tag data access
								control
 	<u> </u>	·····		<u></u>	·····			Ĭ
								Set
								•
								DIM_WAIT_MODE
								Waiting
 				·····	`````			System
 	····	->-	····			·····		TRUE: Waiting
								FALSE: Operating
								17 LOL. Operating

(2) Status tag memory

Offset	Item	b15	b14	b13	b12	b11	b10	b9	
+1	MODE Control Mode								
+2	MDIH Disable Mode	SIMI Disable SIMULATION User TRUE: Valid FALSE: Invalid	OVRI Disable OVERRIDE User TRUE: Valid FALSE: Invalid						
+3	ALM Alarm								
+4	INH Disable Alarm Detection	ERRI Disable all alarms User TRUE: Valid FALSE: Invalid							
+5	ALML Alarm level								

b8	b7	b6	b5	b4	b3	b2	b1	b0
				AUT AUTO	MAN MANUAL			
				User *1	User *1			
				TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid			
					•			
					MANI			
				AUTI Disable AUTO	Disable MANUAL			
				User	User			
				TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid			
				1				
							TRIPA Trip	TOA Time-out
							System	System
							TRUE :Occur FALSE: reset	TRUE :Occur FALSE: reset
							TRIPI Disable trip	TOI Disable time-
 ••••							alarm User	out alarm User
							TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid
 							TDIDI	TOI
							TRIPL Alarm level of Trip alarm	Alarm level of Time-out alarm
							User	User
							TRUE: Major alarm FALSE: Minor alarm	TRUE: Major alarm FALSE: Minor alarm
V							1	1

App - 46 App - 46

(a) Status tag memory (NREV)

Offset	Item	b15	b14	b13	b12	b11	b10	b9	
	DOM	SIM SIMULATION	OVR OVERRIDE						
+9	Monitor output buffer	Tag data access control	Tag data access control						
		TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid						
	DIM								
+10	Monitor input buffer								
							`		

(b) Status tag memory (REV)

Offset	Item	b15	b14	b13	b12	b11	b10	b9	
+9	DOM Monitor	SIM SIMULATION	OVR OVERRIDE						
+9	output buffer	Tag data access control	Tag data access control						
		TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid						
	DIM								
+10	Monitor input buffer								

b8	b7	b6	b5	b4	b3	b2	b1	b0
			DOM_TO_ RESET Time-out reset				DOM_STOP_ SET Stop by PC	DOM_RUN_ SET Operation by PC
			Tag data access control				Tag data access control	Tag data access contro
			Set				Set	Set
								•
				DIM_ REMOTE Remote	DIM_LOCAL Local		DIM_STOP Status answer	DIM_RUN Status answer
				System	System		System	System
				TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid		TRUE: Stop FALSE: —	TRUE: Run FALSE: —
b8	b7	b6	b5	b4	b3	b2	b1	b0
b8	b7	b6	DOM_TO_ RESET Time-out reset	b4	b3	b2 DOM_REV_ SET Reverse run by PC	b1 DOM_STOP_ SET Stop by PC	DOM_FWD_ SET
 b8	b7	b6	DOM_TO_ RESET	b4	b3	DOM_REV_ SET Reverse run by	DOM_STOP_ SET	DOM_FWD_ SET Forward run b
 b8	b7	b6	DOM_TO_ RESET Time-out reset	b4	b3	DOM_REV_ SET Reverse run by PC	DOM_STOP_ SET Stop by PC Tag data	DOM_FWD_ SET Forward run b PC
 b8	b7	b6	DOM_TO_ RESET Time-out reset Tag data access control	b4	b3	DOM_REV_ SET Reverse run by PC Tag data access control	DOM_STOP_ SET Stop by PC Tag data access control	DOM_FWD_ SET Forward run b PC Tag access control
 b8	b7	b6	DOM_TO_ RESET Time-out reset Tag data access control	DIM_ REMOTE Remote	b3 DIM_LOCAL Local	DOM_REV_ SET Reverse run by PC Tag data access control	DOM_STOP_ SET Stop by PC Tag data access control	DOM_FWD_ SET Forward run b PC Tag access control Set
 b8	b7	b6	DOM_TO_ RESET Time-out reset Tag data access control	DIM_ REMOTE	DIM_LOCAL	DOM_REV_ SET Reverse run by PC Tag data access control Set	DOM_STOP_ SET Stop by PC Tag data access control Set	DOM_FWD_ SET Forward run b PC Tag access control

(c) Status tag memory (MVAL1)

Offset	Item	b15	b14	b13	b12	b11	b10	b9	
	DOM Monitor	SIM SIMULATION	OVR OVERRIDE						
+9	output buffer	Tag data access control	Tag data access control						
		TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid						
+10	DIM Monitor input buffer								
			1						

(d) Status tag memory (MVAL2)

Offset	Item	b15	b14	b13	b12	b11	b10	b9	
	DOM	SIM SIMULATION	OVR OVERRIDE						
+9	Monitor output buffer	Tag data access control	Tag data access control						
		TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid						
	DIM								
+10	Monitor input buffer								

b8	b7	b6	b5	b4	b3	b2	b1	b0
			DOM_TO_ RESET Time-out reset			DOM_CLOSE_ SET Close by PC		DOM_OPEN_ SET Open by PC
			Tag data access control	,		Tag data access control		Tag data access control
			Set			Set		Set
			1					
				DIM_ REMOTE Remote	DIM_LOCAL Local	DIM_CLOSE Status answer	DIM_SEMI_ CLOSE Status answer	DIM_OPEN Status answer
				System	System	System	System	System
				TRUE: Valid FALSE: Invalid	TRUE: Valid FALSE: Invalid	TRUE: Close FALSE: —	TRUE: Semiopen	TRUE: Open
b8	b7	b6	b5	b4	b3	b2	b1	b0
b8	b7	b6	DOM_TO_ RESET Time-out reset	b4	b3	b2 DOM_CLOSE_ SET Close by PC		b0 DOM_OPEN_ SET Open by PC
 b8	b7	b6	DOM_TO_ RESET	b4	b3	DOM_CLOSE_ SET	b1 DOM_STOP_ SET	DOM_OPEN_ SET
 b8	b7	b6	DOM_TO_ RESET Time-out reset	b4	b3	DOM_CLOSE_ SET Close by PC	b1 DOM_STOP_ SET Stop by PC Tag data	DOM_OPEN_ SET Open by PC Tag data
 b8	b7	b6	DOM_TO_ RESET Time-out reset Tag data access control	b4	b3	DOM_CLOSE_ SET Close by PC Tag data access control	DOM_STOP_ SET Stop by PC Tag data access control	DOM_OPEN_ SET Open by PC Tag data access control
 b8	b7	b6	DOM_TO_ RESET Time-out reset Tag data access control	DIM_REMOTE Remote	b3 DIM_LOCAL Local	DOM_CLOSE_ SET Close by PC Tag data access control	DOM_STOP_ SET Stop by PC Tag data access control	DOM_OPEN_ SET Open by PC Tag data access control
 b8	b7	b6	DOM_TO_ RESET Time-out reset Tag data access control	DIM_REMOTE	DIM_LOCAL	DOM_CLOSE_ SET Close by PC Tag data access control Set	b1 DOM_STOP_ SET Stop by PC Tag data access control Set DIM_SEMI_ CLOSE	DOM_OPEN_ SET Open by PC Tag data access control Set

(e) Status tag memory (TIMER1)

Offset	Item	b15	b14	b13	b12	b11	b10	b9	
+9	DOM Monitor								
. 9	output buffer								
	DIM								
+10	Monitor input buffer								

(f) Status tag memory (TIMER2)

+9 DOM Monitor output buffer +10 DIM Monitor input buffer	Offset	Item	b15	b14	b13	b12	b11	b10	b9	
+10 Monitor	+9	Monitor output								
+10 Monitor										
	+10	Monitor								

App - 51 App - 51

b8	b7	b6	b5	b4	b3	b2	b1	b0
					DOM_RESET_ START_SET Reset/start by PC	DOM_RESET_ SET Reset by PC	DOM_STOP_ SET Stop by PC	DOM_RUN_ SET Run by PC
					Tag data access control	Tag data access control	Tag data access control	Tag data access contro
					Set	Set	Set	Set
	DIM_COMP Complete external output	DIM_PRE_ COMP Pre-complete external output				DIM_RESET Reset	DIM_STOP Stop	DIM_RUN Run
	System	System				System	System	System
	TRUE: Completed FALSE: Uncompleted	TRUE: Completed FALSE: Uncompleted				TRUE: Execute FALSE: Not execute	TRUE: Execute FALSE: Not execute	TRUE: Execu FALSE: Not execute
b8	b7	b6	b5	b4	b3	b2	b1	b0
b8	b7	b6	b5	b4	DOM_RESET_ START_SET Reset/start by PC	DOM_RESET_ SET Reset by PC	DOM_STOP_ SET Stop by PC	DOM_RUN_ SET Run by PC
b8	b7	b6	b5	b4	DOM_RESET_ START_SET Reset/start by	DOM_RESET_ SET	DOM_STOP_ SET	DOM_RUN_ SET Run by PC
b8	b7	b6	b5	b4	DOM_RESET_ START_SET Reset/start by PC	DOM_RESET_ SET Reset by PC	DOM_STOP_ SET Stop by PC	DOM_RUN_ SET Run by PC
b8	b7	b6	b5	b4	DOM_RESET_ START_SET Reset/start by PC Tag data access control	DOM_RESET_ SET Reset by PC Tag data access control	DOM_STOP_ SET Stop by PC Tag data access control	DOM_RUN_ SET Run by PC Tag data access contro
b8	DIM_COMP Complete external output	DIM_PRE_COMP Pre-complete external output	b5	b4	DOM_RESET_ START_SET Reset/start by PC Tag data access control	DOM_RESET_ SET Reset by PC Tag data access control	DOM_STOP_ SET Stop by PC Tag data access control	DOM_RUN_ SET Run by PC Tag data access contro
b8	DIM_COMP Complete	DIM_PRE_COMP Pre-complete	b5	b4	DOM_RESET_ START_SET Reset/start by PC Tag data access control	DOM_RESET_ SET Reset by PC Tag data access control Set DIM_RESET	DOM_STOP_ SET Stop by PC Tag data access control Set	DOM_RUN_ SET Run by PC Tag data access contro

(g) Status tag memory (COUNT1)

Offset	Item	b15	b14	b13	b12	b11	b10	b9	
+9	DOM Monitor								
, and the second	output buffer								
	DIM								
+10	Monitor input buffer								

(h) Status tag memory (COUNT2)

Offset	Item	b15	b14	b13	b12	b11	b10	b9	
+9	DOM Monitor output buffer								
+10	DIM Monitor input buffer								

b8	b7	b6	b5	b4	b3	b2	b1	b0
					DOM_RESET_ START_SET Reset/Start by PC	DOM_RESET_ SET Reset by PC	DOM_STOP_ SET Stop by PC	DOM_RUN_ SET Run by PC
					Tag data access control	Tag data access control	Tag data access control	Tag data access control
			,,,		Set	Set	Set	Set
	DIM_COMP Complete external output	DIM_PRE_ COMP Pre-complete external output				DIM_RESET Reset	DIM_STOP Stop	DIM_RUN Run
	System	System				System	System	System
	TRUE: Completed FALSE: Uncompleted	TRUE: Completed FALSE: Uncompleted				TRUE: Execute FALSE: Not execute	TRUE: Execute FALSE: Not execute	TRUE: Execut FALSE: Not execute
b8	b7	b6	b5	b4	b3	b2	b1	b0
b8	b7	b6	b5	b4	DOM_RESET_ START_SET Reset/Start by PC	DOM_RESET_ SET Reset by PC	DOM_STOP_ SET Stop by PC	DOM_RUN_ SET Run by PC
b8	b7	b6	b5	b4	DOM_RESET_ START_SET Reset/Start by	DOM_RESET_ SET	DOM_STOP_ SET	DOM_RUN_ SET
b8	b7	b6	b5	b4	DOM_RESET_ START_SET Reset/Start by PC	DOM_RESET_ SET Reset by PC	DOM_STOP_ SET Stop by PC	DOM_RUN_ SET Run by PC
b8	b7	b6	b5	b4	DOM_RESET_ START_SET Reset/Start by PC Tag data access control	DOM_RESET_ SET Reset by PC Tag data access control	DOM_STOP_ SET Stop by PC Tag data access control	DOM_RUN_ SET Run by PC Tag data access contro
b8	DIM_COMP Complete external output	DIM_PRE_COMP Pre-complete external output	b5	b4	DOM_RESET_ START_SET Reset/Start by PC Tag data access control	DOM_RESET_ SET Reset by PC Tag data access control	DOM_STOP_ SET Stop by PC Tag data access control	DOM_RUN_ SET Run by PC Tag data access contro
b8	DIM_COMP Complete	DIM_PRE_COMP Pre-complete	b5	b4	DOM_RESET_ START_SET Reset/Start by PC Tag data access control	DOM_RESET_ SET Reset by PC Tag data access control Set DIM_RESET	DOM_STOP_ SET Stop by PC Tag data access control Set	DOM_RUN_ SET Run by PC Tag data access contro Set

(3) Alarm tag memory

Offset	Item	b15	b14	b13	b12	b11	b10	b9	
+1	ALM Alarm								
				<u> </u>		<u> </u>			
+2	ALML Alarm								
	level								
		V		ı V					

(4) Message tag memory

Offset	Item	b15	b14	b13	b12	b11	b10	b9	
+1	MSG Message								
					N.	N			
	MSGCHK								
+2	Message check								

	b7	b6	b5	b4	b3	b2	b1	b0
	ALM8	ALM7	ALM6	ALM5	ALM4	ALM3	ALM2	ALM1
	Alarm 8	Alarm 7	Alarm 6	Alarm 5	Alarm 4	Alarm 3	Alarm 2	Alarm 1
	System	System	System	System	System	System	System	System
	TRUE : Occur	TRUE : Occur	TRUE : Occur	TRUE : Occur	TRUE : Occur	TRUE : Occur	TRUE : Occur	TRUE : Occur
	FALSE:	FALSE:	FALSE:	FALSE:	FALSE:	FALSE:	FALSE:	FALSE:
	Reset	Reset	Reset	Reset	Reset	Reset	Reset	Reset
	ALML8	ALML7	ALML6	ALML5	ALML4	ALML3	ALML2	ALML1
	Alarm 8	Alarm 7	Alarm 6	Alarm 5	Alarm 4	Alarm 3	Alarm 2	Alarm 1
	Level	Level	Level	Level	Level	Level	Level	Level
	User	User	User	User	User	User	User	User
	0361							0361
	TRUE:	TRUE:	TRUE:	TRUE:	TRUE:	TRUE:	TRUE:	TRUE:
	Major alarm	Major alarm	Major alarm	Major alarm	Major alarm	Major alarm	Major alarm	Major alarm
			_	_			-	_
	FALSE:	FALSE:	FALSE:	FALSE:	FALSE:	FALSE:	FALSE:	FALSE:
		Minor alarm	Minor alarm	Minor alarm	Minor alarm	Minor alarm	Minor alarm	Minor alarm
	Minor alarm	<u>Minor diami</u>						
b8	N							
b8	b7	b6	b5	b4	b3	b2	b1	b0
b8	b7	b6	b5	b4	b3	b2	b1	b0
b8	b7	b6 MSG7	b5 MSG6	b4 MSG5	b3 MSG4	b2	b1	b0 MSG1
b8	b7	b6	b5	b4	b3	b2	b1	b0
b8	b7 MSG8 Message 8	b6 MSG7 Message 7	b5 MSG6 Message 6	b4 MSG5 Message 5	b3 MSG4 Message 4	b2 MSG3 Message 3	b1 MSG2 Message 2	b0 MSG1 Message 1
b8	b7	b6 MSG7	b5 MSG6	b4 MSG5	b3 MSG4	b2	b1	b0 MSG1
b8	b7 MSG8 Message 8 System	b6 MSG7 Message 7 System	b5 MSG6 Message 6 System	b4 MSG5 Message 5 System	b3 MSG4 Message 4 System	b2 MSG3 Message 3 System	b1 MSG2 Message 2 System	MSG1 Message 1 System
b8	b7 MSG8 Message 8 System TRUE:Occur	b6 MSG7 Message 7 System TRUE: Occur	b5 MSG6 Message 6 System TRUE: Occur	b4 MSG5 Message 5 System TRUE: Occur	b3 MSG4 Message 4 System TRUE: Occur	b2 MSG3 Message 3 System TRUE : Occur	b1 MSG2 Message 2 System TRUE: Occur	b0 MSG1 Message 1 System TRUE: Occur
b8	b7 MSG8 Message 8 System TRUE:Occur FALSE:	b6 MSG7 Message 7 System TRUE: Occur FALSE:	b5 MSG6 Message 6 System TRUE: Occur FALSE:	b4 MSG5 Message 5 System TRUE: Occur FALSE:	b3 MSG4 Message 4 System TRUE: Occur FALSE:	b2 MSG3 Message 3 System TRUE : Occur FALSE:	b1 MSG2 Message 2 System TRUE: Occur FALSE:	b0 MSG1 Message 1 System TRUE: Occur FALSE:
b8	b7 MSG8 Message 8 System TRUE:Occur	b6 MSG7 Message 7 System TRUE: Occur	b5 MSG6 Message 6 System TRUE: Occur	b4 MSG5 Message 5 System TRUE: Occur	b3 MSG4 Message 4 System TRUE: Occur	b2 MSG3 Message 3 System TRUE : Occur	b1 MSG2 Message 2 System TRUE: Occur	b0 MSG1 Message 1 System TRUE: Occur
b8	b7 MSG8 Message 8 System TRUE:Occur FALSE:	b6 MSG7 Message 7 System TRUE: Occur FALSE:	b5 MSG6 Message 6 System TRUE: Occur FALSE:	b4 MSG5 Message 5 System TRUE: Occur FALSE:	b3 MSG4 Message 4 System TRUE: Occur FALSE:	b2 MSG3 Message 3 System TRUE : Occur FALSE:	b1 MSG2 Message 2 System TRUE: Occur FALSE:	b0 MSG1 Message 1 System TRUE: Occur FALSE:
b8	b7 MSG8 Message 8 System TRUE :Occur FALSE: Reset	b6 MSG7 Message 7 System TRUE: Occur FALSE: Reset	b5 MSG6 Message 6 System TRUE: Occur FALSE: Reset	b4 MSG5 Message 5 System TRUE: Occur FALSE: Reset	b3 MSG4 Message 4 System TRUE: Occur FALSE: Reset	b2 MSG3 Message 3 System TRUE : Occur FALSE: Reset	b1 MSG2 Message 2 System TRUE: Occur FALSE: Reset	b0 MSG1 Message 1 System TRUE: Occur FALSE: Reset
b8	b7 MSG8 Message 8 System TRUE :Occur FALSE: Reset	b6 MSG7 Message 7 System TRUE: Occur FALSE: Reset	b5 MSG6 Message 6 System TRUE: Occur FALSE: Reset	b4 MSG5 Message 5 System TRUE: Occur FALSE: Reset MSGCHK 5	b3 MSG4 Message 4 System TRUE: Occur FALSE: Reset	b2 MSG3 Message 3 System TRUE: Occur FALSE: Reset	b1 MSG2 Message 2 System TRUE: Occur FALSE: Reset	MSG1 Message 1 System TRUE: Occur FALSE: Reset
b8	b7 MSG8 Message 8 System TRUE :Occur FALSE: Reset MSGCHK 8 Message	b6 MSG7 Message 7 System TRUE: Occur FALSE: Reset MSGCHK 7 Message	b5 MSG6 Message 6 System TRUE: Occur FALSE: Reset MSGCHK 6 Message	b4 MSG5 Message 5 System TRUE: Occur FALSE: Reset MSGCHK 5 Message	b3 MSG4 Message 4 System TRUE: Occur FALSE: Reset MSGCHK 4 Message	b2 MSG3 Message 3 System TRUE : Occur FALSE: Reset MSGCHK 3 Message	b1 MSG2 Message 2 System TRUE : Occur FALSE: Reset MSGCHK 2 Message	b0 MSG1 Message 1 System TRUE: Occul FALSE: Reset MSGCHK 1 Message
b8	b7 MSG8 Message 8 System TRUE :Occur FALSE: Reset	b6 MSG7 Message 7 System TRUE: Occur FALSE: Reset	b5 MSG6 Message 6 System TRUE: Occur FALSE: Reset	b4 MSG5 Message 5 System TRUE: Occur FALSE: Reset MSGCHK 5	b3 MSG4 Message 4 System TRUE: Occur FALSE: Reset	b2 MSG3 Message 3 System TRUE: Occur FALSE: Reset	b1 MSG2 Message 2 System TRUE: Occur FALSE: Reset	MSG1 Message 1 System TRUE: Occur FALSE: Reset
b8	b7 MSG8 Message 8 System TRUE :Occur FALSE: Reset MSGCHK 8 Message	b6 MSG7 Message 7 System TRUE: Occur FALSE: Reset MSGCHK 7 Message	b5 MSG6 Message 6 System TRUE: Occur FALSE: Reset MSGCHK 6 Message	b4 MSG5 Message 5 System TRUE: Occur FALSE: Reset MSGCHK 5 Message	b3 MSG4 Message 4 System TRUE: Occur FALSE: Reset MSGCHK 4 Message	b2 MSG3 Message 3 System TRUE : Occur FALSE: Reset MSGCHK 3 Message	b1 MSG2 Message 2 System TRUE : Occur FALSE: Reset MSGCHK 2 Message	b0 MSG1 Message 1 System TRUE: Occur FALSE: Reset MSGCHK 1 Message
b8	b7 MSG8 Message 8 System TRUE :Occur FALSE: Reset MSGCHK 8 Message Check 8 User	b6 MSG7 Message 7 System TRUE: Occur FALSE: Reset MSGCHK 7 Message Check 7 User	b5 MSG6 Message 6 System TRUE: Occur FALSE: Reset MSGCHK 6 Message Check 6 User	b4 MSG5 Message 5 System TRUE : Occur FALSE: Reset MSGCHK 5 Message Check 5 User	b3 MSG4 Message 4 System TRUE: Occur FALSE: Reset MSGCHK 4 Message Check 4 User	b2 MSG3 Message 3 System TRUE : Occur FALSE: Reset MSGCHK 3 Message Check 3 User	b1 MSG2 Message 2 System TRUE : Occur FALSE: Reset MSGCHK 2 Message Check 2 User	b0 MSG1 Message 1 System TRUE: Occur FALSE: Reset MSGCHK 1 Message Check 1 User
b8	MSG8 Message 8 System TRUE :Occur FALSE: Reset MSGCHK 8 Message Check 8 User TRUE: Valid	b6 MSG7 Message 7 System TRUE: Occur FALSE: Reset MSGCHK 7 Message Check 7 User TRUE: Valid	b5 MSG6 Message 6 System TRUE: Occur FALSE: Reset MSGCHK 6 Message Check 6 User TRUE: Valid	b4 MSG5 Message 5 System TRUE : Occur FALSE: Reset MSGCHK 5 Message Check 5 User TRUE: Valid	b3 MSG4 Message 4 System TRUE: Occur FALSE: Reset MSGCHK 4 Message Check 4 User TRUE: Valid	b2 MSG3 Message 3 System TRUE: Occur FALSE: Reset MSGCHK 3 Message Check 3 User TRUE: Valid	b1 MSG2 Message 2 System TRUE: Occur FALSE: Reset MSGCHK 2 Message Check 2 User TRUE: Valid	b0 MSG1 Message 1 System TRUE: Occur FALSE: Reset MSGCHK 1 Message Check 1 User TRUE: Valid
b8	b7 MSG8 Message 8 System TRUE :Occur FALSE: Reset MSGCHK 8 Message Check 8 User	b6 MSG7 Message 7 System TRUE: Occur FALSE: Reset MSGCHK 7 Message Check 7 User	b5 MSG6 Message 6 System TRUE: Occur FALSE: Reset MSGCHK 6 Message Check 6 User	b4 MSG5 Message 5 System TRUE : Occur FALSE: Reset MSGCHK 5 Message Check 5 User	b3 MSG4 Message 4 System TRUE: Occur FALSE: Reset MSGCHK 4 Message Check 4 User	b2 MSG3 Message 3 System TRUE : Occur FALSE: Reset MSGCHK 3 Message Check 3 User	b1 MSG2 Message 2 System TRUE : Occur FALSE: Reset MSGCHK 2 Message Check 2 User	b0 MSG1 Message 1 System TRUE: Occur FALSE: Reset MSGCHK 1 Message Check 1 User

Appendix 1.3 List of Applicable Tag FB/Tag Access FB/Various Functions in Various Tag Types

Table of corresponding tag type and tag FB.
 Tag types of all tag FB are as follows.

Tag type	Tag type	Name	Manufacturer tag FB
	PID	Basic PID control	M_PID(_T), M_PID_DUTY(_T)
	2PID	2-Degree-of-Freedom PID Control	M_2PID(_T), M_2PID_DUTY(_T)
	2PIDH	2-Degree-of-Freedom Advanced PID Control	M_2PIDH(_T)_
	PIDP	Position type PID control	M_PIDP(_T) , M_PIDP_EX(_T)_
	SPI	Sample PI control	M_SPI(_T)
	IPD	I-PD control	M_IPD(_T)
	BPI	Blend PI control	M_BPI(_T)
	R	Ratio control	M_R(_T)
Loop tag	ONF2	2-position ON/OFF control	M_ONF2(_T)
Loop tag	ONF3	3-position ON/OFF control	M_ONF3(_T)
	PGS	Program setter	M_PGS
	PGS2	Multi-point program setter	M_PGS2_
	MOUT	Manual output	M_MOUT
	MONI	Monitor	M_MONI
	MWM	Manual output with monitoring	M_MWM
	SEL	Loop selector	M_SEL (_T1)(_T2)
	BC	Batch counter	M_BC
	PSUM	Pulse integrator	M_PSUM
	NREV	Monitor irreversible control	M_NREV
	REV	Monitor reversible control	M_REV
	MVAL1	ON/OFF control 1(without intermediate value)	M_MVAL1
Status tag	MVAL2	ON/OFF control 2(with intermediate value)	M_MVAL2
Status tag	TIMER1	Timer 1(Timer stops when COMPLETE flag is ON)	M_TIMER1
	TIMER2	Timer 2(Timer continues when COMPLETE flag is ON)	M_TIMER2
	COUNT1	Counter 1(Counter stops when COMPLETE flag is ON)	M_COUNTER1
	COUNT2	Counter 2(Counter continues when COMPLETE flag is ON)	M_COUNTER2
Alarm tag	ALM	Alarm	M_ALARM
Message tag	MSG	Message	M_MESSAGE

(2) The corresponding table of tag type/tag access FB.
The tag access FB that can be pasted on the tag types are as follows.

Division	Tag type (*1) Tag access FB	PID	2PID	2PIDH	PIDP	SPI	IPD	BPI	R	ONF2	ONF3	PGS	PGS2	MOUT	MONI	MWM	SEL	вс	PSUM
	P_IN	0	0	0	0	0	0	0	0	0	0	_	=	_	0	0	_	_	_
	P_OUT1	0	0	_	_	0	0	0	_	_	_	_	_	_	_	_	_	_	_
	P_OUT2	_	_	_		_			0	_	_	1	_	_	_	_	_	_	_
Input	P_OUT3_	_	_	0	_	_	_	_	_		-	1		_	_	_	_		_
Output Control FB	P_MOUT	_	_	_		_		_	_	_	_	-		0	_	0	_	_	_
CONTROLLE	P_DUTY	0	0	_		0	0	0	_					_	_	_	_	_	_
	P_PSUM	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	0	0
	P_BC	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0	_
	P_PID (_T)	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	P_2PID (_T)	_	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	P_2PIDH(_T)_	_	_	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	P_PIDP (_T)	_	_	_	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	P_PIDP_EX(_T)_	_	_	_	0	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	P_SPI (_T)	_	_	_	_	0	_	_	_	_	_	-	_	_	_	_	_	_	_
Loop Control	P_IPD (_T)	_	_	_	_	_	0	_	_	_	_	_	_	_	_	_	_	_	_
Operation	P_BPI (_T)	_	_	_	_	_	_	0	_	_	_	_	_	_	_	_	_	_	_
FB	P_R (_T)	_	_	_	_	_	_	_	0	_	_	_	_	_	_	_	_	_	_
	P_PHPL	0	0	0	0	0	0	0	0	0	0	_	_	_	0	0	_	_	_
	P_ONF2 (_T)	_	_	_	_	_	_	_	_	0	_	_	_	_	_	_	_	_	_
	P_ONF3 (_T)	_	_	_	_	_	_	_	_	_	0	_	_	_	_	_	_	_	_
	P_PGS	_	_	_	_	_	_	_	_	_		0	_	_	_	_	_	_	_
	P_PGS2_	_	_	_	_	_	_	_	_	_	_	_	0	_	_	_	_	_	_
	P_SEL(_T1) (_T2)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0	_	_
Special FB	P_MCHG	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0	0	_	_

○: Usable —: Unusable

^{*1} There is no tag access FB that can be pasted on status tag (NREV, REV, MVAL1, MVAL2, TIMER1, TIMER2, COUNT1, COUNT2), alarm tag (ALM) and message tag (MSG).

(3) Table of corresponding tag type and control mode.

The following table describes the corresponding relationship between the tag type and control mode and it lists the tag types whose control mode can be switched.

Only control modes of tag type that are listed in the following table can be switched.

		- Switterieu.					
					Control mode		
Division		MAN	AUT	CAS	CMV	CSV	CASDR
	Tag Type	(Manual)	(Auto)	(Cascade)	(Computer MV)	(Computer SV)	(CASCADE DIRECT)
	PID	0	0	0	0	0	_
	2PID	0	0	0	0	0	_
	2PIDH	0	0	0	0	0	0
	PIDP	0	0	0	0	0	_
	SPI	0	0	0	0	0	_
	IPD	0	0	0	0	0	_
	BPI	0	0	0	0	0	_
Loop tag	R	0	0	0	0	0	_
	ONF2	0	0	0	0	0	_
	ONF3	0	0	0	0	0	_
	PGS	0	0	0	0	0	_
	PGS2	0	0	_	_	_	_
	MOUT	0	_	_	0	_	_
	MWM	0	_	_	0	_	_
	SEL	0	0	0	0	0	_
	NREV	0	0	_	_	_	_
	REV	0	0	_	_	_	_
	MVAL1	0	0	_	_	_	_
Status tog	MVAL2	0	0	_	_	_	_
Status tag	TIMER1	_	_	_	_	_	_
	TIMER2	_	_	_	_	_	_
	COUNT1	_	=	_	_	_	_
	COUNT2	_	_	_	_	_	_

○: Usable —: Unusable

(4) Table of corresponding tag type and I/O mode.

Applicability of I/O mode and auto tuning for each tag type (only for the I/O mode switchable tag type) is shown below.

Only control modes of tag type that are listed in the following table can be switched.

			I/O n	node		Auto tu	ıning
Division	Tag Type	NOR (Normal)	SIM (Simulation)	OVR (Override)	TSTP (TAG STOP)	AT1 (Step Response method)	AT2 (Limit Cycle method)
	PID	0	0	0	_	0	_
	2PID	0	0	0	_	0	_
	2PIDH	0	0	0	0	0	0
	PIDP	0	0	0	_		1
	SPI	0	0	0	_	1	ı
	IPD	0	0	0	_	İ	Ī
Loop tag	BPI	0	0	0	_		ı
Loop tag	R	0	0	0	_	Ī	Ī
	ONF2	0	_	0	_		
	ONF3	0	_	0	_		ı
	PGS2	0	_	_	0		
	MONI	0	_	0	_		
	MWM	0	_	0	_	_	_
	SEL	0	_	_	_		
	NREV	0	0	0	_	_	_
	REV	0	0	0	_		
	MVAL1	0	0	0	_	_	_
Status tag	MVAL2	0	0	0	=	=	=
Olalus lay	TIMER1	_	_		_	=	
	TIMER2	_	_	_	_	=	=
	COUNT1	_	_	_	_	=	
	COUNT2	_	_	_	_		

○: Usable —: Unusable

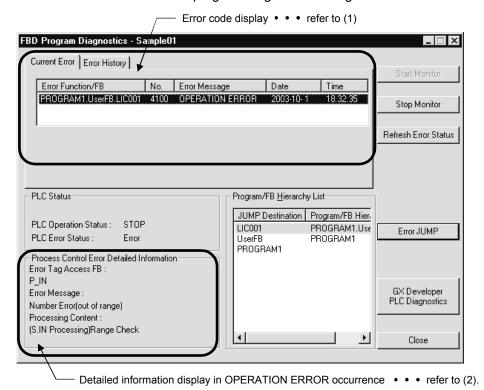
(5) Table of corresponding tag type and alarm.
Alarm (ALM) detected by tag type is listed in the following table.

	\setminus								Α	Jarm (ALM	1)						
Division	Tag type	SPA Stop alarm	DMLA Output variation rate limit	OOA Output open	SEA Sensor error	HHA Input high high limit	LLA Input Iow Iow Iimit	PHA Input high limit	PLA Input low limit	DPPA Positive variation rate	DPNA Negative variation rate	DVLA large deviation	MHA Output high limit	MLA Output low limit	SVHA SV high limit	SVLA SV low limit	DSVLA SV variation rate high limit
	PID	0	0	0	0	0	0	0	0	0	0	0	0	0	_	_	_
	2PID	0	0	0	0	0	0	0	0	0	0	0	0	0	_	_	_
	2PIDH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	PIDP	0	0	0	0	0	0	0	0	0	0	0	0	0	_	1	_
	SPI	0	0	0	0	0	0	0	0	0	0	0	0	0	_	1	_
	IPD	0	0	0	0	0	0	0	0	0	0	0	0	0	_	_	
	BPI	0	0	0	0	0	0	0	0	0	0	0	0	0	_	_	_
	R	0	0	0	0	0	0	0	0	0	0		0	0	_	_	_
Loop	ONF2	0	_	0	0	0	0	0	0	0	0		_	_		_	—
tag	ONF3	0	_	0	0	0	0	0	0	0	0		_	_		_	—
	PGS	0	_	_	_	_	_	_		_	_		0	0		_	—
	PGS2	0	_	_	_	_	_	_		_	_		_	_	0	0	—
	MOUT	0	_	0	_	_	_	_		_	_		_	_		_	—
	MONI	0	_	_	0	0	0	0	0	0	0	_	_	_	_	_	_
	MWM	0	_	0	0	0	0	0	0	0	0	_	_			_	_
	SEL	0	0	0	_	_	_	_	_	_	_		0	0	_	_	_
	ВС	_	_	_	_	_	_	0	_	0	_			_			_
	PSUM	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

○: Alarm detection —: No alarm detection

		Alarm (ALM)						
Classification	Tag type	TRIPA Trip	TOA Time-out					
	NREV	0	0					
	REV	0	0					
	MVAL1	0	0					
Otativa ta a	MVAL2	0	0					
Status tag	TIMER1	_	_					
	TIMER2	_	_					
	COUNT1	_	_					
	COUNT2	_	_					

○: Alarm detection —: No alarm detection


App - 61 App - 61

Appendix 2 Error Code List

When error occurs on CPU module, error code and contents will be displayed on the diagnostics screen of PX Developer programming tool.

Please refer to PX Developer Operating Manual (Programming Tool) for operation method of FBD program diagnostics dialog box.

The contents of FBD program diagnostics dialog box are shown as below.

Display error codes

Display error code and error information when error occurs on tag access FB/tag FB.

(E.g.) OPERATION ERROR (error occurs during operation) Error code: 4100

Please refer to QCPU User's Manual (Hardware Design and Maintenance and Inspection) for details about error code.

App - 62 App - 62

- (2) Display detailed information when OPERATION ERROR occurs
 - (a) Error tag access FB and processing contents When OPERATION ERROR occurs, display error contents of "Error tag access FB/processing No. of tag FB" that is stored in SD1503 of error tag access FB and processing contents part.

Tag access FB/processing No. of tag FB that is stored in SD1503 are listed in the following table.

Tag access FB	CPU module Process				Proce	ss No.			
rag access r b	control	1	2	3	4	5	6	7	8
P_IN	S.IN	Range Check	Input limiter	Inverse engineering value conversion	Digital filter	_	_	_	_
P_OUT1	S.OUT1	Input addition processing	Variation rate and high/low limiter	Reset windup	Output conversion	_	_	_	_
P_OUT2	S.OUT2	_	Variation rate and high/low limiter	_	Output conversion	_	_	_	_
P_R(_T)	S.R	Control cycle judgment	Engineering value conversion	Tracking processing	Variation rate limiter	Ratio operation	_	_	_
	S.PID	Control cycle judgment	SV setting processing	Tracking processing	Gain Kp operation	PID operation	Deviation check	_	_
P_PID(_T)	S.AT1	Input check	Time-out judgment	Time-out judgment after maximum slope	Step manipulated variable setting	Sampling interval check	Response waveform observation	Identification processing (*4)	PID constant calculation
	S.2PID	Control cycle judgment	SV setting processing	Tracking processing	Gain Kp operation	PID operation (*1)	PID operation (*2)	PID operation (*3)	Deviation check
P_2PID(_T) P_2PIDH(_T)_	S.AT1	Input Check	Time-out judgment	Time-out judgment after maximum slope	Step manipulated variable setting	Sampling period judgment	Response waveform observation	Identification processing (*4)	PID constant operation
P_PIDP(_T) P_PIDP_EX(_T)_	S.PIDP	Control cycle judgment	SV setting processing	Tracking processing	Gain Kp operation	PIDP operation	Deviation check	Variation rate limiter and high/low limiter	Output conversion
P_SPI(_T)	S.SPI	Operation time monitor	SV setting processing	Tracking processing	Gain Kp operation	SPI operation	Deviation check	_	_
P_IPD(_T)	S.IPD	Control cycle judgment	SV setting processing	Tracking processing	Gain Kp operation	IPD operation	Deviation check	_	_
P_BPI(_T)	S.BPI	Control cycle judgment	SV setting processing	Tracking processing	Gain Kp operation	BPI operation	Deviation check	_	_
P_PHPL	S.PHPL	Inverse engineering value conversion	High/ low limit check	Variation rate check	Engineering value conversion	Loop stop	_	_	_
P_ONF2(_T)	S.ONF2	Control cycle judgment	SV setting processing	Tracking processing	MV correction	MV output	2-position ON/OFF control	_	_
P_ONF3(_T)	S.ONF3	Control cycle judgment	SV setting processing	Tracking processing	MV correction	MV output	3-position ON/OFF control	_	_
P_PGS	S.PGS	Operation constant check	SV count value count up	MVPGS operation	Output processing	_	_	_	_
P_SEL (_T1)(_T2)	S.SEL	Inverse engineering value conversion	Input value selection	Inverse engineering value conversion	Variation rate limiter and high/low limiter	Output conversion	Tracking processing	_	_
P_DUTY	S.DUTY	Input addition processing	Variation rate limiter and high/low limiter	Reset windup	Output ON time Conversion	Output conversion	_	-	_
P_BC	S.BC	High limit check	Variation rate Check	Output conversion	_	_	_	_	_
P_PSUM	S.PSUM	Increment input value operation	Integrating operation	Output conversion	=	_	_	_	=

App - 63 App - 63

^{*1} Bn, Cn operation of P_2PID are included in this table.
*2 Dn operation of P_2PID is included in this table.
*3 △MV operation of P_2PID is included in this table.
*4 The deductification processing is the processing that solves for process parameter (PID constant) by step response method.

(b) Error message

When OPERATION ERROR occurs, display error contents of "Tag access FB/code of error occurred on tag FB" that is stored in SD1502 of error message part.

The detailed error codes and information that stored in SD1502 are listed in the following table.

Error code	Error contents	Reason			
1	A non-numeric or invalid number				
2	Symbol error (the number is negative)				
3	INjumber error (out of range)	Something wrong with the setting data of operation constant, loop tag			
4	Integer range has been exceeded.	memory data and execution cycle. (Perform check and correction of setting data)			
5	Tried to divide by 0	uata)			
6	An overflow has occurred				

Appendix 3 Related Functions of Process

Process-related functions are described in the following paragraphs.

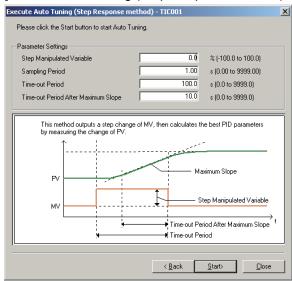
Appendix 3.1 Auto Tuning

The auto tuning function detects dynamic characteristics of a control target and automatically tunes proportional gain (Kp), integral time (Ti), and derivative time (Td) for PID to suitable value.

The auto tuning function has two methods: the Step Response method and the Limit Cycle method.

	AT1 (Step Response method)	AT2 (Limit Cycle method)
Overview	This method calculates proportional gain (Kp), integral time (Ti), and derivative time (Td) for PID with ZN method (Step Response method by Ziegler-Nichols) and sets their initial values.	This method calculates proportional gain (Kp), integral time (Ti), and derivative time (Td) for PID with oscillation amplitude and oscillation period by repeatedly operating MV at two positions and generating process value cycle operation.
Applicable control mode	MAN, CMV	AUT, MAN, CAS, CMV, CSV
PID constants calculation specification method	 P control tuning Execute tuning after setting Ti=0 and Td=0. PI control tuning Execute tuning after setting Ti>0 and Td=0. PID control tuning Execute tuning after setting Ti>0 and Td>0. 	Execute tuning by selecting PI control or PID control using Monitor tool. Tuning of only P control cannot be executed.
Corresponding tag access FB	P_PID(_T), P_PID_DUTY(_T), P_2PID(_T), P_2PID_DUTY(_T), P_2PIDH(T_)_	P_2PIDH(T_)_
Corresponding tag FB	M_PID(_T), M_PID_DUTY(_T), M_2PID(_T), M_2PID_DUTY(_T), M_2PIDH(T_)_	M_2PIDH(T_)_

Appendix 3.1.1 Step Response method


- (1) Operation method and processing contents
 - (a) Hold MV value and stabilize PV value, and then perform following procedures.
 - Display auto tuning dialog box of monitor tool.
 Please refer to PX Developer Operating Manual (Monitor Tool) for detailed operation methods of monitor tool.

[Startup Procedure]

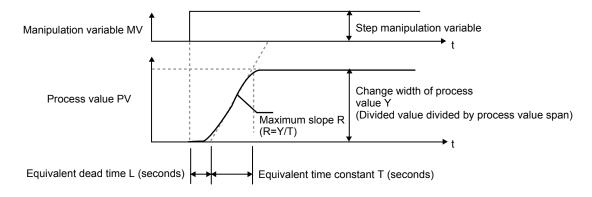
[Control Panel] → [Detail button of Faceplate]

- → Auto Tuning → [Select Auto Tuning Operations] dialog box
- → Select [Executes Auto Tuning by the Step Response method].
- → Next button
- \rightarrow [Execute Auto Tuning (Step Response method)] dialog box

[Execute Auto Tuning (Step Response method) dialog box]

- 2) Set the following items before starting.
 - Step manipulated variable (AT1STEPMV)
 - Sampling period (AT1ST) (seconds)
 (PV data collection period during tuning)
 - Time-out period (AT1TOUT1)(seconds)
 - Time-out period after maximum slope (AT1TOUT2) (seconds)
- (b) Output the step manipulated variable from the current MV value in step form.
- (c) Automatically return to the original MV when auto tuning is completed. The P, I and D constant that is generated from auto tuning is automatically saved in tag memory.

POINT


- PID constants are overwritten after auto tuning automatically.
 Please save the previous PID constant in advance according to needs.
- Auto tuning will stop automatically when alarm occurs.

App - 66 App - 66

(2) The operation contents of step response method For actual plant, output step MV, and determine the PID constants by maximum slope and equivalent dead time.

Following contents will start automatically after the processing of (1).

The generated value is saved in P, I and D area of tag memory.

Constants

 $\overline{\mathsf{R} \times \mathsf{L}}$

(a) ZN method (use Ziegler Nichols's tuning method by step response) The P/PI/PID control type is decided by the I and D value (*1) of tag data before auto tuning.

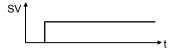
Cond	Condition (*1)					
Integral time (I)	Derivative time (D)	Control type				
I=0 (Integral time∞)	D=0	P control				
I>0	D=0	PI control				
I>0	D>0	PID control				

Proportional gain (P)	Integral time (I) (seconds)	Derivative time (D) (seconds)
$\frac{1.0}{R \times L} \times \frac{ \text{step manipulated} }{100}$	0 (Integral time∞)	0
$\frac{0.9}{R \times L} \times \frac{ \text{step manipulated} }{100}$	3.33L	0
1.2 Step manipulated	2L	0.5L

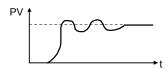
(E.g.) This is an example that executes auto tuning when I and D value before auto tuning satisfy I>0 and D=0. (For I>0 and D=0, calculate constants in PI control)

Step manipulated variable	20%
Equivalent dead time L	8 seconds
Equivalent time constant T	16 seconds
The change width of process value Y	0.25
Maximum slope R	0.25/16=0.016

Proportional gain (P) =
$$\frac{0.9}{R \times L} \times \frac{\text{|step manipulated variable}|}{100} = \frac{0.9}{0.016 \times 8} \times \frac{20}{100} = 1.4$$

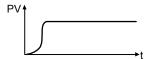

Integral time (I) = $3.33L = 3.33 \times 8 = 26.6$ seconds, derivative time (D) = 0 second

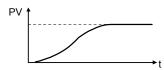
App - 67 App - 67


(3) Fine tuning after auto tuning

When auto tuning is completed, observe the change of process value (PV) in relation to the set value (SV) by tuning setting execution screen, and trim P, I, D value to work out the optimal value.

Observe the response of PV corresponding to the change of set value (SV).


(a) Response is quick, but oscillatory.


Fine tuning when respond quickly with variation.

- Proportional gain: Smaller (proportional effect become smaller)
- Integral time : Bigger (integral effect become smaller)

(b) Optimal value

(c) Response is slow

Fine tuning for slow response.

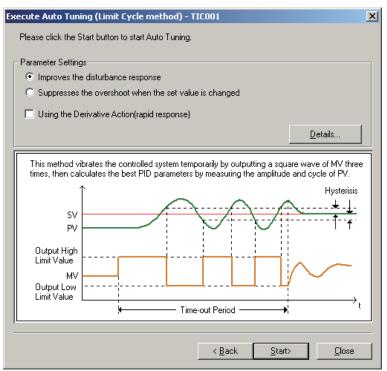
- Proportional gain : Bigger (proportional effect become bigger)
- Integral time : Smaller (integral effect become bigger)

In addition, when derivative action is applied, derivative time adjustment shall be executed with confirming stability and respond. (Derivative effect will become bigger when the derivative time is longer, and derivative effect will become smaller when derivative time is smaller.)

App - 68 App - 68

Appendix 3.1.2 Limit Cycle Method

- (1) Operation method and processing contents
 - (a) Operate the following processing.
 - Display the Execute Auto Tuning (Limit Cycle method) dialog box of the Monitor tool.


For details of the Monitor tool operation method, refer to the PX Developer Operating Manual (Monitor tool).

[Startup Procedure]

[Control Panel] → [Details button of Faceplate]

- → Auto Tuning → [Auto Tuning] dialog box
- → [Select Auto Tuning Operations] dialog box
- → Select [Executes Auto Tuning by the Limit Cycle method].
- → Next button
- → [Execute Auto Tuning (Limit Cycle method)] dialog box

[Execute Auto Tuning (Limit Cycle method)] dialog box

App - 69 App - 69

2) Set the following and click the Start button to execute auto tuning. Decide the control type based on the combination of either "Improves the disturbance response" or "Suppresses the overshoot when the set value is changed" and the selection status of "Using the Derivative Action (rapid response).

Control Type	Improves the disturbance response	Suppresses the overshoot when the set value is changed	Using the Derivative Action (rapid response)
Constant-value PI control	0	×	×
Constant-value PID control	0	×	0
Follow-up PI control	×	0	х
Follow-up PID control	×	0	0

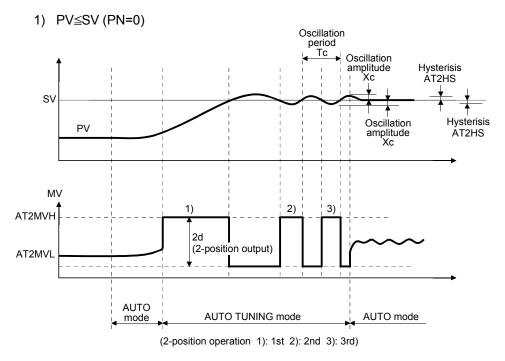
○: Selected ×: Not selected

Set the following in the Detail Setting of Limit Cycle dialog box, displayed by clicking the Details button.

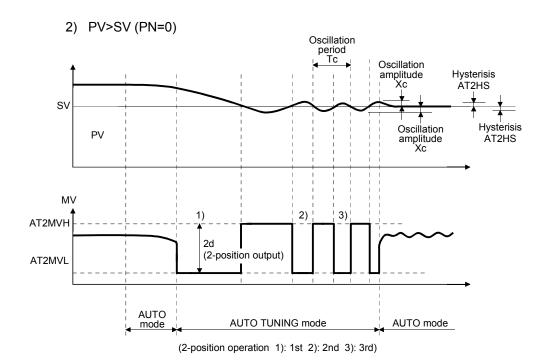
- Output high limit (AT2MVH)
- Output low limit (AT2MVL)
- Hysterisis (AT2HS)
- Time-out period (AT1TOUT1) (Seconds)
- (b) MV value repeats 2-position output between output high limit and output low limit
 - Even though MV values exceeding MH/ML are set to AT2MVH/AT2MVL, they are limited within the range of MH to ML.
- (c) MV values return to their original values after auto tuning is completed. Values for proportional gain (Kp), integral time (Ti), and derivative time (Td) which are calculated by auto tuning are set automatically.

POINT

- PID constants are overwritten automatically after auto tuning.
- · Auto tuning stops automatically when an alarm occurs.
- MV output values return to the values at start when auto tuning is completed or interrupted.


App - 70 App - 70

- (2) Operation contents of the Limit Cycle method
 - (a) Generation and measurement of limit cycle waveform In AUTO TUNING mode, generate PV limit cycle waveform by operating 2-position ON/OFF of MV output three times. Operate 2-position ON/OFF with conditions shown in the table below.


Control operation	First MV output	2-position ON/OFF operation	Remarks
Reverse action (PN=0)	PV≦SV MV = Output high limit (AT2MVH) PV>SV MV = Output low limit (AT2MVL)	PV≧SV + Hysterisis (AT2HS) MV = Output low limit (AT2MVL) PV≦SV - Hysterisis (AT2HS) MV = Output high limit (AT2MVH)	For operation images, refer to 1) and 2).
Direct action (PN=1)	PV≦SV MV = Output low limit (AT2MVL) PV>SV MV = Output high limit (AT2MVH)	PV≧SV + Hysterisis (AT2HS) MV = Output high limit (AT2MVH) PV≦SV - Hysterisis (AT2HS) MV = Output low limit (AT2MVL)	MV high limit and low limit values at PN=0 are reversely output.

PV oscillation waveform data of the Limit Cycle method waveform by the first 2-position ON/OFF operation is ignored. Oscillation amplitude Xc and oscillation period Tc are measured using PV oscillation waveform data by the second and third 2-position ON/OFF operations.

Auto tuning ends at the apex of the third PV oscillation waveform. SVC (set value (current)) at auto tuning start is used to calculate SV value. Hysterisis (AT2HS), which works as minimum required amplitude, is set in advance according to the control target so that optimum oscillation period and oscillation amplitude are measured.

App - 71 App - 71

Calculate oscillation amplitude Xc by measuring and averaging out plus side and minus side maximum values of |PV - SV|.

Calculate output width d by (AT2MVH - AT2MVL) / 2.

(b) Calculation of threshold sensitivity and threshold period Calculate threshold sensitivity (Ku) and threshold period (Tu) from measurement result of auto tuning by the Limit Cycle method.

$$Ku = 4d / (\pi \sqrt{(Xc^2 - AT2HS^2)})$$

$$Tu = Tc$$

(c) Calculation of optimum PID constant

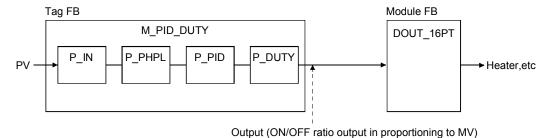
Calculate optimum PID constant from threshold sensitivity (Ku) and threshold period (Tu).

Calculate values for proportional gain (Kp), integral time (Ti), and derivative time (Td) using coefficients specified by control type (ATTYPE) shown below.

Control Type	Control operation	Control Type ATTYPE	Proportional gain (Kp)	Integral time (Ti)	Derivative time (Td)	Empirical rule
Constant-value	PI	1	0.45Ku	0.83Tu	0	Ziegler Nichols's
control	PID	2	0.6Ku	0.5Tu	0.125 Tu	method
Follow-up	PI	3	0.3Ku	1.0Tu	0	CUD mothed
control	PID	4	0.45Ku	0.6Tu	0.1 Tu	CHR method

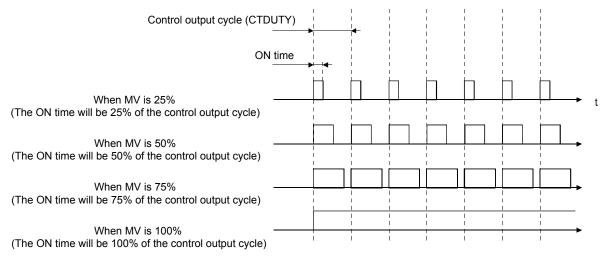
Ku: Process threshold sensitivity, Tu: Process threshold period

(3) Fine tuning after auto tuning
Fine tuning of PID constants is same for the Step Response method.
Refer to Appendix 3.1.1.


App - 72 App - 72

Appendix 3.2 Control Output Cycle (CTDUTY), Manipulated Variable (MV), and ON/OFF Output in Time Proportioning Control

 The relationship among control output cycle (CTDUTY), manipulated variable (MV) and ON/OFF output


Change the ON/OFF ratio of output in proportional to MV and output the result. It is applicable to temperature control situations that heater is used.

It is applicable in M_□□_DUTY of tag FB and user-defined FB that use P_DUTY of tag access FB.

ship between MV and output: Output hit ON time of each control output cycle=contr

The relationship between MV and output: Output bit ON time of each control output cycle=control output cycle (CTDUTY) \times MV (%)/100

(2) Setting of control output cycle (CTDUTY) Set the control output cycle (seconds) for CTDUTY of tag data on the FB property window of programming tool.

Ī	Offset	Offset Item Name Setting/Storage range Unit		Initial	Data	Storago	Number of digits after	Tag access			
	Oliset	ileiii	Name	Low limit	High limit	Offic	value	type	Storage	the decimal point	FB
I	+68	CTDUTY	Control output cycle	0	9999	S	1.0	REAL	User	2	P_DUTY

App - 73 App - 73

Appendix 3.3 I/O Mode

(1) Types of I/O mode

There are 4 types of I/O mode as follows.

Please refer to following items for details of simulation function (SIMULATION mode) and override function (OVERRIDE mode)

- NORMAL mode
- SIMULATION mode (refer to Appendix 3.12)
- OVERRIDE mode (refer to Appendix 3.13)
- TAG STOP mode (refer to Appendix 3.14)
- (2) Operation method

I/O mode is switched with faceplate.

Moreover, it only can be switched when the control mode is manual (MANUAL). Please refer to PX Developer Operation Manual (Monitor Tool) for details of I/O mode change.

(3) Contents of I/O mode Contents of I/O mode are as follows.

I/O Mode	Contents				
NORMAL	Normal mode, the signals from I/O module are connected with the system.				
SIMULATION (*1)	The signals from I/O module are separated from the system in this mode, and can perform simulation operation.				
	Only signals from input module are separated from the system in this mode, and can input process value (PV) with faceplate. It is used when error occurs on input sensor.				
OVERRIDE (*1)	(1) In case of loop tag When it is impossible to attain the proper PV value input signal because of detecting sensor errors, setting of input value can be executed on faceplate. External output is executed. (It is used when interlock condition is to be satisfied or batch sequence transition is to be executed.)				
	(2) In case of status tag When it is impossible to attain the correct input status due to imperfect contact of valve open/close limit switch, etc. the input status can be set though faceplate. External output is executed. (It is used when inter-lock condition is to be satisfied or batch sequence transition is to be executed.)				
TAG STOP (*1)	Any processing regarding tag is not performed in this mode. Input processing and loop control operation are stopped. Set this mode to the tags defined in advance for future use or tags being stopped. All alarms of tags are restored and unnecessary alarms do not occur.				

*1 Some tags do not have this mode according to their tag types.

Please refer to Appendix 1.3(4) for the corresponding relationship between tag type and I/O mode.

App - 74 App - 74

Appendix 3.4 Execution Cycle (△T) and Control Cycle (CT) in Loop Control

(1) Execution cycle (△T)

(a) Execution cycle (△T)

Programs which consist of loop tag FB, is executed in the cycle which is set to each program.

Loop tag FB of program is executed and operated in each execution cycle. It is named as execution cycle ($\triangle T$) in loop control. In tag access FB which forms loop tag FB, P_IN, P_PHPL and P_OUT1 used in I/O control is executed in each execution cycle ($\triangle T$).

Additionally, loop control operation such as P_PID and P_2PID is executed in each control cycle (CT) as described in (2).

(b) Setting of execution cycle ($\triangle T$)

Set execution cycle on each program in program execution setting of programming tool.

Please refer to PX Developer Operation Manual (Programming Tool). The execution cycle ($\triangle T$) can be set within following ranges depending on program execution types.

Timer execution type
 High-speed (200ms cycle).
 Normal speed (400ms, 600ms, 800ms, 1s cycle).
 Low-speed (1s, 2s, 4s, 5s, 10s cycle).

Interruption execution type
 Fixed scan execution (1ms to 999ms)(*1)
 Interrupt pointer execution (interruption caused by pointer I0 to I255)(*2)

POINT

For there is no setting for program execution cycle on interrupt pointer execution of interruption execution type, it is not applicable in program which process-related FB is used in.

(2) Control cycle (CT)

(a) Control cycle (CT)

Loop control operation cycle.

The execution cycle ($\triangle T$) can be set on each program, while the control cycle (CT) can be set on tag.

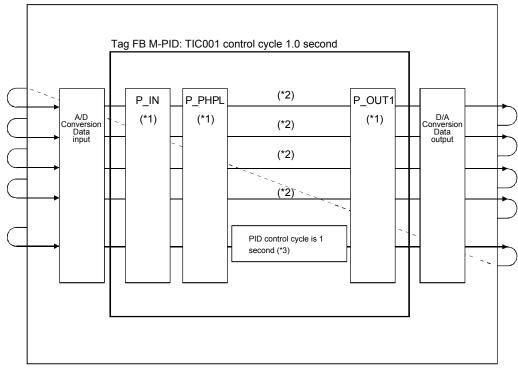
The control cycle shall be set as the integral multiple of the execution cycle.

The control cycle of the following tag types can be set:

PID, BPI, IPD, ONF2, ONF3, R and 2PID etc.

App - 75

^{*1} It is recommended to set the value over 10ms in practical use.


^{*2} Please do not apply it in the program that uses process-related FB.

(b) Setting of control cycle Set control cycle (seconds) of CT on tag data with FB property window of programming tool.

Offset	ltem	Name	Setting/S ran Low limit	•	Unit	Initial value	Data type	Storage	Number of digits after the decimal point	Tag access FB
+46	СТ	Control cycle	0	9999	s	1.00	REAL	User	2	P_PID, etc.

(3) The relationship between execution cycle (△T) and control cycle (CT) The relationship between execution cycle and control cycle is as following.
(E. g.) When the execution cycle of program "ABCD"is 0.2 seconds, and the control cycle of M_PID instruction "TIC001" is 1 second.

Program: when the ABCD execution cycle is 0.2 second.

- *1 P_IN, P_PHPL, P_OUT1 is executed in every 0.2 seconds (0.2 seconds: program execution cycle).
- *2 When P_PID is not executed, the output value for OUT1 shall be kept the same as the previous value.
- *3 As the control cycle of PID control operation instruction is 1.0 second, P_PID is executed in every 1.0 second (please set the control cycle as integral multiple of the execution cycle.)

If the control cycle is not the integral multiple of execution cycle, round off the number after the decimal point of control cycle (CT)/execution cycle (\triangle T) and multiply the execution cycle to calculate the control cycle. 2.5/1.0=3

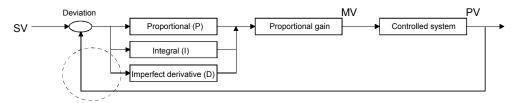
The control cycle is 3 seconds.

App - 76 App - 76

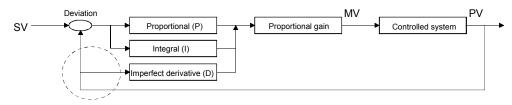
Appendix 3.5 Various PID Control

- (1) PV-derivative type PID control (corresponding tag FB: M_PID)
 - (a) Operation overview

There is a deviation derivative type in PID control that operates based on difference between SV and PV.


In the deviation derivative type, there is a problem which MV is rapidly change when SV is rapidly changed because the influence of its derivative action is too large.

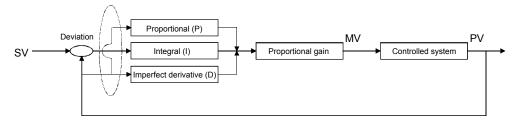
Therefore it is possible to avoid the influence of the sudden change of set value by using PV value on the deviation.


M PID is corresponding to PV-derivative type.

In addition, there are other control methods, in which PV is applied as proportional item and the operation will be more smooth. This method is showed in (2)(I-PD control).

Deviation derivative type

PV-derivative type (M PID is corresponding to it)

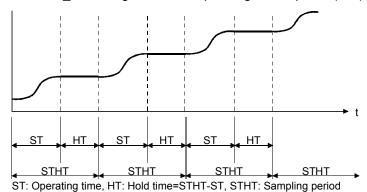

- (2) PV-proportional and -derivative type(I-PD control) (corresponding tag FB:M IPD)
 - (a) Operation overview

In comparison with PV-derivative type, I-PD type uses PV value on proportional item in addition to derivative item.

This control is also applicable to the situation when the set value is changed, and rapid change to final control element and system are expected to be avoided, and also slow response is preferred.

M_IPD of tag FB is corresponding to PV-proportional and -derivative type.

PV-proportional and -derivative type CM IPD is corresponding to it)


App - 77 App - 77

- (3) Sample PI (SPI) control (corresponding tag FB: M_SPI)
 - (a) Operation overview

When PID control is applied on the system whose dead time is long, MV will be continuously updated before MV effect is confirmed.

Sample PI (SPI) control executes only for control cycle in every control cycle, and then holds the output after that.

M_SPI of tag FB is corresponding to sample PI (SPI) control.

(b) Setting of operation time

Set operation time (second) for tag FB ST on FB property window of programming tool.

Offset	Item	Name	I I ow limit I '	range		Initial	Data type	Storage	Number of digits after	Tag access FB
0001				High limit	Unit	value	lue Jaka type	o.c.age	the decimal point	1 ag accoss 1 B
+46	ST	Operating time	0	9999	s	0.0	REAL	User	1	P_SPI

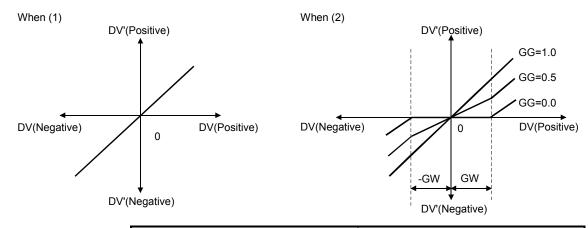
App - 78

(4) PID control with gap(corresponding tag FB: M_PID, M_IPD, M_SPI, M_BPI, M_2PID, M_2PIDH_, M_PIDP)

(a) Operation overview

For PID control with gap, when deviation is within the gap width (GW) range, the gain shall be changed with gap gain (GG).

Gap width (GW) and gap gain (GG) are set by tag data.


M_PID,M_IPD,M_SPI,M_BPI,M_2PID,M_2PIDH_,M_PIDP of tag data are corresponding to gap PID control.

Gain Kp can be calculated as follows.

 $Kp=K\times P$

K: Output gain computation

Condition	K: Output gain	
(1) K value corresponding to deviation (DV) when gap width (G	K=1	
(2) K value corresponding to deviation (DV) when can width	DV ≦GW	K=GG
(2) K value corresponding to deviation (DV) when gap width (GW)>0	DV >GW	K=1- <u>(1-GG) × GW</u> DV

DV<-GW	DV'=-(GG×GW)+(DV+GW)
DV ≦GW	DV'=GG×DV
DV>GW	DV'=GG×GW+(DV-GW)

Deviation of direct/reverse action is calculated as follows.

Deviation when direct action (PN=1)	DV (%)=PVP (%) – SV (%)
Deviation when reverse action (PN=0)	DV (%)=SV (%) – PVP (%)

K: Output gain, P: Gain, GW: Gap width (%)=Rate of the gap width for the deviation. GG: Gap gain DV': Deviation used for PID operation (%),

DV:Deviation (%),PVP(%):PVP input value(%),

 $SV(\%)=\{100/(RH-RL)\}\times(SV-RL),RH:$ Engineering value high limit,

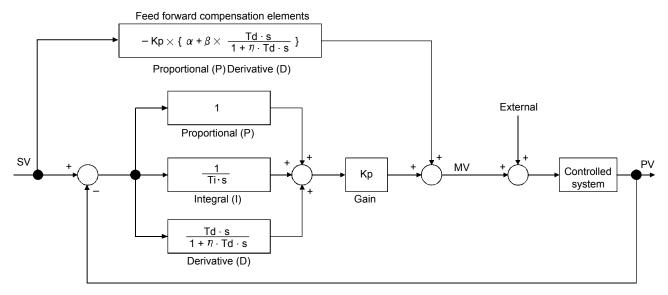
RL:Engineering value low limit, SV:Set value.

(b) Setting of gap width and gap gain

On the programming tool's FB property window, set the gap width (%) for GW of tag data, and set gap gain for GG.

Offset	Itom	Name	Setting/Sto	rage range	Lloit	Initial D		Storage	Number of digits after	Tag assess FD	
Oliset	Item	Name	Low limit	High limit	Unit	value	value Data type		the decimal point	Tag access FB	
+58	GW	Gap width	0	100	%	0.0	REAL	User	1	P_PID, etc.	
+60	GG	Gap gain	0	99		1.0	REAL	User	1	P_PID, etc.	

App - 79 App - 79


- (5) 2-degree-of-freedom PID control (corresponding tag FB: M_2PID, M_2PIDH_)
 - (a) Operation overview

When traditional PID control is applied, optimum PID constant for target tracking is not the same as the optimum PID constant for disturbance response in most cases. Whichever optimum value is applied, it may be the non-optimum value on the other side.

 $\hbox{2-degree-of-freedom control is to settle this problem. It allows simultaneous adjustment on disturbance response and target tracking.}\\$

 α and β is used in 2-degree-of-freedom PID control.

M_2PID and M_2PIDH_ of tag FB are compatible with the 2-degree-of-freedom PID control.

CPU module 2-degree-of-freedom PID operation expression

	Direct action (PN=1)	Reverse action (PN=0)				
Deviation DVn	$DV_n = PV_n - SV_n$	$DV_n = SV_n - PV_n$				
Output variation $ riangle$ MV	$\triangle MV = \frac{Kp}{\sqrt{\frac{(1-\alpha)\times(DV)}{Gain}}} \times \frac{\{(1-\alpha)\times(DV)\}}{\sqrt{\frac{(1-\beta)\times Bn}{Derivative}}} + \frac{\alpha}{\sqrt{\frac{(1-\beta)\times Bn}{Derivative}}}$	-Proportional Integral				
Bn	$B_{n-1} + \frac{Md \times Td}{Md \times CT + Td} \times \{(DV_{n-1})\}$	$B_{n-1} + \frac{Md \times Td}{Md \times CT + Td} \times \{(DV_{n-2}DV_{n-1} + DV_{n-2}) - \frac{CT \times B_{n-1}}{Td}\}$				
Cn	PVn – PVn-1	- (PVn - PVn-1)				
Dn	$D_{n} = D_{n-1} + \frac{Md \times Td}{Md \times CT + Td} \times \{(PV_{n-2}PV_{n-1} + PV_{n-2}) - \frac{CT \times D_{n-1}}{Td} \}$	$D_{n} = D_{n-1} + \frac{Md \times Td}{Md \times CT + Td} \times \left\{ - (PV_{n-2}PV_{n-1} + PV_{n-2}) - \frac{CT \times D_{n-1}}{Td} \right\}$				

Kp: Gain, Tı: Integral time, Td: Derivative time, Md: Derivative gain,

CT: Control cycle, DVn: Deviation, DVn-1: Previous deviation value,

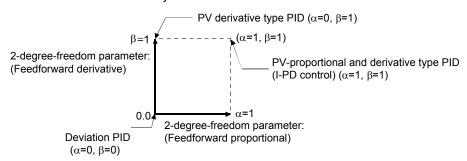
DVn-2: Deviation value before last, PVn: Process value,

PVn-1: Previous process value, PVn-2: Process value before last,

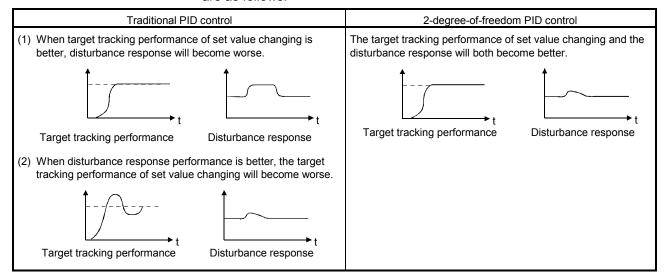
α: 2-degree-of-freedom PID parameter (feedforward proportional)

β: 2-degree-of-freedom PID parameter (feedforward derivative).

App - 80 App - 80


When 2-degree-of-freedom PID control is applied, characteristics can be changed by adjusting α and β after the constants of P, I and D are determined.

- When α=0,β=0: deviation PID
 Derivative action is effective to deviation (difference between set value and process value), so that the target tracking performance corresponding to the change of set value will become better.
- 2) When α =0, β =1: PV-derivative type PID (corresponding tag FB: M_PID) As derivation operation is effective to process value, in comparison with derivative PID, disturbance response will be accelerated. On the other hand, the target tracking performance corresponding to the change of set value will decrease.
- 3) When α =1, β =1: PV-proportional and derivative type PID (I-PD control) (corresponding tag FB: M_IPD)


As both proportional and derivative action is effective to process value and integral control action is effective to deviation (difference between set value and process value), the target tracking performance, in comparison with PV-derivative PID, will decrease corresponding to the change of set value.

This is effective for the following cases. Because the manipulated variable does not change suddenly when the set value is changed.

- Over shoot is not permitted.
- Make it respond slowly not to give a certain shock to the final control element and the system.

(b) The response of traditional PID control and 2-degree-of-freedom PID control The response of traditional PID control and 2-degree-of-freedom PID control are as follows.

App - 81 App - 81

- (c) Adjustment method of 2-degree-of-freedom PID control
 - 1) Calculate PID constant by using auto tuning.
 - 2) Fine tune PID constants (basic parameters of PID: Kp,Ti,TD) to optimize the response performance for disturbance if necessary.

(Proportional gain K_P)

- If K_P is tuned down, the manipulated variable will become smaller, and it will take a longer time to be stable.
- If K_P is tuned up, the manipulated variable will become bigger, there may be oscillation in response due to the enhancement of compensation operation.

(Integral time T_I)

- If T₁ is tuned down, integral control action will be enhanced, and the response will sometimes become oscillation. (Oscillation period becomes longer.)
- If T₁ is tuned up, integral effect will be come smaller, and it will take a long time to be stable.

(Derivative time T_D)

- If T_D is tuned down, derivative effect will become smaller, and derivative will only effect for a short period of time.
- If T_D is tuned up, derivative effect will become bigger, short-period oscillation will occurs, and sometimes the system will be quite unstable.
- (3) Hold the optimum disturbance response, while adjusting 2-degree-of-freedom parameter (α , β) to optimize the target tracking response.
 - If α is tuned up, the manipulated variable in relation to set value changing will become smaller, and it will take a longer time to be stable.
 - If α is tuned down, the manipulated variable in relation to set value changing will become bigger, and response will sometimes become oscillatory due to the enhancement of compensation operation.
 - If β is tuned up, the derivative effect corresponding to set value changing will become smaller, and derivation will only effect for la short period of time.
 - If β is tuned down, the derivative effect in relation to set value changing will become bigger, and short-time period oscillation will occur, sometimes the system will be unstable.

The response performance corresponding to set value changing when α is changed is as follows.

Quick: $\alpha = 0$, Medium: $\alpha = 0.65$, Slow: $\alpha = 1$

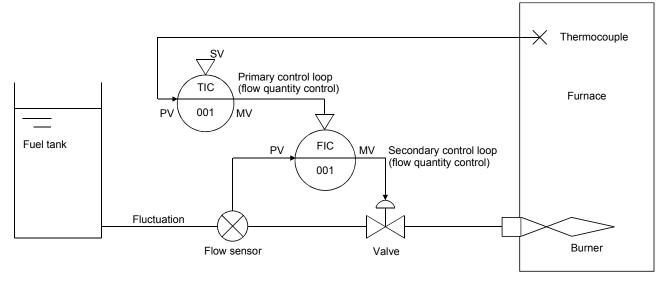
(Here β =1. the derivative action corresponding to set value changing makes manipulated variable change sharply (kick), and shock on the final control element and system. Therefore when β =1, usually treat the derivative action in relation to set value changing as invalid.)

(d) Setting of 2-degree-of-freedom parameter α , β . On the programming tool FB property window, set the tag data ALPHA2 as α and set BETA2 as β

		Setting/Storage range			Initial			Number of	Tag		
Offset	Item	Name	Low limit	High limit	Unit	value	Data type	Storage	digits after decimal point	access FB	
+64	ALPHA2	2-degree-of-freedom parameter α	0	1	_	0.00	REAL	User	2	P_2PID	
+66	BETA2	2-degree-of-freedom parameter β	0	1	_	1.00	REAL	User	2	P_2PID	

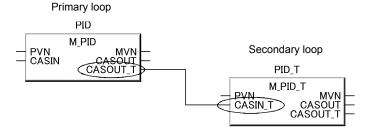
App - 82 App - 82

Appendix 3.6 Various Control


(1) Cascade control

(a) Operation overview

Cascade control consists of primary loop and secondary loop. It is the control that removes the effect on the process and improves the whole control performance by checking out disturbance entering secondary loop in an early stage as well as absorbing them into secondary loop.


Usually, the response of secondary loop is over 3 times faster than primary loop.

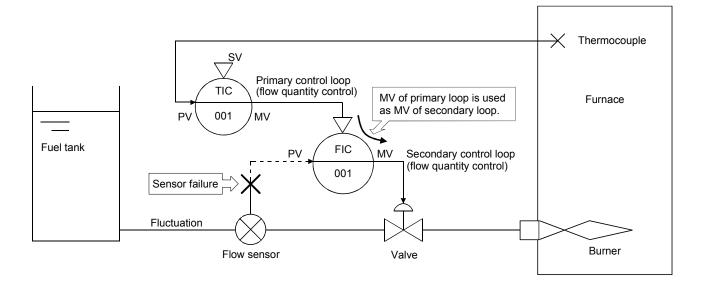
Following diagram is an example of controlling the furnace temperature in a certain value. It absorbs fuel supply variation by flow control of secondary control and can improve response characteristics of temperature control as a whole.

(b) Example of applying cascade connection with FB when tracking is needed. Connect the CASOUT_T of primary loop and the CASIN_T of secondary loop.

For secondary loop, the tag FB shall be the tag FB (M_PID_T,M_2PID_T, etc.) with CASIN_T pins attached.

When tracking is applied, the operation constants of secondary loop tag FB shall be set for tracking.

Operation constant item	Contents	Settings for tracking
PID_TRK	Without tracking With tracking	1
PID_SVPTN_B0	TRUE: Without primary loop connection FALSE: With primary loop connection	FALSE
PID_SVPTN_B1	TRUE : SV is not of MV of upper loop FALSE : SV is of MV of primary loop	When primary loop is tag FB: FALSE (usually FALSE) When primary loop is not tag FB: TRUE

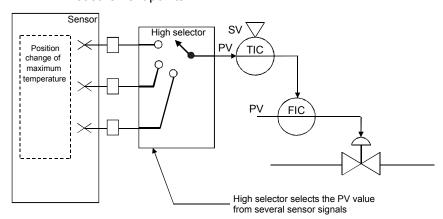

App - 83 App - 83

(c) Cascade direct

For 2PIDH tags, Cascade Direct (CASCADE DIRECT) mode can be selected as a control mode. In Cascade Direct control, output value of the primary loop is directly output as output value of the secondary loop in the cascade connection.

In the case of input sensor failure, the output result of the primary loop is substituted for and directly output as the output value of the secondary loop since the PID operation result of the secondary loop will be illegal.

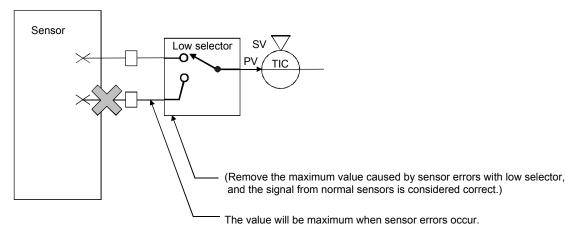
The CASCADE DIRECT mode can be set with the tag of secondary loop.


App - 84

(2) Selection control

(a) Operation overview

By this method, users can select the necessary signals among various sensor signals or operation signals (high selection, low selection, Middle value selection) for control.


(E.g. 1) When the highest temperature position changes, the control is performed by selecting the highest temperature among two or more measurement points.

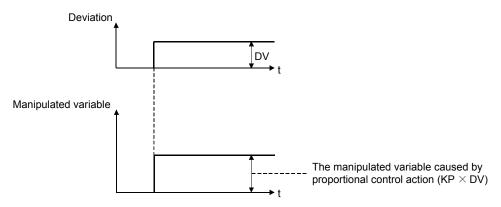
(E.g. 2) In case that the input signal from the sensor becomes maximum when sensor errors such as wire break occur.

The redundancy of the system is realized by installing two or more sensors for sensor wire break and trouble and selecting the normal one.

(Connect multiple sensors, combine the low, high and intermediate selectors according to the status when burnout occurs and obtain normal sensor signals. (When burnout occurs, the signals of sensor is the maximum or the minimum.))

App - 85 App - 85

Appendix 3.7 PID Operation


(1) Proportional (P) Control action

(a) Proportional (P) Control action

The proportional (P) control action is the operation that obtains the manipulated variable in proportional to deviation DV (difference between process value and set value)

Manipulated variable = Proportional gain Kp imes Deviation DV

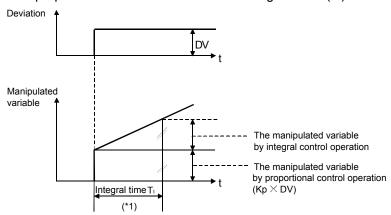
The proportional action of step response whose deviation is a certain value is as follows.

Condition	Proportional control action
When proportional gain Kp is relatively smaller	Control operation become slow
When proportional gain Kp is relatively bigger	Control operation become faster and easy to cause hunting

(b) Offset

The error to set value is named offset. Offset will occur in proportional control action.

App - 86


(2) Integral (I) operation

(a) Integral (I) operation

Integral control action is the operation that continuously changes the manipulated variable, in order to eliminate deviation DV (difference between process value and set value).

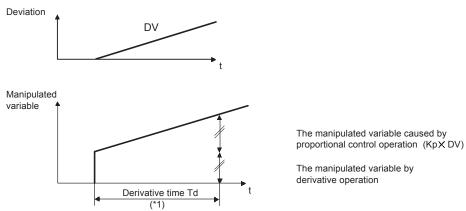
It can eliminate offset caused in proportional action.

The time interval from the moment when deviation occurs until the manipulated variable due to integral control action equal to the then due to the proportional control action is called Integral Time (T_I).

(*1) The time interval in which the manipulated variable due to integral control ation equal to the manipulated variable due to the proportional control ation is called integral time (T_I)

Condition	Integral control action
When integral time T _I is relatively smaller	The integral effect becomes stronger, and the time for eliminating offset becomes shorter. But hunting may easily occur.
When integral time T _I is relatively bigger	The integral effect becomes lighter, and the time for eliminating offset becomes longer.

App - 87 App - 87


(3) Derivative (D) action

(a) Derivative (D) action

This is the operation that imposed on the manipulated variable that is in proportional to the variation rate (difference between the current value and the last value) of deviation DV (the difference between process value and set value).

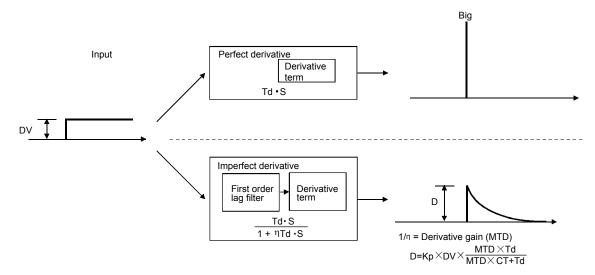
After deviation occurs, the time interval in which the manipulated variable due to proportional operation equal to the manipulated variable due to derivative action is called Derivative Time " T_D ".

When deviation is changing at a constant rate

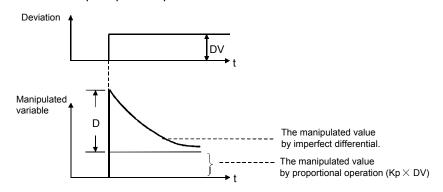
(*1) The time interval in which the manipulated variable due to proportional operation equal to the manipulated variable due to derivative operation is called Derivative Time (Td).

Condition	Differential action
When derivation time T _D is relatively smaller	Derivation effect becomes lighter.
When derivation time TD is relatively bigger	Derivation effect becomes stronger. Cause short-period hunting, and the system may become unstable.

App - 88 App - 88


(b) Imperfect derivative

If derivative is applied as it is, it may be effected by increase of high-frequency noise, and because the time width of MV is narrow (e.g. in case of step-shaped change, it will be output only at the moment like pulse shape.). There may be the bad influence that the energy which outputs final control element fully is not given.


Therefore, normally the derivative term input with imperfect differentiation for which filter shall be applied once.

M_PID, M_IPD, M_2PID of tag FB and P_PID, P_IPD, P_2PID of tag access FB have applied imperfect differentiation.

Derivative gain (MTD) can be set by operation constant.

Step response operation with a constant deviation

App - 89

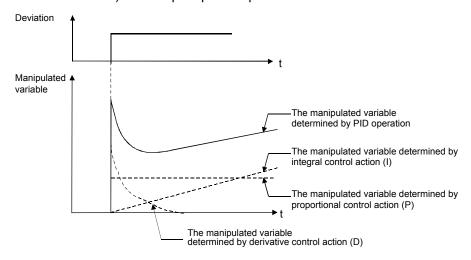
(4) PID operation

(a) PID operation

This is the control operation which output the manipulated variable (MV), so that process value (PV) can approach set value (SV) rapidly and correctly by combining P control action, I control action and D control action.

Besides, if P, I, D operation are not all included in the control, it will be named P control or PI control according to the control action included.

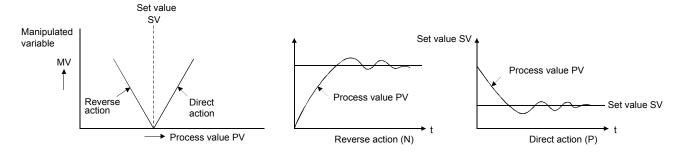
CPU module velocity type process value derivation PID expression


	Direct action (PN =1)	Reverse action (PN =0)
Deviation DVn	DVn=PVn-SVn	DVn=SVn-PVn
Output variation △MV		MV are as follows.
Bn	$Bn=Bn-1+\frac{Md\times Td}{Md\times CT+Td}\times\\ \{(PVn-2PVn-1+PVn-2)-\frac{CT\times Bn-1}{Td}\}$	$Bn=Bn-1+\frac{Md-Td}{Md\times CT+Td}\times \\ \{-(PVn-2PVn-1+PVn-2)-\frac{CT\times Bn-1}{Td}\}$

Kp: Gain, Ti: Integral time, Td: Derivative time, Md: Derivative gain, CT: Control cycle, DVn: Deviation, DVn-1: Previous deviation value,

PVn: Process value, PVn-1: Previous process value,

PVn-2: Process value before last


1) The step response operation with constant deviation

App - 90 App - 90

- 2) Direct action and reverse action (PN)
 - Direct action (P): Decreases manipulated variable when the process value is bigger than the set value (like cooling)
 - Reverse action (N): Increases manipulated variable when the process value is smaller than the set value (like heating)

Reverse action and direct action (PN) can be set by operation constant.

App - 91 App - 91

Appendix 3.8 Control Mode

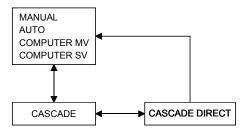
(1) Types of control mode

Control mode types of tag FB are as follows.

Valid control modes are different due to different tag types.

Please refer to Appendix 1.3 (3) for the corresponding relationship between tag type and control mode.

- (a) Manual Mode (MANUAL)This is the mode of manual operation. Output MV.
- (b) Automatic Mode (AUTO) This is the mode for automatic operation. Control MV according to SV.
- (c) Cascade Mode (CASCADE) This is the mode for cascade operation. Set the output value (MV) of primary loop as set value.
- (d) Computer MV (COMPUTER MV) Mode


 This is the mode of manual operation with upper computer. Output the upper MV from upper computer.
- (e) Computer SV (COMPUTER SV) Mode This is the mode for automatic operation with upper computer. Control MV according to SV which comes from upper computer.
- (f) Cascade Direct (CASCADE DIRECT) Mode

 This is the mode for directly outputting the output value of primary loop as the output value of secondary loop in the cascade connection.

(2) Control mode transition

- (a) Control mode transition when the tag type is other than 2PIDH The control mode transition has no restriction.
- (b) Control mode transition when the tag type is 2PIDH Mode change to CASCADE DIRECT mode can be performed only from CASCADE mode.

Other control mode changes have no restriction.

POINT

When loop stop alarm (SPA) occurs, all the current control modes will be converted to MANUAL forcibly and automatically.

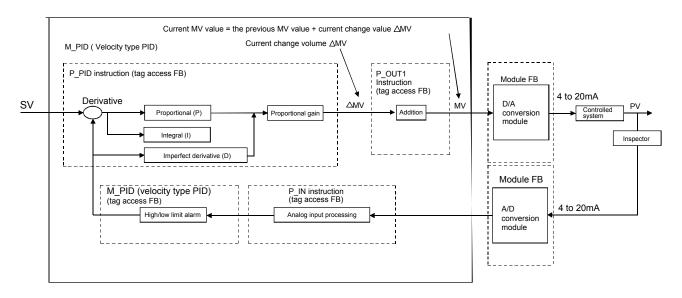
Please refer to Appendix 3.10 for loop stop alarm (SPA) occurrence.

App - 92 App - 92

Appendix 3.9 Velocity Type PID and Position Type PID

(1) Velocity type PID

Velocity type PID is an operation method for calculating the difference (\triangle MV) of current and previous MV.


In the following chart, velocity type PID operation output \triangle MV by using tag access FB's P_PID. Output \triangle MV is added to previous MV by P_OUT1, and the manipulated variable MV is output to the controlled system.

Compared to PID position type, velocity type is more convenient in operation of bumpless manual-auto switching, prevention of reset wind-up, complicated control and slow change when gain is changed. Hereby the velocity type has become the mainstream choice.

Perform velocity type operation for the P_PID, P_SPI, P_IPD, P_BPI, P_2PID, P_2PIDH_ of tag access FB, and output \triangle MV.

Output \triangle MV is added to previous MV by P_OUT1 of tag access FB, and the result is manipulated variable MV.

M_PID, M_SPI, M_IPD, M_BPI, M_2PID, M_2PIDH_ of tag FB are corresponding to this.

(2) Position type PID

Position type PID is a PID operation method which calculate not the differential MV (\triangle MV) but the manipulated variable MV.

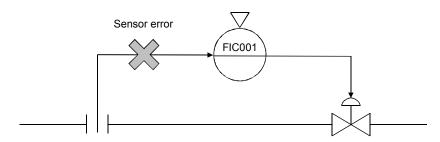
M_PIDP of tag FB and P_PIDP of tag access FB are corresponding to this.

App - 93

Appendix 3.10 Stop Alarm Processing in Loop Control

(1) Stop alarm (SPA) overview

When loop tag memory alarm (sensor error (SEA) etc.) occurs, the control mode can be changed to Manual (MAN) by setting stop alarm (SPA) FALSE \rightarrow TRUE. The operation of stop alarm (SPA) from FALSE \rightarrow TRUE can be executed by user's program according to needs.


Besides, when stop alarm (SPA) is set as TRUE, the alarm which has occurred. (MLA, MHA, DVLA, DPPA, PLA, PHA, LLA, HHA, SEA, DMLA) will be automatically reset (TRUE \rightarrow FALSE).

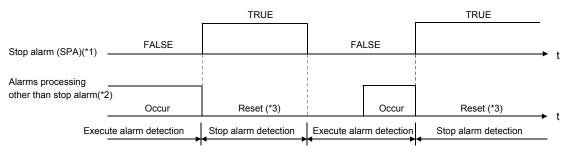
(2) The alarm(ALM) items of loop tag memory The alarm (ALM)items of loop tag memory is as follows. Please refer to Appendix 1.2 (1) for the list of loop tag memory.

Offset	Item	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
			SPA Stop alarm				OOA Output open	SEA Sensor error	Input high high		PHA Input high limit	Input low limit	Positive	Negative	Large	Output high	MLA Output low limit
	ALM Alarm		User *2			System	User	System	System	System	System	System	System	System	System	System	System
			TRUE:Occur FALSE: Reset			TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset	TRUE : Occur FALSE: Reset	TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset	TRUE: Occur FALSE: Reset
1																	

Alarm (ALM) consists of multiple BOOL variables. (refer to the table above) All the BOOL variables configuring alarm are global variables. It is used in FBD program as follows.

(E.g.) When loop sensor error (SEA) of PID1 occurs:

In above example, sensor error (SEA) can be acquired through external variables parts.



App - 94 App - 94

(3) The relationship between stop alarm (SPA) and the other alarms of loop tag memories.

The relationship between stop alarm (SPA) and the other alarms of loop tag memories is as follows.

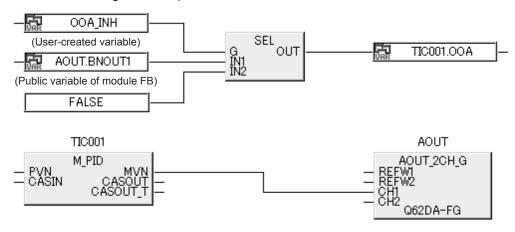
Condition Stop alarm (SPA)	Results
TRUE	Stop alarms processing, except "stop alarm" (MLA, MHA, DVLA, DPPA, PLA, PHA, LLA, HHA, SEA, DMLA), become to FALSE automatically.
FALSE	Execute alarms processing, except "stop alarm" (MLA, MHA, DVLA, DPPA, PLA, PHA, LLA, HHA, SEA, DMLA)

- *1 Stop alarm (SPA) can be set to TRUE or FALSE by user's program.
- *2 Output open alarm (ODA) follows the processing in the user's program.
 *3 When stop alarm (SPA) is TRUE: alarm detection processing stops.
 Alarm in occurrence will be reset automatically.

App - 95 App - 95

Appendix 3.11 How to Use Output Open Alarm

The output open alarm (OOA) of loop tag memory is designed for controlling to display the wire break detection signal as an alarm on the loop tag FB of the output source when a disconnection is detected on the module FB on the output side.


The following shows a programming method and program example for giving a signal feedback from the module FB that is to detect a disconnection to the loop tag FB that is to display it as an alarm.

<Programming method>

Input the public variable (BNOUT1) of module FB on the output side to the tag item (OOA) of loop tag FB.

For the output open alarm (OOA), the disable alarm detection flag does not exist. Therefore, program separately to enable or disable this alarm.

<Program example>

App - 96 App - 96

Appendix 3.12 Tracking

(1) Operation

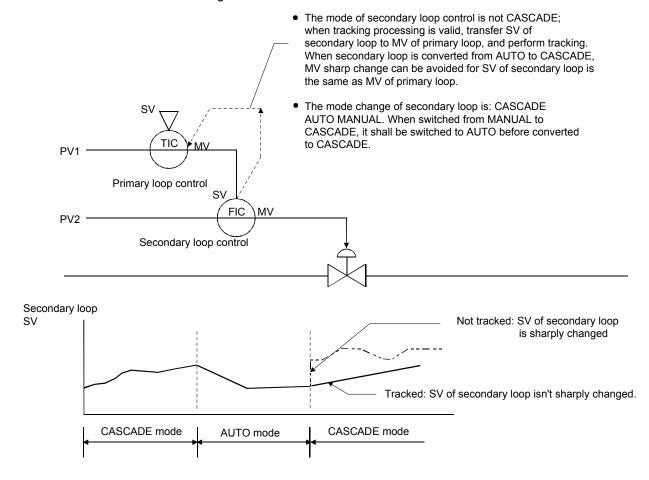
Tracking has two kinds of functions.

(a) Bumpless function

At the time of Auto → Manual mode switching, this function prevents step-shaped changes caused by sharp change of manipulated variable(MV)output, and ensures MV value to be converted smoothly and bumplessly.

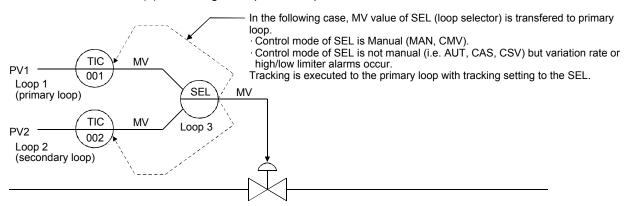
(b) Output limiter processing function

It can limit manipulated variable (MV) within the high/low limit which is output by PID operation in Auto Mode.

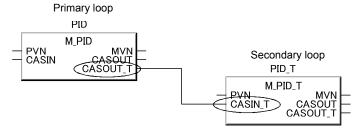

This function is only valid in Auto Mode, and cannot be executed in Manual Mode.

Additionally, when the primary loop is Auto Mode and tracking from the secondary loop is executed, as the tracking data will be stored as MV value, output limiter processing function will not be executed in this case.

(2) Application example


(a) Tracking example of cascade loop

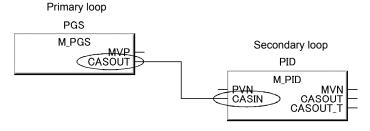
For the control loop which composes cascade loop, if control mode switching of secondary loop is executed, the SV value of secondary loop shall be transmit to MV value of primary loop, in order to prevent sharp changes of SV value.



App - 97 App - 97

(b) Tracking examples of loop selector

(c) Illustration of cascade connection by using FB when tracking is necessary Connect CASOUT_T of primary loop with CASIN_T of secondary loop. The tag FB of secondary loop should be the tag FB (M_PID_T, M_2PID_T, etc.) which has CASIN_T pin.



When tracking is executed, it is necessary to set the tracking of operation constant of secondary loop tag FB.

Operation constant item	Contents	Settings for tracking
PID_TRK	0: Without tracking 1: With tracking	1
PID_SVPTN_BO	TRUE: Not connected with primary loop FALSE: Connected with primary loop	FALSE
PID_SVPTN_B1	TRUE: SV is not MV of primary loop FALSE: SV is MV of primary loop	When primary loop is tag FB: FALSE (normally FALSE) When primary loop isn't tag FB: TRUE

(d) Illustration of cascade connection by using FB when tracking is not necessary

Connect CASOUT of primary loop with CASIN of secondary loop. The tag FB of secondary loop should be the tag FB which has CASIN pins.

When tracking is not necessary, the operation constants of secondary loop tag FB are as follows.

Operation constant item	Contents	Settings for tracking
PID_SVPTN_BO	TRUE: Not connected with primary loop FALSE: Connected with primary loop	FALSE

App - 98 App - 98

Appendix 3.13 Simulation Function

(1) Overview

The simulation function is the function that does not actually input/output for I/O module, but performs simulation.

Simulation function is executed after changing the mode to SIMULATION with faceplate.

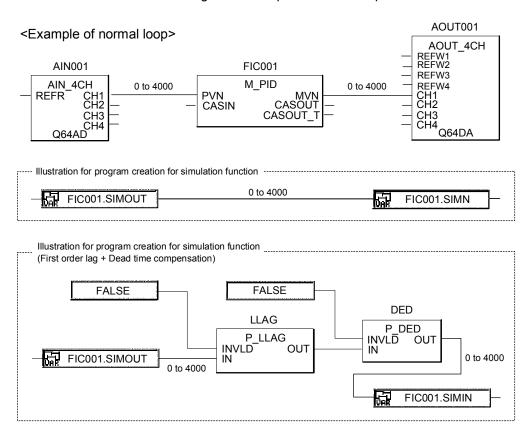
For details of I/O mode change, refer to the PX Developer Operating Manual (Monitor Tool).

(2) Function contents

(a) For loop tag FB

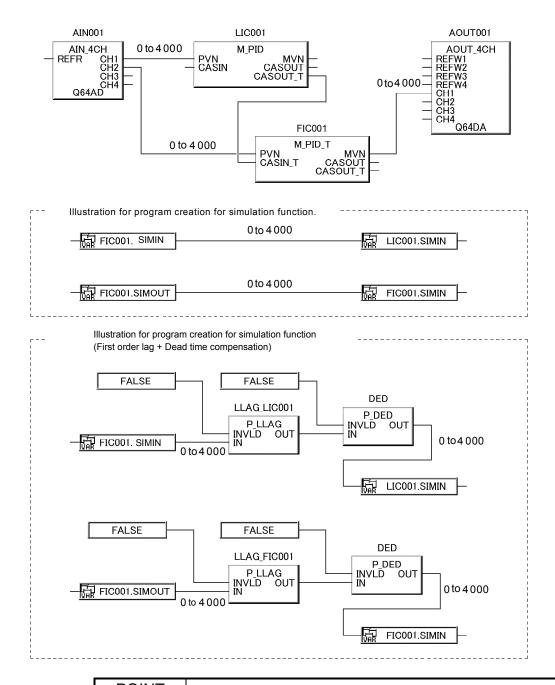
Execute the loop control using MV output as feedback input while not executing PV external output and MV external input (separate input and output from the external).

By using it, it is possible to execute loop test separated with the actual plant.


(b) For status tag FB

Separate the input and output from the external and substitute the input signal a certain period after receiving the output instruction.

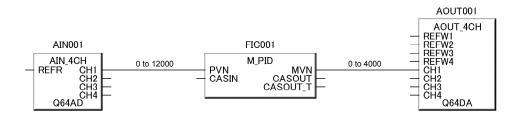
It can simulate the actual valve ON/OFF instructions and response of answer signal to confirm the control operation.

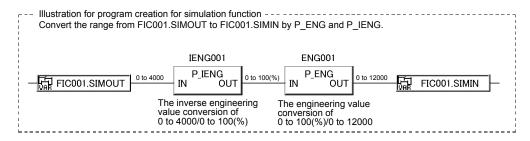

App - 99

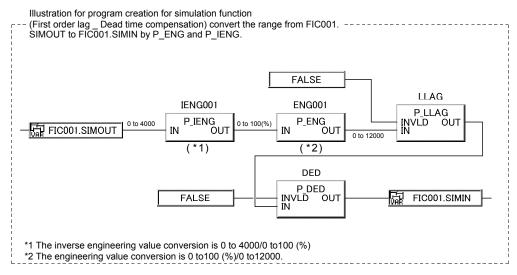
- (3) Creation of simulation data
 - (a) Creation of simulation data
 - For loop tag FB
 The simulation data of loop tag FB can be made by returning the simulation output (SIMOUT) to simulation input (SIMIN) in tag FB.
 - 2) For status tag FB
 It is not necessary to create programs for simulation function of status tag FB.Set the simulation answer back period (SIMT) of tag data.
 - (b) Program example of loop tag FB simulation function Following are the program examples of simulation function that uses loop tag FB.
 - 1) When the range of PVN and MVN are the same Following is an example of normal loop and cascade.

App - 100 App - 100

<Cascade example>




POINT


In the case of cascade connection, use simulation loopback input data of secondary loop (such as FIC001.SIMIN as mentioned above) as simulation input data of primary loop (such as LIC001.SIMIN as mentioned above).

App - 101 App - 101

2) When the ranges of PVN and MVN are not the same. The program example when the range of A/D conversion module (AIN_4CH) is 0 to 12000, and the range of D/A conversion module (AOUT 4CH) is 0 to 4000.

App - 102 App - 102

Appendix 3.14 Override Function

(1) Overview

This function enables setting of PV value on the pop-up tuning screen of monitor tool when it is unable to attain the correct input signal that results from the faults of sensor, limit switch and A/D conversion module.

However, the external output such as manual MV and ON/OFF signal is carried out. It is necessary to change the mode to OVERRIDE mode by I/O mode change on faceplate in order to use Override function.

For details of I/O mode change, refer to the PX Developer Operating Manual (Monitor Tool).

(2) Function contents

(a) For loop tag FB

It enables setting of PV value on the pop-up tuning screen of monitor tool when it is unable to attain the correct input signal that results from the faults of sensor and A/D conversion module. However, external output is carried out. In this case, MV output shall be carried out in MANUAL Mode.

It is used when applying input signal under inter-lock conditions or transition conditions of batch sequence.

The setting of PV value shall be input from the tag monitor column on popup tuning screen of monitor tool.

(b) For status tag FB

It enables setting input signal through the pop-up tuning screen of monitor tool when it is unable to get the correct input signal due to reasons as the contact failure of valve ON/OFF limit switch.

However, external output is carried out.

It is used in applying the input signal under interlock conditions or transition conditions of batch sequence.

POINT

For loop tag FB, the override function can be operated in MANUAL mode only. Operations in other than MANUAL mode are disabled due to incorrect sensor inputs.

App - 103 App - 103

Appendix 3.15 Tag Stop Function

(1) Overview

The tag stop function stops the input processing and loop control. This is set for tags reserved for future use.

The tag stop function can be set by changing the I/O mode with faceplate. For details of I/O mode change, refer to the PX Developer Operating Manual (Monitor Tool).

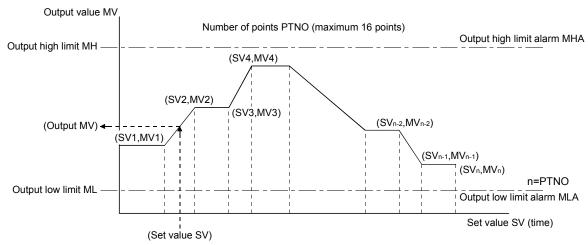
(2) Function contents

The tag stop function can be used for 2PIDH, PGS2 tags.

This function is used for the tags defined by a programming tool in advance or tags being stopped in order to use them in the future.

Processings in executing the tag stop function are described below.

For details, refer to corresponding FB section in Chapter 7.


App - 104 App - 104

Appendix 3.16 Program Setter Setting Method

The following shows the setting method of Program setter (PGS) and Multi-point program setter (PGS2).

(1) Program setter (PGS)

- 1) Operation method
 - An operation uses the X-Y graph method.
 - Output MV is calculated using the X-Y graph function depending on the SV (time) through the program.
- Relationship between the program setting method and each variable For details of each variable, refer to Appendix 1.1.
 Register a program using the X-Y graph method shown below.

- 3) Registration format
 - Point data are registered up to 16 points in real number (REAL).
- 4) Time management
 - Time is set by seconds.
- 5) Output high/low limit alarm
 - Output low limit alarm MLA and output high limit alarm MHA are assigned to bit 0 and bit 1 (standard locations) of the loop tag memory +3 (ALM).
- 6) Mode and operation type
 - Five control modes are available; MAN, CMV, AUT, CAS, and CSV.
 - The operation type is CYCLIC in CAS mode.
 - The operation type is selectable either HOLD or RETURN in AUT mode.

App - 105 App - 105

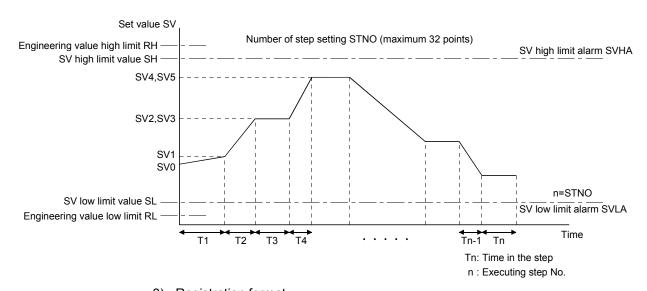
(2) Multi-point program setter (PGS2)

1) Operation method

An operation is performed by registering steps (time span and set value) and managing the process by each step.

Each step calculates the set value SV according to the time in the step (T).

2) Relationship between the program setting method and each variable For details of each variable, refer to Appendix 1.1.


Register each step data as shown in the figure below.

Set the program start point to SV0.

Note that the following main parameters are changed from the program setter (PGS).

MV (Output value) \rightarrow SV (Set value)

SV (Set value) → STC (Executing step number) + T (Time in the step)

3) Registration format

Step data are registered up to 32 steps in integer (INT).

The set range is from -32768 to 32767.

4) Time management

Time is set by either seconds or minutes. (Set at TUNIT in the loop tag item.)

5) Output high/low limit alarm

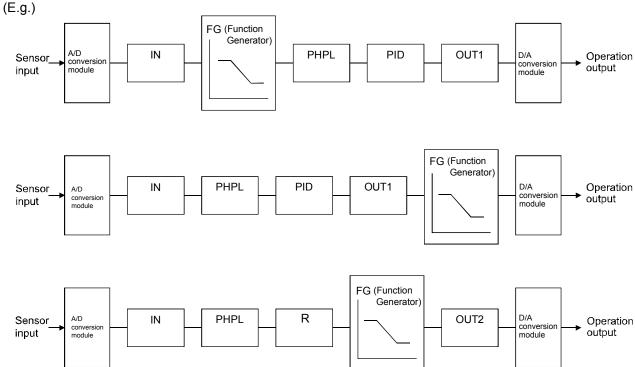
SV low limit alarm SVLA and SV high limit alarm SVHA are assigned to bit 0 and bit 1 of the loop tag memory +3 (ALM).

Note that variable names differ from those for the program setter (PGS).

6) Mode and operation type

Two control modes are available; MAN and AUT.

The operation type is selectable either HOLD, RETURN or CYCLIC in AUT mode.

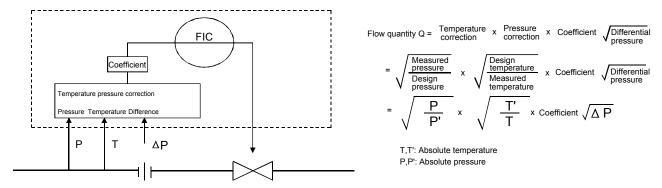

App - 106 App - 106

Appendix 4 Terms

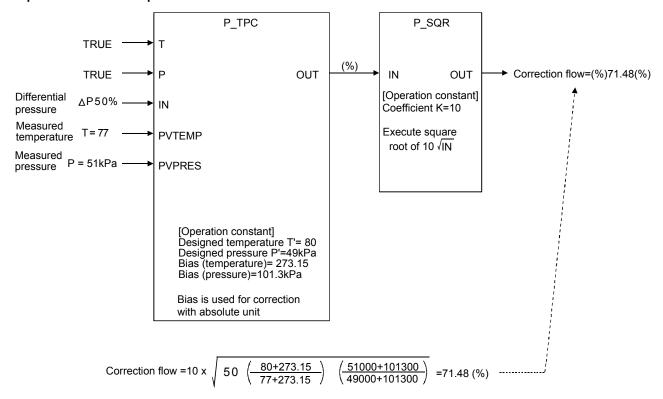
The contents explain the process-related technical words.

Broken line correction

It is used when the value from the process target is not in proportional to process value from sensor. Input value is approximated and corrected by broken line.



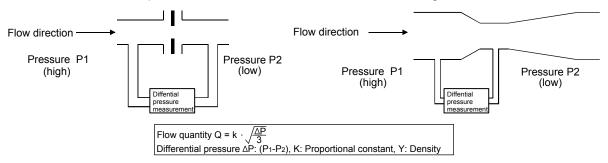
App - 107 App - 107


Temperature/Pressure Correction

When the fluid conditions (temperature, pressure), of which the differential pressure measured by equipments which has diagram such as orifice, are not the same as the design conditions, it shall be corrected.

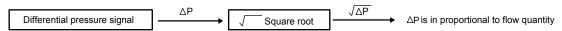
Correction shall be performed by process value to multiply the temperature/pressure correction coefficient. In addition, when equipments with diaphragm such as orifice is used, the obtained value is square of the flow quantity. So that extraction of square root shall be applied.

Operation Example



- Differential pressure △P is the proportional assuming the measuring range of differential pressure transmitter is100%.
- The corrected flow rate is the flow rate value corresponding to the measurement differential pressure range of differential pressure transmitter.

App - 108 App - 108


Square Root Operation

When measuring flow quantity through differential pressure of orifice or venturi tube, the signal which is obtained from sensor has square characteristics. This control linearize the signals.

When measure flow quantity by using differential pressure, the proportional characteristics will be obtained through square root of differential pressure data.

Temperature/pressure correction (P_TPC) is used according to the needs.

Sample PI (SPI) Control

Sample PI (SPI) control executes PI control for the execution cycle and then holds the output in every control cycle.

Please refer to Appendix 3.5 for details.

Time Proportioning Control

Time proportioning control changes the ON/OFF ratio proportionally with the PID operation result. Please refer to Appendix 3.2 for details.

High/low Limiter

It is the function that limits the output MV by PID operation in Auto Mode within the high/low limit. High/low limiter processing function is only applicable in Auto Mode. (It is not processed in Manual Mode.)

App - 109 App - 109

Selection Control

This is the control method that selects the necessary signals (high selector, low selector, intermediate value selector, etc.) among multiple sensor signals or operation signals to control the system. Please refer to Appendix 3.6 for details.

PV-proportional and -derivative Type (I-PD Control)

I-PD type control is the control that applies PV value on not only derivative term but also proportional term compared to PV-derivative type.

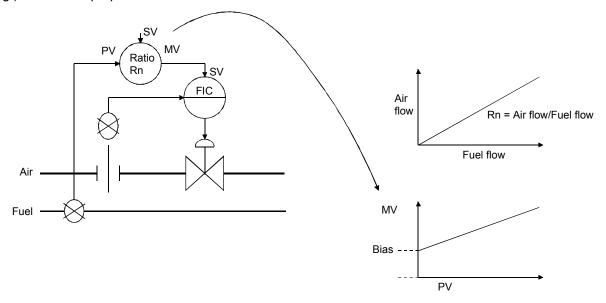
Please refer to Appendix 3.5 for details.

Velocity type PID Control

(1) Velocity type control

Velocity type PID control is the operation method for calculating differential manipulated variable $\triangle MV$ between the current value and the previous value.

Please refer to Appendix 3.9 for details.


(2) PID control

This is the control method that outputs the manipulated variable by combining P, I, D operations, so as to make the manipulated variable reach the same value as the set value rapidly and correctly.

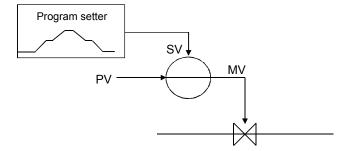
Ratio Control

This control holds the proportional relationship between more than 2 variables. For example, it is used for the system in which when SV changes in a constant ratio to other variables.

(E. g.) Control the proportional of air flow to fuel flow.

App - 110 App - 110

Blend PI Control

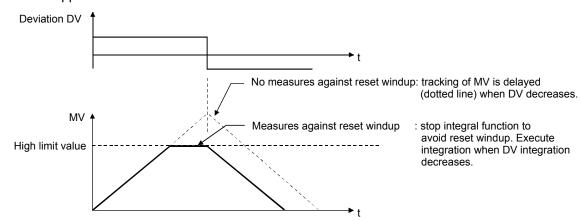

This process control method is applicable for the system in which it is good if the control volume is held in a longer period despite short-period vibration.

Program Control

It is the control method to change the set value by the pre-set program.

It is used for temperature control, etc.

It needs to combine the program setter and PID control for using.


Reset Windup

Reset windup is the problem that deviation is accumulated continuously when integral element exceed saturation limit in the case of excessive deviation.

When reset wind-up occurs, following measures should be taken to enable prompt response when the deviation is interval.

Measures against reset windup have been applied on CPU module.

- 1) When integral element of MV exceeds high/low limit, it shall return to the high/low limit value.
- 2) When integral element of MV exceeds high/low limit, integration operation to the exceeding direction shall be stopped.

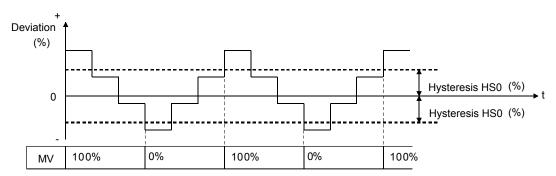
App - 111 App - 111

First Order Lag

This is used as filter for eliminating noise of process value PV.

Execute the first order lag operation by the following expression.

$$PVf = \frac{T1 \times PVf_{n-1}}{T1 + \triangle T} + \frac{\triangle T \times PV}{T1 + \triangle T}$$


T1: Time constant(s), △T: Execution cycle, PV: Present input value, PVfn-1: Previous filter value

2-position ON/OFF Control

This is the method that outputs 2 steps of MV signals for deviation to control the system.

It is used when it is good if the process value is within a certain range.

The output is BOOL type.

Condition	Deviation (DV)
Direct action	DV (%)=PV (%)-SV (%)
Reverse action	DV (%)=SV (%)-PV (%)

DV: Deviation (%), HS0: Hysteresis (%), MV: MV output

SV (%) =
$$\frac{\text{SV - low limit of engineering value}}{\text{high limit of engineering value - low limit of engineering value}} \times 100$$

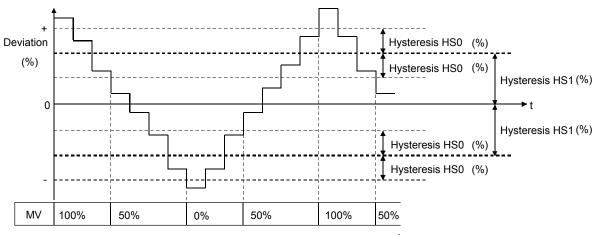
Hysteresis (%) is the percentage to (High limit of engineering value- Low limit of engineering value).

2-degree-of-freedom PID Control

In former PID control, the optimum PID constants for SV value changing and disturbance are not identical. Whichever optimum value is applied, it may not be the optimum value for the other side.

2-degree-of-freedom PID control is a method for optimizing simultaneously the control of disturbance response and target tracking.

Please refer to Appendix 3.5 for details.


App - 112 App - 112

3-position ON/OFF Control

This is the control method that outputs 3 steps of MV signals for deviation to control the system.

It can be applied when it is good if the process value is within a certain range.

The output is BOOL type.

Condition	Deviation (DV)
Direct action	DV (%)=PV (%)-SV (%)
Reverse action	DV (%)=SV (%)-PV (%)

DV: Deviation(%), HS0:Hysteresis(%), HS1: Hysteresis(%), MV: MV output

$$SV (\%) = \frac{SV - low limit of engineering value}{high limit of engineering value - low limit of engineering value} \times 100$$

$$PV (\%) = \frac{PV - low limit of engineering value}{high limit of engineering value - low limit of engineering value} \times 100$$

Hysteresis(%) is expressed by percentage corresponding to (High limit value of engineering value - Low limit value of engineering value).

App - 113

Appendix 5 Instructions Newly Included and Changed with Upgrade

The following instructions are newly included and changed with the upgrade.

Compatible Version*	Included/Changed Instruction	Description	Reference
	SR	Public variable (variable name: IP) included	Section 5.1.1
R	RS	- Public variable (variable name: IR) included	Section 5.1.2
	AIN_4CH_G		Section 8.1.3
	AIN_2CH_DG	Dublic veriable (veriable name) CLICAN/FND) included	Section 8.1.4
Version 1.04E	TC_4CH	Public variable (variable name: CHCNVENB) included	Section 8.2.1
	TCV_4CH_G		Section 8.2.2
	RTD_4CH	 Public variable (variable name: CHCNVENB) included Q64RD-G included as compatible modules 	Section 8.2.3
	DIN_64PT	QX82, QX82-S1 included as compatible modules	Section 8.4.4
Version 1 06C	SEND	Public variable (variable name: CHCSVS) included	Section 5.5.1
Version 1.06G	RECV	Public variable (variable name: CHGSYS) included	Section 5.5.2
Version 1.08J	IS_CONNECTED(_E)_	New addition	Section 4.9.5
	P_PIDP_EX_T_		Section 7.6.11
	P_PIDP_EX_	Name addition	Section 7.6.12
	M_PIDP_EX_T_	New addition	Section 7.8.13
	M_PIDP_EX_		Section 7.8.14
Version 1.10L	P_OUT3_	New addition	Section 7.5.4
	P_2PIDH_T_	Tag type 2PIDH is added.	Section 7.6.7
	P_2PIDH_	CASCADE DIRECT (CASDR) is added to control	Section 7.6.8
	M_2PIDH_T_	modes.	Section 7.8.9
	M_2PIDH_	Tag Stop (TSTP) is added to I/O modes.	Section 7.8.10
	P_PGS2_	New addition	Section 7.6.25
	M_PGS2_	 ◆ Tag type PGS2 is added. 	Section 7.8.36
	P_MCHG	PGS2 is added to the compatible tag type.	Section 7.7.1
	P_OUT3_		Section 7.5.4
	P_2PIDH_T_	The Limit Cycle method of auto tuning is added.	Section 7.6.7
	P_2PIDH		Section 7.6.8
	P_PGS2_	Processing when the Number of steps setting is 0 is added to the PV start function.	Section 7.6.25
	AIN_8CH_G		Section 8.1.4
Version 1.14Q	AIN_6CH_DG	New addition	Section 8.1.6
Voicion III I Q	AOUT_6CH_G		Section 8.1.11
	AOUT_2CH	Q62DAN is included as compatible module.	Section 8.1.7
	AOUT_4CH	Q64DAN is included as compatible module.	Section 8.1.8
	AOUT_8CH	Q68DAVN and Q68DAIN are included as compatible module.	Section 8.1.9
	DIN_32PT	QX41-S1 is included as compatible module.	Section 8.4.3
	DIN_64PT	QX42-S1 is included as compatible module.	Section 8.4.4
	SEND	Operational restrictions for an Ethernet module mounted	Section 5.5.1
	RECV	on the redundant type extension base unit of Redundant CPU are added.	Section 5.5.2

^{*:} The compatible version can be confirmed in Product Information. For details, refer to the PX Developer Version 1 Operating Manual (Programming Tool or Monitor Tool).

App - 114 App - 114

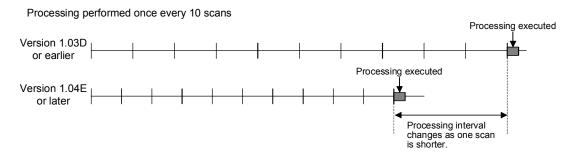
Compatible Version*	Included/Changed Instruction	Description	Reference
	TC_8CH_G	New addition	Section 8.2.2
	P_SUM2_	New addition	Section 7.1.8
Version 1.18U	P_IN	Enabling/Disabling the input limiter processing is added.	Section 7.5.1
	RTD_8CH_G	New addition	Section 8.2.5
	Loop tag FB	Usage of output open alarm is added.	Appendix 3.11

^{*:} The compatible version can be confirmed in Product Information. For details, refer to the PX Developer Version 1 Operating Manual (Programming Tool or Monitor Tool).

App - 115

Appendix 5.1 Precautions an the compile function improvement

The programming tool includes the improved compile function from the new version (Version 1.04E or later).


Therefore, the FBD programs compiled by the new version (Version 1.04E or later) outperform those compiled by the old version (Version 1.03D or earlier) as follows;

- Reduce the number of ladder program steps generated by compile.
- Reduce the scan time of the FBD program.
- Program execution timing when the CPU module is reset, switched from STOP to RUN or power ON.

Note the following when utilizing the program created by the Version 1.03D or earlier

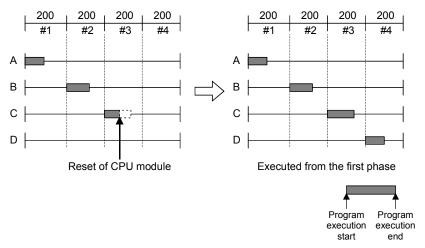
(1) Precautions on reduced scan time of FBD program As the FBD programs compiled by the new version (Version 1.04E or later) are executed faster, they require less scan time as compared with those compiled by the old version (Version 1.03D or earlier).

Therefore, if the scan time-dependent processing is executed for scan execution FBD programs or the user-created ladder programs, the processing interval differs between the old version (Version 1.03D or earlier) and new version (Version 1.04E or later).

POINT

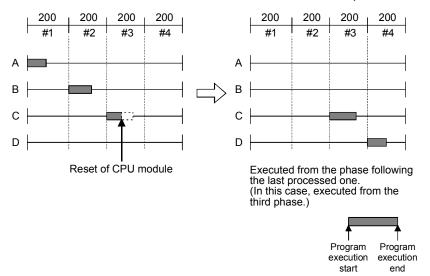
The scan time can be confirmed on GX Developer.

For the confirmation method, refer to the GX Developer Operating Manual.


App - 116 App - 116

(2) Precautions on program execution timing at CPU module reset, STOP \rightarrow RUN or power OFF \rightarrow ON

The FBD programs compiled by the new version (Version 1.04E or later) differ from those compiled by the old version (Version 1.03D or earlier) in the program execution timing when the CPU module is reset, switched from STOP to RUN or power OFF to ON.


[Version 1.04E or later]

The program is executed from the first phase when the CPU module is reset, switched from STOP to RUN or power OFF to ON.

[Version 1.02C or earlier]

The program is executed from the phase following the last processed one when the CPU module is reset, switched from STOP to RUN or power OFF to ON.

App - 117 App - 117

App - 118 App - 118

INDEX

[Symbol]	[3]
< (_E) (Comparison) 4-102	32 Points Digital Input (DIN_32PT)8- 78
≦ (_E) (Comparison) 4-102	32 Points Digital Output (DOUT_32PT)8- 86
<>(_E) (Comparison) 4-102	32 Points Input/32 Points Output I/O Mixed
= (_E) (Comparison) 4-102	(DINOUT_64PT)8- 90
> (_E) (Comparison) 4-102	3-Position ON/OFF (With Tracking to primary loop)
≥ (_E) (Comparison) 4-102	(P_ONF3_T)7-221
	3-Position ON/OFF (Without Tracking to primary
[1]	loop) (P_ONF3)7-225
16 Points Digital Input (DIN 16PT) 8- 76	3-Position ON/OFF Control (With Tracking to
16 Points Digital Output (DOUT 16PT) 8- 84	primary loop) (M_ONF3_T)7-350
16BOOL → WORD/DWORD (BIND(_E)) 4-129	3-Position ON/OFF Control (Without Tracking to
(= (= (=	primary loop) (M_ONF3)7-353
[2]	p
2 Channels Analog Output (AOUT_2CH) 8- 26	[4]
2-Degree-of-Freedom Advanced PID Control (With	4 Channels Analog Input (AIN_4CH)8- 2
Tracking to primary loop) (M_2PIDH_T_) 7-285	4 Channels Analog Output (AOUT_4CH)8- 29
2-Degree-of-Freedom Advanced PID Control (With	4 Channels Temperature-Measuring Resistor Input
Tracking to primary loop) (P_2PIDH_T_) 7-135	(RTD_4CH)8- 57
2-Degree-of-Freedom Advanced PID Control	4 Channels Thermocouple Input (TC_4CH)8- 45
(Without Tracking to primary loop) (M_2PIDH_)	
7-303	[6]
2-Degree-of-Freedom Advanced PID Control	64 Points Digital Input (DIN_64PT)8- 80
(Without Tracking to primary loop) (P_2PIDH_)	64 Points Digital Output (DOUT_64PT)8- 88
	• · · · · · · · · · · · · · · · · · · ·
2-Degree-of-Freedom PID Control (With Tracking	[8]
to primary loop) (M_2PID_T) 7-273	8 Channels Analog Input (AIN_8CH)8- 5
2-Degree-of-Freedom PID Control (With Tracking	8 Channels Analog Output (AOUT_8CH)8- 33
to primary loop) (P_2PID_T)7-123	8 Points Digital Input (DIN_8PT)8- 74
2-Degree-of-Freedom PID Control (Without	8 Points Digital Output (DOUT_8PT)8- 82
Tracking to primary loop) (M_2PID) 7-276	8 Points Input/7 Points Output I/O Mixed
2-Degree-of-Freedom PID Control (Without	(DINOUT_15PT)8- 92
Tracking to primary loop) (P_2PID) 7-129	_ /
2-Degree-of-Freedom PID Control and DUTY	[A]
Output (With Tracking to primary loop)	ABS (_E) (Absolute Value)4- 53
(M 2PID DUTY T)7-279	Absolute Value (ABS(_E))4- 53
2-Degree-of-Freedom PID Control and DUTY	Absolute Value (P_ABS(_E))6- 14
Output (Without Tracking to primary loop)	Access to MELSECNET/H Remote I/O Station
(M_2PID_DUTY)7-282	2- 33
2-Position ON/OFF (With Tracking to primary loop)	ADD(E) (Addition)4- 67
(P_ONF2_T)7-213	Addition (ADD(_E))4- 67
2-Position ON/OFF (Without Tracking to primary	Addition (With Coefficient) (P_ADD)7-22
loop) (P ONF2)7-217	AIN 2CH DG (Channel-isolated High-resolution
2-Position ON/OFF Control (With Tracking to	2 Channels Signal Condition Function)8- 17
primary loop) (M_ONF2_T)7-344	AIN_4CH (4 Channels Analog Input)8- 2
2-Position ON/OFF Control (Without Tracking to	AIN_4CH_G (Channel-isolated 4 Channels
primary loop) (M_ONF2)7-347	Analog Input)8- 8
2WORD→WORD (MAKE DWORD(E))4-132	, i.i.d. 0g ilipat)

AIN 2011 DO (01 1 1 1 1 1 2 01 1 A/D	DOOL TO INIT! E' DOOL TO DINIT! E' (DOOL
AIN_6CH_DG (Channel-isolated 6 Channels A/D	BOOL_TO_INT(_E), BOOL_TO_DINT(_E) (BOOL
Converter Module with Signal Conditioning	Type → INT/DINT Type Conversion)4- 49
Function) 8- 21	BOOL_TO_WORD(_E), BOOL_TO_DWORD(_E)
AIN_8CH (8 Channels Analog Input) 8- 5	(BOOL Type → WORD/DWORD Type Conversion)
AIN_8CH_G (Channel-isolated 8 Channels	4- 51
Analog Input)8- 12	Bumpless Transfer (P_BUMP)7- 67
Alarm (M_ALARM)7-406	
Analog Input Processing (P_IN)7- 72	[C]
Analog Memory (P_AMR)7- 69	CASCADE DIRECTApp-84
AND(_E), OR(_E), XOR(_E), NOT(_E) (AND, OR,	CC-Link Remote Station Occupying 1 Station
XOR, and NOT)	(CCLINK_1)8- 94
•	
AND, OR, XOR, and NOT (AND(_E), OR(_E),	CC-Link Remote Station Occupying 2 Stations
XOR(_E), NOT(_E))4- 86	(CCLINK_2)8- 97
AOUT_2CH (2 Channels Analog Output) 8- 26	CC-Link Remote Station Occupying 3 Stations
AOUT_2CH_G (Channel-isolated 2 Channels	(CCLINK_3)8-100
Analog Output)8- 37	CC-Link Remote Station Occupying 4 Stations
AOUT_4CH (4 Channels Analog Output) 8- 29	(CCLINK_4)8-103
AOUT_6CH_G (Channel-isolated 6 Channels	CCLINK_1 (CC-Link Remote Station Occupying
Analog Output)8- 41	1 Station)8- 94
AOUT_8CH (8 Channels Analog Output) 8- 33	CCLINK_2 (CC-Link Remote Station Occupying
ASIN(_E), ACOS(_E), ATAN(_E)	2 Stations)8- 97
(ASIN/ACOS/ATAN Operation) 4- 64	CCLINK_3 (CC-Link Remote Station Occupying
ASIN/ACOS/ATAN Operation (ASIN(_E),	3 Stations)8-100
ACOS(_E), ATAN(_E)) 4- 64	CCLINK_4 (CC-Link Remote Station Occupying
Average Value (P_AVE(_E)) 6- 11	4 Stations)8-103
Average value (F_AVE(_E)) 0- 11	
101	Channel-isolated 2 Channels Analog Output
[B]	(AOUT_2CH_G)8- 37
Backup modeA- 16	Channel-isolated 4 Channels Analog Input
Batch Counter (P_BC) 7-102	(AIN_4CH_G)8- 8
Batch Preparation (M_BC)7-360	Channel-isolated 4 Channels Temperature/Micro-
BCD Type → INT/DINT Type Conversion	voltage Input (TCV_4CH_G)8- 53
(BCD_TO_INT(_E), BCD_TO_DINT(_E)) 4- 20	Channel-isolated 8 Channels Temperature-
BCD_TO_INT(_E), BCD_TO_DINT(_E) (BCD Type	Measuring Resistor Input (RTD_8CH_G)8- 61
INT/DINT Type Conversion) 4- 20	Channel-isolated 8 Channels Thermocouple Input
BIND(_E) (16BOOL WORD/DWORD) 4-129	(TC_8CH_G)8- 49
Blend PI Control (With Tracking to primary loop)	Channel-isolated 8 Channels Pulse Input
(M_BPI_T) 7-332	(PIN_8CH_G)8- 69
Blend PI Control (With Tracking to primary loop)	Channel-isolated High-resolution 2 Channels
(P BPI T)7-199	Signal Condition Function (AIN_2CH_DG)8- 17
Blend PI Control (Without Tracking to primary	Compare Equal Than (With Set Value) (P_=)
loop) (M_BPI)	
• • • • • • • • • • • • • • • • • • • •	
Blend PI Control (Without Tracking to primary	Compare Greater or Equal (With Set Value)
loop) (P_BPI) 7-204	(P_>=)7- 40
BOOL Type \rightarrow INT/DINT Type Conversion	Compare Greater Than (With Set Value) (P_>)
(BOOL_TO_INT(_E), BOOL_TO_DINT(_E))	7- 34
4-49	Compare Less or Equal (With Set Value) (P_<=)
BOOL Type → WORD/DWORD Type Conversion	7-42
(BOOL_TO_WORD(_E), OOL_TO_DWORD(_E))	Compare Less Than (With Set Value) (P_<)
	7- 36
4- 31	7-30

Comparison (<(_E)) 4-102 Comparison (<=(_E)) 4-102 Comparison (<>(_E)) 4-102 Comparison (>(_E)) 4-102 Comparison (>=(_E)) 4-102 Comparison (>=(_E)) 4-102 CONCAT(_E) (Concatenation) 4-113 Concatenation (CONCAT(_E)) 4-113 Control Mode Change (P_MCHG) 7-258 Control system A- 16 Counter 1 (Counter Stops When COMPLETE Flag is ON) (M_COUNTER1) 7-400 Counter 2 (Counter Continues When COMPLETE lag is ON) (M_COUNTER2) 7-403 Counter Module FB 8- 65 CPU module A- 15	DWORD Type → INT/DINT Type Conversion (DWORD_TO_INT(_E), DWORD_TO_DINT(_E))
CTD (Down-counter) 5- 15 CTU (Up-counter) 5- 13	7- 12 EXP(E) (Natural Exponential)4- 59
CTUD (Up-down-counter)5- 17	Extraction (With Coefficient) (P_SQR)7- 31
DDC	[F] F_TRIG (Falling Edge Detector)

INSERT(_E) (Insert Characters) 4-116	[L]
INT Type → INT Type Conversion	Ladder program A- 16
(INT_TO_DINT(_E)) 4- 4	Latch FB (BOOL Type) (LATCH_BOOL)5-
INT/DINT Type → CD Type Conversion	Latch FB (DWORD Type) (LATCH_WORD)
(INT_TO_BCD(_E), DINT_TO_BCD(_E)) 4- 8	5- S
INT/DINT Type → BOOL Type Conversion	Latch FB (REAL Type) (LATCH_REAL)5- 7
(INT_TO_BOOL(_E), DINT_TO_BOOL(_E))	Latch FB (WORD Type) (LATCH_WORD)5- 8
	LATCH_BOOL (Latch FB) (BOOL Type)5-
4- 15 INT/DINT Type → WORD Type Conversion	LATCH REAL (Latch FB) (REAL Type)5- 7
ş. ş.	LATCH_WORD (Latch FB) (DWORD Type)5- 9
(INT_TO_DWORD(_E), DINT_TO_DWORD(_E))	_ ` ` ' ` ' ` ' ' ' ' ' ' ' ' ' ' ' ' '
UNIT/DINIT Type \ DEAL Type Conversion	LATCH_WORD (Latch FB) (WORD Type)5- 8
INT/DINT Type → REAL Type Conversion	Lead-Lag (P_LLAG)7- 44
(INT_TO_REAL(_E), DINT_TO_REAL(_E))	LEFT(_E), RIGHT(_E) (Leftmost/Rightmost
4- 2	Characters)
INT/DINT Type → STRING Type Conversion	Leftmost/Rightmost Characters (LEFT(_E),
(INT_TO_STRING(_E), DINT_TO_STRING(_E))	RIGHT(_E))4-107
4-34	LEN(_E) (String Length)4-105
INT/DINT Type \rightarrow WORD Type Conversion	LIMIT(_E) (High/Low Limit Control)4- 96
(INT_TO_WORD(_E), DINT_TO_WORD(_E))	Limit Cycle method App- 69
4- 11	LN(_E), LOG(_E) (Natural Logarithm Operation
INT_TO_BCD(_E), DINT_TO_BCD(_E)	/Logarithm Base 10)4- 57
(INT/DINT Type \rightarrow BCD Type Conversion) 4- 8	Loop control A- 15
INT_TO_BOOL(_E), DINT_TO_BOOL(_E)	Loop Selector (With Tracking to primary loop)
(INT/DINT Type \rightarrow BOOL Type Conversion)	(M_SEL_T1)7-368
4- 15	Loop Selector (With Tracking to primary loop)
$INT_TO_DINT(_E)$ (INT Type \rightarrow DINT Type	(M_SEL_T2)7-370
Conversion)4- 4	Loop Selector (With Tracking to primary loop)
INT_TO_DWORD(_E), DINT_TO_DWORD(_E)	(P_SEL_T1)7-248
(INT/DINT Type \rightarrow DWORD Type Conversion)	Loop Selector (With Tracking to primary loop)
4- 13	(P_SEL_T2)7-253
INT_TO_REAL(_E), DINT_TO_REAL(_E) (INT/	Loop Selector (Without Tracking to primary loop)
DINT Type \rightarrow REAL Type Conversion) 4- 2	(M_SEL)7-366
INT_TO_STRING(_E), DINT_TO_STRING(_E) (INT	Loop Selector (Without Tracking to primary loop)
/DINT Type → STRING Type Conversion) 4- 34	(P_SEL)7-244
INT_TO_WORD(_E), DINT_TO_WORD(_E) (INT/	Low Selector (P_LS(_E))6- 5
DINT Type → WORD Type Conversion) 4- 11	
Integral (P_I)7- 47	[M]
Inverse Engineering Value Conversion (P_IENG)	M_2PID (2-Degree-of-Freedom PID Control)
7- 12	(Without Tracking to primary loop)7-276
Inverse Function Generator (P_IFG) 7- 5	M_2PID_DUTY (2-Degree-of-Freedom PID
I-PD Control (With Tracking to primary loop)	Control and DUTY Output) (Without Tracking to
(M_IPD_T)7-326	primary loop)7-282
I-PD Control (With Tracking to primary loop)	M_2PID_DUTY_T (2-Degree-of-Freedom PID
(P_IPD_T)7-188	Control and DUTY Output) (With Tracking to
I-PD Control (Without Tracking to primary loop)	primary loop)7-279
(M_IPD)7-329	M_2PID_T (2-Degree-of-Freedom PID Control)
I-PD Control (Without Tracking to primary loop)	(With Tracking to primary loop)7-273
(P_IPD)7-194	
IS_CONNECTED(_E)4-136	

M_2PIDH_ (2-Degree-of-Freedom Advance Control) (Without Tracking to primary loop)	
M_2PIDH_T_ (2-Degree-of-Freedom Adva	
PID Control) (With Tracking to primary loop	
, , , , , , , , , , , , , , , , , , , ,	
M. ALADM (Alama)	
M_ALARM (Alarm)	
M_BC (Batch Preparation)	
M_BPI (Blend PI Control) (Without Tracking	•
primary loop)	
M_BPI_T (Blend PI Control) (With Tracking	
primary loop)	
M_COUNTER1 (Counter 1) (Counter Stops	
COMPLETE Flag is ON)	
M_COUNTER2 (Counter 2) (Counter Cont	
When COMPLETE Flag is ON)	
M_IPD (I-PD Control) (Without Tracking to p	-
loop)	
M_IPD_T (I-PD Control) (With Tracking to p	-
loop)	
M_MESSAGE (Message)	
M_MONI (Monitor)	
M_MOUT (Manual Output)	
M_MVAL1 (ON/OFF Operation) (2 Input, 2	
M_MVAL2 (ON/OFF Operation) (2 Input, 3	
$\label{eq:mmwm} \mbox{M_MWM (Manual Output with Monitor) }$	
M_NREV (Motor Irreversible) (2 Input, 2 O	
M_ONF2 (2-Position ON/OFF Control) (Wi	
Tracking to primary loop)	
M_ONF2_T (2-Position ON/OFF Control) (
Tracking to primary loop)	
M_ONF3 (3-Position ON/OFF) Control (Wi	thout
Tracking to primary loop)	
M_ONF3_T (3-Position ON/OFF) Control (With
Tracking to primary loop)	7-350
M_PGS (Program Setter)	7-375
M_PGS2_ (Multi-Point Program Setter)	7-377
M_PID (Velocity Type PID Control) (Without	ut
Tracking to primary loop)	7-264
M_PID_DUTY (Velocity Type PID Control a	and
DUTY Output) (Without Tracking to primary	y loop)
	7-270
M_PID_DUTY_T (Velocity Type PID Control	
DUTY Output) (With Tracking to primary lo	op)

MOD(_E) (Modulus Operation)
Motor Reversible (2 Input, 3 Output) (M_REV)
[N]
Natural Exponential (EXP(_E))
[0]
OFF Delay Timer (High-speed Timer) (TOF_HIGH)5- 27 OFF Delay Timer (Low-speed Timer) (TOF_LOW)
5- 29
ON Delay Timer (High-speed Timer) (TON_HIGH)5- 23
ON Delay Timer (Low-speed Timer) (TON_LOW)
ON/OFF Operation (2 Input, 2 Output) (M_MVAL1)
Operation mode
Operation mode changeA- 16
Output Processing 1 with Mode Switching (With Input Addition) (P OUT1)
Output Processing 2 with Mode Switching (Without
Input Addition) (P_OUT2)7- 81
Output Processing -3 with Mode Switching (With Input Addition and Compensation) (P_OUT3_)7-85
רבו
[P] P_= (Compare Equal Than) (With Set Value)7- 38
P_>= (Compare Greater or Equal) (With Set
Value)

P_<= (Compare Less or Equal) (With Set Value)
7- 42
P_< (Compare Less Than) (With Set Value)7- 36
P_2PID (2-Degree-of-Freedom PID Control)
(Without Tracking to primary loop)7-129
P_2PID_T (2-Degree-of-Freedom PID Control)
(With Tracking to primary loop)7-123
P_2PIDH_ (2-Degree-of-Freedom Advanced PID
Control) (Without Tracking to primary loop)
7-142
P_2PIDH_ T_(2-Degree-of-Freedom Advanced
PID Control) (With Tracking to primary loop)
7-135
PIN_8CH_G (Channel-isolated 8 Channels Pulse
Input)8- 69
P_ABS(_E) (Absolute Value)6- 14
P_ADD (Addition) (With Coefficient)7- 22
P_AMR (Analog Memory)7- 69
P_AVE(_E) (Average Value)6- 11
P_BC (Batch Counter)7- 102
P_BPI (Blend PI Control) (Without Tracking to
primary loop)7-204
P_BPI_T (Blend PI Control) (With Tracking to
primary loop)7-199
P_BUMP (Bumpless Transfer)7- 67
P_D (Derivative)7- 50
P_DBND (Dead Band)7- 65
P_DED (Dead Time)7- 53
P_DIV (Division) (With Coefficient)7- 29
P_DUTY (Time Proportioning Output)7- 94
P_ENG (Engineering Value Conversion)7- 10
P_FG (Function Generator)7- 2
P_FLT (Standard Filter) (Moving Average)7- 8
P_HS(_E) (High Selector)6- 2
P_I (Integral)
P_IENG (Inverse Engineering Value Conversion)
7- 12
P_IFG (Inverse Function Generator)7- 5
P_IN (Analog Input Processing)7-72
P_IPD (I-PD Control) (Without Tracking to primary
loop)7-194 P_IPD_T (I-PD Control) (With Tracking to primary
loop)7-188 P_LIMT (High/Low Limiter)7-56
P_LLAG (Lead-Lag)7- 44
P_LS(_E (Low Selector)
P_MCHG (Control Mode Change)7-258
P MID(F) (Middle Value Selection) 6- 8

P_MOUT (Manual Output)7- 92
P_MUL (Multiplication (With Coefficient) 7- 26
P_ONF2 (2-Position ON/OFF) (Without Tracking
to primary loop)
P_ONF2_T (2-Position ON/OFF) (With Tracking
to primary loop)
P_ONF3 (3-Position ON/OFF) (Without Tracking
to primary loop)
P_ONF3_T (3-Position ON/OFF) (With Tracking
to primary loop)
P_OUT1 (Output Processing 1 with Mode
Switching) (With Input Addition)7- 76
P_OUT2 (Output Processing 2 with Mode
Switching) (Without Input Addition) 7- 81
P_OUT3_ (Output Processing 3 with Mode
Switching) (With Input Addition and
Compensation)
P_PGS (Program Setter)
P_PGS2_ (Multi-Point Program Setter) 7-233
P_PHPL (High/Low Limit Alarm Check) 7-209
P_PID (Velocity Type PID Control) (Without
Tracking to primary loop) 7-117
P_PID_T (Velocity Type PID Control) (With
Tracking to primary loop) 7-111
P_PIDP (Position Type PID Control) (Without
Tracking to primary loop, Without Tracking from
secondary loop)7-156
P_PIDP_EX_ (Position Type PID Control) (Withou
Tracking to primary loop, With Tracking from
secondary loop)
P_PIDP_EX_ T_(Position Type PID Control) (With
Tracking to primary loop, With Tracking from
secondary loop)
P_PIDP_T (Position Type PID Control) (With
Tracking to primary loop, Without Tracking from secondary loop)
P_PSUM (Pulse Integration)
P_R (Ratio Control) (Without Tracking to primary
loop)7-108
P_R_T (Ratio Control) (With Tracking to primary
loop)7-105
P_SEL (Loop Selector) (Without Tracking to
primary loop)
P_SEL_T1 (Loop Selector) (With Tracking to
primary loop)
P_SEL_T2 (Loop Selector) (With Tracking to
primary loop)
P_SPI (Sample PI Control) (Without Tracking to
primary loop)7-183

P_VLMT1 (Variation Rate Limiter1)	P_SPI_T (Sample PI Control) (With Tracking to primary loop)	1 4 6 8
Position Type PID Control (With Tracking to primary loop, With Tracking from secondary loop) (M_PIDP_EX_T_)	P_VLMT1 (Variation Rate Limiter1)	9 2 9 7
Process CPUA- 15 Program Low-speed Execution Registration (PLOW(_E))4-147	Position Type PID Control (With Tracking to primary loop, With Tracking from secondary loop (M_PIDP_EX_T_)	p) 4 p) 3 8 9 p) 7 p) 0 1 6 6
	Process CPU	5 7

	Program Scan Execution Registration	
	(PSCAN(_E))	
	Program Setter (M_PGS)	7-375
	Program Setter (P_PGS)	7-229
	Program Standby Instruction (PSTOP(_E))	
		4-144
	Project	A- 15
	PSCAN(_E) (Program Scan Execution	
	Registration)	4-143
	PSTOP(_E) (Program Standby Instruction)	
		4-144
	Pulse Integration (P_PSUM)	
	Pulse Intergrator (M_PSUM)	
	Pulse Timer (High-speed Timer) (TP_HIGH	
	(g., cpssce.) (
	Pulse Timer (Low-speed Timer) (TP_LOW)	
	r dies rimer (Lew speed rimer) (11 _Levv)	
		0 21
ſΕ	रा	
Γ.	R_TRIG (Rising Edge Detector)	5- 10
	Ratio Control (With Tracking to primary loop	
	(M_R_T)	
	Ratio Control (With Tracking to primary loop	
	(P_R_T)	•
	Ratio Control (Without Tracking to primary I	
	(M_R) Ratio Control (Without Tracking to primary I	
	,	
	(P_R)	7-100
	REAL Type → INT/DINT Type Conversion	4 47
	(REAL_TO_INT(_E), REAL_TO_DINT(_E))	
	REAL Type → STRING Type (Decimal Point	
	Conversion (REAL_TO_STRING_EX(_E))	
	REAL Type → STRING Type (Exponent Form	•
	Conversion (REAL_TO_STRING(_E))	
	REAL_TO_INT(_E), REAL_TO_DINT(_E) (R	
	Type → INT/DINT Type Conversion)	
	$REAL_TO_STRING(_E)\ (REAL\ Type \to STR$	
	Type (Exponent Form) Conversion)	4- 37
	$REAL_TO_STRING_EX(_E)(REALType \to$	
	STRING Type (Decimal Point Form) Convers	
	Receive Data from PLC CPUs of Other Star	tions
	(RECV)	5- 37
	RECV (Receive Data from PLC CPUs of Ot	her
	Stations)	5- 37
	Redundant CPU	A- 15
	Redundant parameter A- 16,	2- 52
	Redundant system	
	Replace Characters (REPLACE(_E))	
	//	

)
)
s)
,
D)

	STRING Type → REAL Type Conversion (STRING_TO_REAL (_E))
	(STRING Type \rightarrow INT/DINT Type Conversion)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	4-139
	Subtraction (SUB(_E)) 4- 73 Subtraction (With Coefficient) (P_SUB) 7- 24 Summation (P_SUM) 7- 16
	Summation (Internal Integer Integration) (P_SUM2_)7- 18
	System A
	System B
	System resource
	System switchingA- 16
[Τ	
	Tag FB_Message Tag FB
	Time Proportioning Output (P_DUTY) 7- 94 Timer 1 (Timer Stops When COMPLETE Flag is ON) (M_TIMER1) 7-396 Timer 2 (Timer Continues When COMPLETE Flag is ON) (M_TIMER2) 7-398 TOF_HIGH (OFF Delay Timer) (High-speed Timer) 5- 27 TOF_LOW (OFF Delay Timer) (Low-speed Timer)
	TON_HIGH (ON Delay Timer) (High-speed Timer)
	5- 23
	TON_LOW (ON Delay Timer) (Low-speed Timer)5- 25
	TP_HIGH (Pulse Timer) (High-speed Timer)5- 19
	TP_LOW (Pulse Timer) (Low-speed Timer)
	Tracking function
	Tracking functionA- 16

г	ı	П
1	u	Ш
L	_	J

	UNBIND(_E) (WORD→16BOOL Unbinding)
	Up-counter (CTU)5- 13
	Up-down-counter (CTUD)5- 17
	(
[\	
	Variation Rate Limiter1 (P_VLMT1)7-59
	Variation Rate Limiter2 (P_LIMT2)7- 62
	Velocity Type PID Control (With Tracking to primary loop) (M_PID_T)7-261
	Velocity Type PID Control (With Tracking to
	primary loop) (P_PID_T)7-111
	Velocity Type PID Control (Without Tracking to
	primary loop) (M_PID)7-264
	Velocity Type PID Control (Without Tracking to
	primary loop) (P_PID)7-117 Velocity Type PID Control and DUTY Output (With
	Tracking to primary loop) (M_PID_DUTY_T)
	7-267
	Velocity Type PID Control and DUTY Output
	(Without Tracking to primary loop) (M_PID_DUTY)
	7-270
Г\/	V]
L۷	WORD → 16BOOL Unbinding (UNBIND(_E))
	4-127
	WORD Type \rightarrow DWORD Type Conversion
	(WORD_TO_DWORD(_E))4- 30
	WORD Type → INT/DINT Type Conversion
	(WORD_TO_INT(_E), WORD_TO_DINT(_E))4- 23
	WORD/DWORD Type → BOOL Type Conversion
	(WORD_TO_BOOL(_E), WORD_TO_BOOL(_E))
	4- 25
	WORD_TO_BOOL(_E), DWORD_TO_BOOL(_E)
	(WORD/DWORD Type → BOOL Type Conversion)
	4- 25 WORD_TO_DWORD(_E) (WORD Type \rightarrow
	DWORD Type Conversion)4- 30
	WORD_TO_INT(_E), WORD_TO_DINT(_E)
	(WORD Type \rightarrow INT/DINT Type Conversion)
	4- 23

WARRANTY

Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company.

However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing onsite that involves replacement of the failed module.

[Gratis Warranty Term]

The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place.

Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.

[Gratis Warranty Range]

- (1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.
- (2) Even within the gratis warranty term, repairs shall be charged for in the following cases.
 - 1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
 - 2. Failure caused by unapproved modifications, etc., to the product by the user.
 - 3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
 - 4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
 - 5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force majeure such as earthquakes, lightning, wind and water damage.
 - 6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
 - 7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

2. Onerous repair term after discontinuation of production

- (1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued. Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
- (2) Product supply (including repair parts) is not available after production is discontinued.

3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.

4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation of damages caused by any cause found not to be the responsibility of Mitsubishi, loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products, special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products, replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

6. Product application

- (1) In using the Mitsubishi MELSEC programmable controller, the usage conditions shall be that the application will not lead to a major accident even if any problem or fault should occur in the programmable controller device, and that backup and fail-safe functions are systematically provided outside of the device for any problem or fault.
- (2) The Mitsubishi programmable controller has been designed and manufactured for applications in general industries, etc. Thus, applications in which the public could be affected such as in nuclear power plants and other power plants operated by respective power companies, and applications in which a special quality assurance system is required, such as for Railway companies or Public service purposes shall be excluded from the programmable controller applications.

in addition, applications in which human life or property that could be greatly affected, such as in aircraft, medical applications, incineration and fuel devices, manned transportation, equipment for recreation and amusement, and safety devices, shall also be excluded from the programmable controller range of applications.

However, in certain cases, some applications may be possible, providing the user consults their local Mitsubishi representative outlining the special requirements of the project, and providing that all parties concerned agree to the special circumstances, solely at the users discretion.

Microsoft, Windows, Windows NT, Windows Vista are registered trademarks of Microsoft Corporation in the United States and other countries.

Adobe and Acrobat are registered trademarks of Adobe Systems Incorporation.

Pentium and Celeron are trademarks of Intel Corporation in the United States and other countries.

Ethernet is a trademark of Xerox Co., Ltd. in the United States.

Other company names and product names used in this document or trademarks or registered trademarks of respective owners.

PX Developer Version 1

Programming Manual

MODEL	SW1D5C-FBDQ-P-E
MODEL 13JW00	
SH(NA)-080371E-I(0806)MEE	

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN NAGOYA WORKS : 1-14 , YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

When exported from Japan, this manual does not require application to the Ministry of Economy, Trade and Industry for service transaction permission.